# HG changeset patch # User huffman # Date 1244747141 25200 # Node ID eff95000aae74d0b9ad2abf6ff4ebd458508cf59 # Parent da5a5589418e176505f70f90c958e9a2326eb80b new lemmas diff -r da5a5589418e -r eff95000aae7 src/HOL/Library/Euclidean_Space.thy --- a/src/HOL/Library/Euclidean_Space.thy Thu Jun 11 11:51:12 2009 -0700 +++ b/src/HOL/Library/Euclidean_Space.thy Thu Jun 11 12:05:41 2009 -0700 @@ -369,19 +369,22 @@ end -lemma tendsto_Cart_nth: - fixes f :: "'a \ 'b::topological_space ^ 'n::finite" +lemma open_vector_box: "\i. open (S i) \ open {x. \i. x $ i \ S i}" +unfolding open_vector_def by auto + +lemma open_vimage_Cart_nth: "open S \ open ((\x. x $ i) -` S)" +unfolding open_vector_def +apply clarify +apply (rule_tac x="\k. if k = i then S else UNIV" in exI, simp) +done + +lemma tendsto_Cart_nth [tendsto_intros]: assumes "((\x. f x) ---> a) net" shows "((\x. f x $ i) ---> a $ i) net" proof (rule topological_tendstoI) - fix S :: "'b set" assume "open S" "a $ i \ S" + fix S assume "open S" "a $ i \ S" then have "open ((\y. y $ i) -` S)" "a \ ((\y. y $ i) -` S)" - unfolding open_vector_def - apply simp_all - apply clarify - apply (rule_tac x="\k. if k = i then S else UNIV" in exI) - apply simp - done + by (simp_all add: open_vimage_Cart_nth) with assms have "eventually (\x. f x \ (\y. y $ i) -` S) net" by (rule topological_tendstoD) then show "eventually (\x. f x $ i \ S) net"