# HG changeset patch # User nipkow # Date 1400012052 -7200 # Node ID efa2a83d548b618e6c7e6a970d1afcc24c1ab00b # Parent 4fca7e1470e2bcefe1a59dfc68eda48cb902ea34 added lemmas diff -r 4fca7e1470e2 -r efa2a83d548b src/HOL/Transcendental.thy --- a/src/HOL/Transcendental.thy Tue May 13 16:18:16 2014 +0200 +++ b/src/HOL/Transcendental.thy Tue May 13 22:14:12 2014 +0200 @@ -1963,6 +1963,12 @@ lemma ln_powr: "ln (x powr y) = y * ln x" by (simp add: powr_def) +lemma ln_root: "\ n > 0; b > 0 \ \ ln (root n b) = ln b / n" +by(simp add: root_powr_inverse ln_powr) + +lemma log_root: "\ n > 0; a > 0 \ \ log b (root n a) = log b a / n" +by(simp add: log_def ln_root) + lemma log_powr: "log b (x powr y) = y * log b x" by (simp add: log_def ln_powr) @@ -1978,6 +1984,9 @@ lemma log_base_powr: "log (a powr b) x = log a x / b" by (simp add: log_def ln_powr) +lemma log_base_root: "\ n > 0; b > 0 \ \ log (root n b) x = n * (log b x)" +by(simp add: log_def ln_root) + lemma ln_bound: "1 <= x ==> ln x <= x" apply (subgoal_tac "ln(1 + (x - 1)) <= x - 1") apply simp