# HG changeset patch # User blanchet # Date 1384794285 -3600 # Node ID f001ef2637d31c55eafba837eb8127c5be84b7a8 # Parent 478b4aa26a4c18819b1b726267c58a2d0909a1b0 moved theorems out of LFP diff -r 478b4aa26a4c -r f001ef2637d3 src/HOL/Cardinals/Wellorder_Relation.thy --- a/src/HOL/Cardinals/Wellorder_Relation.thy Mon Nov 18 18:04:45 2013 +0100 +++ b/src/HOL/Cardinals/Wellorder_Relation.thy Mon Nov 18 18:04:45 2013 +0100 @@ -64,17 +64,7 @@ lemma minim_Under: "\B \ Field r; B \ {}\ \ minim B \ Under B" -by(auto simp add: Under_def -minim_in -minim_inField -minim_least -under_ofilter -underS_ofilter -Field_ofilter -ofilter_Under -ofilter_UnderS -ofilter_Un -) +by(auto simp add: Under_def minim_inField minim_least) lemma equals_minim_Under: "\B \ Field r; a \ B; a \ Under B\ @@ -410,7 +400,41 @@ qed -subsubsection {* Properties of order filters *} +subsubsection {* Properties of order filters *} + +lemma ofilter_Under[simp]: +assumes "A \ Field r" +shows "ofilter(Under A)" +proof(unfold ofilter_def, auto) + fix x assume "x \ Under A" + thus "x \ Field r" + using Under_Field assms by auto +next + fix a x + assume "a \ Under A" and "x \ under a" + thus "x \ Under A" + using TRANS under_Under_trans by auto +qed + +lemma ofilter_UnderS[simp]: +assumes "A \ Field r" +shows "ofilter(UnderS A)" +proof(unfold ofilter_def, auto) + fix x assume "x \ UnderS A" + thus "x \ Field r" + using UnderS_Field assms by auto +next + fix a x + assume "a \ UnderS A" and "x \ under a" + thus "x \ UnderS A" + using TRANS ANTISYM under_UnderS_trans by auto +qed + +lemma ofilter_Int[simp]: "\ofilter A; ofilter B\ \ ofilter(A Int B)" +unfolding ofilter_def by blast + +lemma ofilter_Un[simp]: "\ofilter A; ofilter B\ \ ofilter(A \ B)" +unfolding ofilter_def by blast lemma ofilter_INTER: "\I \ {}; \ i. i \ I \ ofilter(A i)\ \ ofilter (\ i \ I. A i)" @@ -496,10 +520,6 @@ under_ofilter[simp] underS_ofilter[simp] Field_ofilter[simp] - ofilter_Under[simp] - ofilter_UnderS[simp] - ofilter_Int[simp] - ofilter_Un[simp] end diff -r 478b4aa26a4c -r f001ef2637d3 src/HOL/Cardinals/Wellorder_Relation_LFP.thy --- a/src/HOL/Cardinals/Wellorder_Relation_LFP.thy Mon Nov 18 18:04:45 2013 +0100 +++ b/src/HOL/Cardinals/Wellorder_Relation_LFP.thy Mon Nov 18 18:04:45 2013 +0100 @@ -419,7 +419,7 @@ qed -subsubsection {* Properties of order filters *} +subsubsection {* Properties of order filters *} lemma under_ofilter: @@ -513,44 +513,6 @@ qed -lemma ofilter_Under: -assumes "A \ Field r" -shows "ofilter(Under A)" -proof(unfold ofilter_def, auto) - fix x assume "x \ Under A" - thus "x \ Field r" - using Under_Field assms by auto -next - fix a x - assume "a \ Under A" and "x \ under a" - thus "x \ Under A" - using TRANS under_Under_trans by auto -qed - - -lemma ofilter_UnderS: -assumes "A \ Field r" -shows "ofilter(UnderS A)" -proof(unfold ofilter_def, auto) - fix x assume "x \ UnderS A" - thus "x \ Field r" - using UnderS_Field assms by auto -next - fix a x - assume "a \ UnderS A" and "x \ under a" - thus "x \ UnderS A" - using TRANS ANTISYM under_UnderS_trans by auto -qed - - -lemma ofilter_Int: "\ofilter A; ofilter B\ \ ofilter(A Int B)" -unfolding ofilter_def by blast - - -lemma ofilter_Un: "\ofilter A; ofilter B\ \ ofilter(A \ B)" -unfolding ofilter_def by blast - - lemma ofilter_UNION: "(\ i. i \ I \ ofilter(A i)) \ ofilter (\ i \ I. A i)" unfolding ofilter_def by blast