# HG changeset patch # User paulson # Date 960390898 -7200 # Node ID f020e00c6304a164e18147fa1f408d6b0404e797 # Parent 0e48e7d4d4f9a43f6759606cc5b6d3b983d58c2a replacing 0hr by (0::hypreal) diff -r 0e48e7d4d4f9 -r f020e00c6304 src/HOL/Real/Hyperreal/HyperDef.ML --- a/src/HOL/Real/Hyperreal/HyperDef.ML Wed Jun 07 17:14:19 2000 +0200 +++ b/src/HOL/Real/Hyperreal/HyperDef.ML Wed Jun 07 17:14:58 2000 +0200 @@ -10,7 +10,7 @@ ------------------------------------------------------------------------*) (*** based on James' proof that the set of naturals is not finite ***) -Goal "finite (A::nat set) --> (? n. !m. Suc (n + m) ~: A)"; +Goal "finite (A::nat set) --> (EX n. ALL m. Suc (n + m) ~: A)"; by (rtac impI 1); by (eres_inst_tac [("F","A")] finite_induct 1); by (Blast_tac 1 THEN etac exE 1); @@ -22,7 +22,7 @@ less_add_Suc2 RS less_not_refl2])); qed_spec_mp "finite_exhausts"; -Goal "finite (A :: nat set) --> (? n. n ~:A)"; +Goal "finite (A :: nat set) --> (EX n. n ~:A)"; by (rtac impI 1 THEN dtac finite_exhausts 1); by (Blast_tac 1); qed_spec_mp "finite_not_covers"; @@ -311,13 +311,13 @@ by (asm_full_simp_tac (simpset() addsimps [hypreal_minus_minus]) 1); qed "inj_hypreal_minus"; -Goalw [hypreal_zero_def] "-0hr = 0hr"; +Goalw [hypreal_zero_def] "-0 = (0::hypreal)"; by (simp_tac (simpset() addsimps [hypreal_minus]) 1); qed "hypreal_minus_zero"; Addsimps [hypreal_minus_zero]; -Goal "(-x = 0hr) = (x = 0hr)"; +Goal "(-x = 0) = (x = (0::hypreal))"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (auto_tac (claset(),simpset() addsimps [hypreal_zero_def, hypreal_minus] @ real_add_ac)); @@ -342,7 +342,7 @@ [hyprel_in_hypreal RS Abs_hypreal_inverse,hypreal_hrinv_ize UN_equiv_class]) 1); qed "hypreal_hrinv"; -Goal "z ~= 0hr ==> hrinv (hrinv z) = z"; +Goal "z ~= 0 ==> hrinv (hrinv z) = z"; by (res_inst_tac [("z","z")] eq_Abs_hypreal 1); by (rotate_tac 1 1); by (asm_full_simp_tac (simpset() addsimps @@ -402,24 +402,24 @@ val hypreal_add_ac = [hypreal_add_assoc,hypreal_add_commute, hypreal_add_left_commute]; -Goalw [hypreal_zero_def] "0hr + z = z"; +Goalw [hypreal_zero_def] "(0::hypreal) + z = z"; by (res_inst_tac [("z","z")] eq_Abs_hypreal 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add]) 1); qed "hypreal_add_zero_left"; -Goal "z + 0hr = z"; +Goal "z + (0::hypreal) = z"; by (simp_tac (simpset() addsimps [hypreal_add_zero_left,hypreal_add_commute]) 1); qed "hypreal_add_zero_right"; -Goalw [hypreal_zero_def] "z + -z = 0hr"; +Goalw [hypreal_zero_def] "z + -z = (0::hypreal)"; by (res_inst_tac [("z","z")] eq_Abs_hypreal 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_minus, hypreal_add]) 1); qed "hypreal_add_minus"; -Goal "-z + z = 0hr"; +Goal "-z + z = (0::hypreal)"; by (simp_tac (simpset() addsimps [hypreal_add_commute,hypreal_add_minus]) 1); qed "hypreal_add_minus_left"; @@ -427,31 +427,31 @@ Addsimps [hypreal_add_minus,hypreal_add_minus_left, hypreal_add_zero_left,hypreal_add_zero_right]; -Goal "? y. (x::hypreal) + y = 0hr"; +Goal "EX y. (x::hypreal) + y = 0"; by (fast_tac (claset() addIs [hypreal_add_minus]) 1); qed "hypreal_minus_ex"; -Goal "?! y. (x::hypreal) + y = 0hr"; +Goal "EX! y. (x::hypreal) + y = 0"; by (auto_tac (claset() addIs [hypreal_add_minus],simpset())); by (dres_inst_tac [("f","%x. ya+x")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1); qed "hypreal_minus_ex1"; -Goal "?! y. y + (x::hypreal) = 0hr"; +Goal "EX! y. y + (x::hypreal) = 0"; by (auto_tac (claset() addIs [hypreal_add_minus_left],simpset())); by (dres_inst_tac [("f","%x. x+ya")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc]) 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1); qed "hypreal_minus_left_ex1"; -Goal "x + y = 0hr ==> x = -y"; +Goal "x + y = (0::hypreal) ==> x = -y"; by (cut_inst_tac [("z","y")] hypreal_add_minus_left 1); by (res_inst_tac [("x1","y")] (hypreal_minus_left_ex1 RS ex1E) 1); by (Blast_tac 1); qed "hypreal_add_minus_eq_minus"; -Goal "? y::hypreal. x = -y"; +Goal "EX y::hypreal. x = -y"; by (cut_inst_tac [("x","x")] hypreal_minus_ex 1); by (etac exE 1 THEN dtac hypreal_add_minus_eq_minus 1); by (Fast_tac 1); @@ -572,12 +572,12 @@ hypreal_mult_1]) 1); qed "hypreal_mult_1_right"; -Goalw [hypreal_zero_def] "0hr * z = 0hr"; +Goalw [hypreal_zero_def] "0 * z = (0::hypreal)"; by (res_inst_tac [("z","z")] eq_Abs_hypreal 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult,real_mult_0]) 1); qed "hypreal_mult_0"; -Goal "z * 0hr = 0hr"; +Goal "z * 0 = (0::hypreal)"; by (simp_tac (simpset() addsimps [hypreal_mult_commute, hypreal_mult_0]) 1); qed "hypreal_mult_0_right"; @@ -600,16 +600,11 @@ @ real_mult_ac @ real_add_ac)); qed "hypreal_minus_mult_eq2"; -Goal "-x*-y = x*(y::hypreal)"; -by (full_simp_tac (simpset() addsimps [hypreal_minus_mult_eq2 RS sym, - hypreal_minus_mult_eq1 RS sym]) 1); -qed "hypreal_minus_mult_cancel"; - -Addsimps [hypreal_minus_mult_cancel]; +(*Pull negations out*) +Addsimps [hypreal_minus_mult_eq2 RS sym, hypreal_minus_mult_eq1 RS sym]; Goal "-x*y = (x::hypreal)*-y"; -by (full_simp_tac (simpset() addsimps [hypreal_minus_mult_eq2 RS sym, - hypreal_minus_mult_eq1 RS sym]) 1); +by Auto_tac; qed "hypreal_minus_mult_commute"; @@ -642,13 +637,13 @@ Addsimps hypreal_mult_simps; (*** one and zero are distinct ***) -Goalw [hypreal_zero_def,hypreal_one_def] "0hr ~= 1hr"; +Goalw [hypreal_zero_def,hypreal_one_def] "0 ~= 1hr"; by (auto_tac (claset(),simpset() addsimps [real_zero_not_eq_one])); qed "hypreal_zero_not_eq_one"; (*** existence of inverse ***) Goalw [hypreal_one_def,hypreal_zero_def] - "x ~= 0hr ==> x*hrinv(x) = 1hr"; + "x ~= 0 ==> x*hrinv(x) = 1hr"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (rotate_tac 1 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_hrinv, @@ -658,41 +653,41 @@ FreeUltrafilterNat_subset]) 1); qed "hypreal_mult_hrinv"; -Goal "x ~= 0hr ==> hrinv(x)*x = 1hr"; +Goal "x ~= 0 ==> hrinv(x)*x = 1hr"; by (asm_simp_tac (simpset() addsimps [hypreal_mult_hrinv, - hypreal_mult_commute]) 1); + hypreal_mult_commute]) 1); qed "hypreal_mult_hrinv_left"; -Goal "x ~= 0hr ==> ? y. (x::hypreal) * y = 1hr"; +Goal "x ~= 0 ==> EX y. x * y = 1hr"; by (fast_tac (claset() addDs [hypreal_mult_hrinv]) 1); qed "hypreal_hrinv_ex"; -Goal "x ~= 0hr ==> ? y. y * (x::hypreal) = 1hr"; +Goal "x ~= 0 ==> EX y. y * x = 1hr"; by (fast_tac (claset() addDs [hypreal_mult_hrinv_left]) 1); qed "hypreal_hrinv_left_ex"; -Goal "x ~= 0hr ==> ?! y. (x::hypreal) * y = 1hr"; +Goal "x ~= 0 ==> EX! y. x * y = 1hr"; by (auto_tac (claset() addIs [hypreal_mult_hrinv],simpset())); by (dres_inst_tac [("f","%x. ya*x")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_assoc RS sym]) 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_commute]) 1); qed "hypreal_hrinv_ex1"; -Goal "x ~= 0hr ==> ?! y. y * (x::hypreal) = 1hr"; +Goal "x ~= 0 ==> EX! y. y * x = 1hr"; by (auto_tac (claset() addIs [hypreal_mult_hrinv_left],simpset())); by (dres_inst_tac [("f","%x. x*ya")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_assoc]) 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_commute]) 1); qed "hypreal_hrinv_left_ex1"; -Goal "[| y~= 0hr; x * y = 1hr |] ==> x = hrinv y"; +Goal "[| y~= 0; x * y = 1hr |] ==> x = hrinv y"; by (forw_inst_tac [("x","y")] hypreal_mult_hrinv_left 1); by (res_inst_tac [("x1","y")] (hypreal_hrinv_left_ex1 RS ex1E) 1); by (assume_tac 1); by (Blast_tac 1); qed "hypreal_mult_inv_hrinv"; -Goal "x ~= 0hr ==> ? y. x = hrinv y"; +Goal "x ~= 0 ==> EX y. x = hrinv y"; by (forw_inst_tac [("x","x")] hypreal_hrinv_left_ex 1); by (etac exE 1 THEN forw_inst_tac [("x","y")] hypreal_mult_inv_hrinv 1); @@ -700,19 +695,19 @@ by Auto_tac; qed "hypreal_as_inverse_ex"; -Goal "(c::hypreal) ~= 0hr ==> (c*a=c*b) = (a=b)"; +Goal "(c::hypreal) ~= 0 ==> (c*a=c*b) = (a=b)"; by Auto_tac; by (dres_inst_tac [("f","%x. x*hrinv c")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_hrinv] @ hypreal_mult_ac) 1); qed "hypreal_mult_left_cancel"; -Goal "(c::hypreal) ~= 0hr ==> (a*c=b*c) = (a=b)"; +Goal "(c::hypreal) ~= 0 ==> (a*c=b*c) = (a=b)"; by (Step_tac 1); by (dres_inst_tac [("f","%x. x*hrinv c")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_hrinv] @ hypreal_mult_ac) 1); qed "hypreal_mult_right_cancel"; -Goalw [hypreal_zero_def] "x ~= 0hr ==> hrinv(x) ~= 0hr"; +Goalw [hypreal_zero_def] "x ~= 0 ==> hrinv(x) ~= 0"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (rotate_tac 1 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_hrinv, @@ -724,7 +719,7 @@ Addsimps [hypreal_mult_hrinv,hypreal_mult_hrinv_left]; -Goal "[| x ~= 0hr; y ~= 0hr |] ==> x * y ~= 0hr"; +Goal "[| x ~= 0; y ~= 0 |] ==> x * y ~= (0::hypreal)"; by (Step_tac 1); by (dres_inst_tac [("f","%z. hrinv x*z")] arg_cong 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_mult_assoc RS sym]) 1); @@ -732,11 +727,11 @@ bind_thm ("hypreal_mult_not_0E",hypreal_mult_not_0 RS notE); -Goal "x ~= 0hr ==> x * x ~= 0hr"; +Goal "x ~= 0 ==> x * x ~= (0::hypreal)"; by (blast_tac (claset() addDs [hypreal_mult_not_0]) 1); qed "hypreal_mult_self_not_zero"; -Goal "[| x ~= 0hr; y ~= 0hr |] ==> hrinv(x*y) = hrinv(x)*hrinv(y)"; +Goal "[| x ~= 0; y ~= 0 |] ==> hrinv(x*y) = hrinv(x)*hrinv(y)"; by (res_inst_tac [("c1","x")] (hypreal_mult_left_cancel RS iffD1) 1); by (auto_tac (claset(),simpset() addsimps [hypreal_mult_assoc RS sym, hypreal_mult_not_0])); @@ -745,12 +740,13 @@ by (auto_tac (claset(),simpset() addsimps [hypreal_mult_assoc RS sym,hypreal_mult_not_0])); qed "hrinv_mult_eq"; -Goal "x ~= 0hr ==> hrinv(-x) = -hrinv(x)"; -by (res_inst_tac [("c1","-x")] (hypreal_mult_right_cancel RS iffD1) 1); +Goal "x ~= 0 ==> hrinv(-x) = -hrinv(x)"; +by (rtac (hypreal_mult_right_cancel RS iffD1) 1); +by (stac hypreal_mult_hrinv_left 2); by Auto_tac; qed "hypreal_minus_hrinv"; -Goal "[| x ~= 0hr; y ~= 0hr |] \ +Goal "[| x ~= 0; y ~= 0 |] \ \ ==> hrinv(x*y) = hrinv(x)*hrinv(y)"; by (forw_inst_tac [("y","y")] hypreal_mult_not_0 1 THEN assume_tac 1); by (res_inst_tac [("c1","x")] (hypreal_mult_left_cancel RS iffD1) 1); @@ -844,7 +840,7 @@ (*** sum order ***) Goalw [hypreal_zero_def] - "[| 0hr < x; 0hr < y |] ==> 0hr < x + y"; + "[| 0 < x; 0 < y |] ==> (0::hypreal) < x + y"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (res_inst_tac [("z","y")] eq_Abs_hypreal 1); by (auto_tac (claset(),simpset() addsimps @@ -857,7 +853,7 @@ (*** mult order ***) Goalw [hypreal_zero_def] - "[| 0hr < x; 0hr < y |] ==> 0hr < x * y"; + "[| 0 < x; 0 < y |] ==> (0::hypreal) < x * y"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (res_inst_tac [("z","y")] eq_Abs_hypreal 1); by (auto_tac (claset() addSIs [exI],simpset() addsimps @@ -870,13 +866,13 @@ Trichotomy of the hyperreals --------------------------------------------------------------------------------*) -Goalw [hyprel_def] "? x. x: hyprel ^^ {%n. #0}"; +Goalw [hyprel_def] "EX x. x: hyprel ^^ {%n. #0}"; by (res_inst_tac [("x","%n. #0")] exI 1); by (Step_tac 1); by (auto_tac (claset() addSIs [FreeUltrafilterNat_Nat_set],simpset())); qed "lemma_hyprel_0r_mem"; -Goalw [hypreal_zero_def]"0hr < x | x = 0hr | x < 0hr"; +Goalw [hypreal_zero_def]"0 < x | x = 0 | x < (0::hypreal)"; by (res_inst_tac [("z","x")] eq_Abs_hypreal 1); by (auto_tac (claset(),simpset() addsimps [hypreal_less_def])); by (cut_facts_tac [lemma_hyprel_0r_mem] 1 THEN etac exE 1); @@ -891,9 +887,9 @@ by (auto_tac (claset() addIs [real_linear_less2],simpset())); qed "hypreal_trichotomy"; -val prems = Goal "[| 0hr < x ==> P; \ -\ x = 0hr ==> P; \ -\ x < 0hr ==> P |] ==> P"; +val prems = Goal "[| (0::hypreal) < x ==> P; \ +\ x = 0 ==> P; \ +\ x < 0 ==> P |] ==> P"; by (cut_inst_tac [("x","x")] hypreal_trichotomy 1); by (REPEAT (eresolve_tac (disjE::prems) 1)); qed "hypreal_trichotomyE"; @@ -915,14 +911,14 @@ simpset() addsimps [hypreal_add_commute])); qed "hypreal_add_less_mono2"; -Goal "((x::hypreal) < y) = (0hr < y + -x)"; +Goal "((x::hypreal) < y) = (0 < y + -x)"; by (Step_tac 1); by (dres_inst_tac [("C","-x")] hypreal_add_less_mono1 1); by (dres_inst_tac [("C","x")] hypreal_add_less_mono1 2); by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc])); qed "hypreal_less_minus_iff"; -Goal "((x::hypreal) < y) = (x + -y< 0hr)"; +Goal "((x::hypreal) < y) = (x + -y< 0)"; by (Step_tac 1); by (dres_inst_tac [("C","-y")] hypreal_add_less_mono1 1); by (dres_inst_tac [("C","y")] hypreal_add_less_mono1 2); @@ -933,19 +929,19 @@ by (dtac (hypreal_less_minus_iff RS iffD1) 1); by (dtac (hypreal_less_minus_iff RS iffD1) 1); by (dtac hypreal_add_order 1 THEN assume_tac 1); -by (thin_tac "0hr < y2 + - z2" 1); +by (thin_tac "0 < y2 + - z2" 1); by (dres_inst_tac [("C","z1 + z2")] hypreal_add_less_mono1 1); by (auto_tac (claset(),simpset() addsimps [hypreal_minus_add_distrib RS sym] @ hypreal_add_ac)); qed "hypreal_add_less_mono"; -Goal "((x::hypreal) = y) = (0hr = x + - y)"; +Goal "((x::hypreal) = y) = (0 = x + - y)"; by Auto_tac; by (res_inst_tac [("x1","-y")] (hypreal_add_right_cancel RS iffD1) 1); by Auto_tac; qed "hypreal_eq_minus_iff"; -Goal "((x::hypreal) = y) = (0hr = y + - x)"; +Goal "((x::hypreal) = y) = (0 = y + - x)"; by Auto_tac; by (res_inst_tac [("x1","-x")] (hypreal_add_right_cancel RS iffD1) 1); by Auto_tac; @@ -959,7 +955,7 @@ by (auto_tac (claset(),simpset() addsimps hypreal_add_ac)); qed "hypreal_eq_minus_iff4"; -Goal "(x ~= a) = (x + -a ~= 0hr)"; +Goal "(x ~= a) = (x + -a ~= (0::hypreal))"; by (auto_tac (claset() addDs [sym RS (hypreal_eq_minus_iff RS iffD2)],simpset())); qed "hypreal_not_eq_minus_iff"; @@ -1057,7 +1053,7 @@ fast_tac (claset() addEs [hypreal_less_irrefl,hypreal_less_asym])]); qed "hypreal_le_anti_sym"; -Goal "[| 0hr < x; 0hr <= y |] ==> 0hr < x + y"; +Goal "[| 0 < x; 0 <= y |] ==> (0::hypreal) < x + y"; by (auto_tac (claset() addDs [sym,hypreal_le_imp_less_or_eq] addIs [hypreal_add_order],simpset())); qed "hypreal_add_order_le"; @@ -1070,14 +1066,14 @@ by (fast_tac (claset() addDs [hypreal_le_imp_less_or_eq]) 1); qed "not_less_not_eq_hypreal_less"; -Goal "(0hr < -R) = (R < 0hr)"; +Goal "(0 < -R) = (R < (0::hypreal))"; by (Step_tac 1); by (dres_inst_tac [("C","R")] hypreal_add_less_mono1 1); by (dres_inst_tac [("C","-R")] hypreal_add_less_mono1 2); by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc])); qed "hypreal_minus_zero_less_iff"; -Goal "(-R < 0hr) = (0hr < R)"; +Goal "(-R < 0) = ((0::hypreal) < R)"; by (Step_tac 1); by (dres_inst_tac [("C","R")] hypreal_add_less_mono1 1); by (dres_inst_tac [("C","-R")] hypreal_add_less_mono1 2); @@ -1090,7 +1086,7 @@ by (simp_tac (simpset() addsimps [hypreal_add_commute]) 1); qed "hypreal_less_swap_iff"; -Goal "(0hr < x) = (-x < x)"; +Goal "((0::hypreal) < x) = (-x < x)"; by (Step_tac 1); by (rtac ccontr 2 THEN forward_tac [hypreal_leI RS hypreal_le_imp_less_or_eq] 2); @@ -1103,33 +1099,33 @@ by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc])); qed "hypreal_gt_zero_iff"; -Goal "(x < 0hr) = (x < -x)"; +Goal "(x < (0::hypreal)) = (x < -x)"; by (rtac (hypreal_minus_zero_less_iff RS subst) 1); by (stac hypreal_gt_zero_iff 1); by (Full_simp_tac 1); qed "hypreal_lt_zero_iff"; -Goalw [hypreal_le_def] "(0hr <= x) = (-x <= x)"; +Goalw [hypreal_le_def] "((0::hypreal) <= x) = (-x <= x)"; by (auto_tac (claset(),simpset() addsimps [hypreal_lt_zero_iff RS sym])); qed "hypreal_ge_zero_iff"; -Goalw [hypreal_le_def] "(x <= 0hr) = (x <= -x)"; +Goalw [hypreal_le_def] "(x <= (0::hypreal)) = (x <= -x)"; by (auto_tac (claset(),simpset() addsimps [hypreal_gt_zero_iff RS sym])); qed "hypreal_le_zero_iff"; -Goal "[| x < 0hr; y < 0hr |] ==> 0hr < x * y"; +Goal "[| x < 0; y < 0 |] ==> (0::hypreal) < x * y"; by (REPEAT(dtac (hypreal_minus_zero_less_iff RS iffD2) 1)); by (dtac hypreal_mult_order 1 THEN assume_tac 1); by (Asm_full_simp_tac 1); qed "hypreal_mult_less_zero1"; -Goal "[| 0hr <= x; 0hr <= y |] ==> 0hr <= x * y"; +Goal "[| 0 <= x; 0 <= y |] ==> (0::hypreal) <= x * y"; by (REPEAT(dtac hypreal_le_imp_less_or_eq 1)); by (auto_tac (claset() addIs [hypreal_mult_order, hypreal_less_imp_le],simpset())); qed "hypreal_le_mult_order"; -Goal "[| x <= 0hr; y <= 0hr |] ==> 0hr <= x * y"; +Goal "[| x <= 0; y <= 0 |] ==> (0::hypreal) <= x * y"; by (rtac hypreal_less_or_eq_imp_le 1); by (dtac hypreal_le_imp_less_or_eq 1 THEN etac disjE 1); by Auto_tac; @@ -1137,7 +1133,7 @@ by (auto_tac (claset() addDs [hypreal_mult_less_zero1],simpset())); qed "real_mult_le_zero1"; -Goal "[| 0hr <= x; y < 0hr |] ==> x * y <= 0hr"; +Goal "[| 0 <= x; y < 0 |] ==> x * y <= (0::hypreal)"; by (rtac hypreal_less_or_eq_imp_le 1); by (dtac hypreal_le_imp_less_or_eq 1 THEN etac disjE 1); by Auto_tac; @@ -1147,21 +1143,21 @@ addIs [hypreal_minus_mult_eq2 RS ssubst]) 1); qed "hypreal_mult_le_zero"; -Goal "[| 0hr < x; y < 0hr |] ==> x*y < 0hr"; +Goal "[| 0 < x; y < 0 |] ==> x*y < (0::hypreal)"; by (dtac (hypreal_minus_zero_less_iff RS iffD2) 1); by (dtac hypreal_mult_order 1 THEN assume_tac 1); by (rtac (hypreal_minus_zero_less_iff RS iffD1) 1); -by (asm_full_simp_tac (simpset() addsimps [hypreal_minus_mult_eq2]) 1); +by (Asm_full_simp_tac 1); qed "hypreal_mult_less_zero"; -Goalw [hypreal_one_def,hypreal_zero_def,hypreal_less_def] "0hr < 1hr"; +Goalw [hypreal_one_def,hypreal_zero_def,hypreal_less_def] "0 < 1hr"; by (res_inst_tac [("x","%n. #0")] exI 1); by (res_inst_tac [("x","%n. #1")] exI 1); by (auto_tac (claset(),simpset() addsimps [real_zero_less_one, FreeUltrafilterNat_Nat_set])); qed "hypreal_zero_less_one"; -Goal "[| 0hr <= x; 0hr <= y |] ==> 0hr <= x + y"; +Goal "[| 0 <= x; 0 <= y |] ==> (0::hypreal) <= x + y"; by (REPEAT(dtac hypreal_le_imp_less_or_eq 1)); by (auto_tac (claset() addIs [hypreal_add_order, hypreal_less_imp_le],simpset())); @@ -1197,70 +1193,70 @@ addIs [hypreal_add_less_mono2,hypreal_add_less_mono],simpset())); qed "hypreal_add_le_less_mono"; -Goal "(0hr*x x*z < y*z"; +Goal "[| (0::hypreal) < z; x < y |] ==> x*z < y*z"; by (rotate_tac 1 1); by (dtac (hypreal_less_minus_iff RS iffD1) 1); by (rtac (hypreal_less_minus_iff RS iffD2) 1); by (dtac hypreal_mult_order 1 THEN assume_tac 1); by (asm_full_simp_tac (simpset() addsimps [hypreal_add_mult_distrib2, - hypreal_minus_mult_eq2 RS sym, hypreal_mult_commute ]) 1); + hypreal_mult_commute ]) 1); qed "hypreal_mult_less_mono1"; -Goal "[| 0hr z*x z*x x*z<=y*z"; +Goal "[| (0::hypreal)<=z; x x*z<=y*z"; by (EVERY1 [rtac hypreal_less_or_eq_imp_le, dtac hypreal_le_imp_less_or_eq]); by (auto_tac (claset() addIs [hypreal_mult_less_mono1],simpset())); qed "hypreal_mult_le_less_mono1"; -Goal "[| 0hr<=z; x z*x<=z*y"; +Goal "[| (0::hypreal)<=z; x z*x<=z*y"; by (asm_simp_tac (simpset() addsimps [hypreal_mult_commute, hypreal_mult_le_less_mono1]) 1); qed "hypreal_mult_le_less_mono2"; -Goal "[| 0hr<=z; x<=y |] ==> z*x<=z*y"; +Goal "[| (0::hypreal)<=z; x<=y |] ==> z*x<=z*y"; by (dres_inst_tac [("x","x")] hypreal_le_imp_less_or_eq 1); by (auto_tac (claset() addIs [hypreal_mult_le_less_mono2,hypreal_le_refl],simpset())); qed "hypreal_mult_le_le_mono1"; val prem1::prem2::prem3::rest = goal thy - "[| 0hr y*x y*x y*x y*x y*x < t*s"; +Goal "[| 0 <= y; x <= r; y*r < t*s; (0::hypreal) < t*s|] ==> y*x < t*s"; by (dres_inst_tac [("x","x")] hypreal_le_imp_less_or_eq 1); by (fast_tac (claset() addIs [hypreal_mult_le_less_trans]) 1); qed "hypreal_mult_le_le_trans"; -Goal "[| 0hr < r1; r1 r1 * x < r2 * y"; by (dres_inst_tac [("x","x")] hypreal_mult_less_mono2 1); -by (dres_inst_tac [("R1.0","0hr")] hypreal_less_trans 2); +by (dres_inst_tac [("R1.0","0")] hypreal_less_trans 2); by (dres_inst_tac [("x","r1")] hypreal_mult_less_mono1 3); by Auto_tac; by (blast_tac (claset() addIs [hypreal_less_trans]) 1); qed "hypreal_mult_less_mono"; -Goal "[| 0hr < r1; r1 0hr < r2 * y"; -by (dres_inst_tac [("R1.0","0hr")] hypreal_less_trans 1); +Goal "[| 0 < r1; r1 (0::hypreal) < r2 * y"; +by (dres_inst_tac [("R1.0","0")] hypreal_less_trans 1); by (assume_tac 1); by (blast_tac (claset() addIs [hypreal_mult_order]) 1); qed "hypreal_mult_order_trans"; -Goal "[| 0hr < r1; r1 <= r2; 0hr <= x; x <= y |] \ +Goal "[| 0 < r1; r1 <= r2; (0::hypreal) <= x; x <= y |] \ \ ==> r1 * x <= r2 * y"; by (rtac hypreal_less_or_eq_imp_le 1); by (REPEAT(dtac hypreal_le_imp_less_or_eq 1)); @@ -1307,7 +1303,7 @@ by (auto_tac (claset(),simpset() addsimps [hypreal_minus])); qed "hypreal_of_real_minus"; -Goal "0hr < x ==> 0hr < hrinv x"; +Goal "0 < x ==> 0 < hrinv x"; by (EVERY1[rtac ccontr, dtac hypreal_leI]); by (forward_tac [hypreal_minus_zero_less_iff2 RS iffD2] 1); by (forward_tac [hypreal_not_refl2 RS not_sym] 1); @@ -1315,11 +1311,10 @@ by (EVERY1[dtac hypreal_le_imp_less_or_eq, Step_tac]); by (dtac hypreal_mult_less_zero1 1 THEN assume_tac 1); by (auto_tac (claset() addIs [hypreal_zero_less_one RS hypreal_less_asym], - simpset() addsimps [hypreal_minus_mult_eq1 RS sym, - hypreal_minus_zero_less_iff])); + simpset() addsimps [hypreal_minus_zero_less_iff])); qed "hypreal_hrinv_gt_zero"; -Goal "x < 0hr ==> hrinv x < 0hr"; +Goal "x < 0 ==> hrinv x < 0"; by (ftac hypreal_not_refl2 1); by (dtac (hypreal_minus_zero_less_iff RS iffD2) 1); by (rtac (hypreal_minus_zero_less_iff RS iffD1) 1); @@ -1332,17 +1327,17 @@ by (Step_tac 1); qed "hypreal_of_real_one"; -Goalw [hypreal_of_real_def,hypreal_zero_def] "hypreal_of_real #0 = 0hr"; +Goalw [hypreal_of_real_def,hypreal_zero_def] "hypreal_of_real #0 = 0"; by (Step_tac 1); qed "hypreal_of_real_zero"; -Goal "(hypreal_of_real r = 0hr) = (r = #0)"; +Goal "(hypreal_of_real r = 0) = (r = #0)"; by (auto_tac (claset() addIs [FreeUltrafilterNat_P], simpset() addsimps [hypreal_of_real_def, hypreal_zero_def,FreeUltrafilterNat_Nat_set])); qed "hypreal_of_real_zero_iff"; -Goal "(hypreal_of_real r ~= 0hr) = (r ~= #0)"; +Goal "(hypreal_of_real r ~= 0) = (r ~= #0)"; by (full_simp_tac (simpset() addsimps [hypreal_of_real_zero_iff]) 1); qed "hypreal_of_real_not_zero_iff"; @@ -1354,7 +1349,7 @@ by (auto_tac (claset(),simpset() addsimps [hypreal_of_real_mult RS sym,hypreal_of_real_one])); qed "hypreal_of_real_hrinv"; -Goal "hypreal_of_real r ~= 0hr ==> hrinv (hypreal_of_real r) = \ +Goal "hypreal_of_real r ~= 0 ==> hrinv (hypreal_of_real r) = \ \ hypreal_of_real (rinv r)"; by (etac (hypreal_of_real_not_zero_iff RS iffD1 RS hypreal_of_real_hrinv) 1); qed "hypreal_of_real_hrinv2"; @@ -1369,12 +1364,12 @@ hypreal_add_assoc]) 1); qed "hypreal_one_less_two"; -Goal "0hr < 1hr + 1hr"; +Goal "0 < 1hr + 1hr"; by (rtac ([hypreal_zero_less_one, hypreal_one_less_two] MRS hypreal_less_trans) 1); qed "hypreal_zero_less_two"; -Goal "1hr + 1hr ~= 0hr"; +Goal "1hr + 1hr ~= 0"; by (rtac (hypreal_zero_less_two RS hypreal_not_refl2 RS not_sym) 1); qed "hypreal_two_not_zero"; Addsimps [hypreal_two_not_zero]; @@ -1384,18 +1379,18 @@ by (full_simp_tac (simpset() addsimps [hypreal_mult_assoc]) 1); qed "hypreal_sum_of_halves"; -Goal "z ~= 0hr ==> x*y = (x*hrinv(z))*(z*y)"; +Goal "z ~= 0 ==> x*y = (x*hrinv(z))*(z*y)"; by (asm_simp_tac (simpset() addsimps hypreal_mult_ac) 1); qed "lemma_chain"; -Goal "0hr < r ==> 0hr < r*hrinv(1hr+1hr)"; +Goal "0 < r ==> 0 < r*hrinv(1hr+1hr)"; by (dtac (hypreal_zero_less_two RS hypreal_hrinv_gt_zero RS hypreal_mult_less_mono1) 1); by Auto_tac; qed "hypreal_half_gt_zero"; -(* TODO: remove redundant 0hr < x *) -Goal "[| 0hr < r; 0hr < x; r < x |] ==> hrinv x < hrinv r"; +(* TODO: remove redundant 0 < x *) +Goal "[| 0 < r; 0 < x; r < x |] ==> hrinv x < hrinv r"; by (ftac hypreal_hrinv_gt_zero 1); by (forw_inst_tac [("x","x")] hypreal_hrinv_gt_zero 1); by (forw_inst_tac [("x","r"),("z","hrinv r")] hypreal_mult_less_mono1 1); @@ -1409,7 +1404,7 @@ not_sym RS hypreal_mult_hrinv_left,hypreal_mult_assoc RS sym]) 1); qed "hypreal_hrinv_less_swap"; -Goal "[| 0hr < r; 0hr < x|] ==> (r < x) = (hrinv x < hrinv r)"; +Goal "[| 0 < r; 0 < x|] ==> (r < x) = (hrinv x < hrinv r)"; by (auto_tac (claset() addIs [hypreal_hrinv_less_swap],simpset())); by (res_inst_tac [("t","r")] (hypreal_hrinv_hrinv RS subst) 1); by (etac (hypreal_not_refl2 RS not_sym) 1); @@ -1419,29 +1414,29 @@ simpset() addsimps [hypreal_hrinv_gt_zero])); qed "hypreal_hrinv_less_iff"; -Goal "[| 0hr < z; x < y |] ==> x*hrinv(z) < y*hrinv(z)"; +Goal "[| 0 < z; x < y |] ==> x*hrinv(z) < y*hrinv(z)"; by (blast_tac (claset() addSIs [hypreal_mult_less_mono1, hypreal_hrinv_gt_zero]) 1); qed "hypreal_mult_hrinv_less_mono1"; -Goal "[| 0hr < z; x < y |] ==> hrinv(z)*x < hrinv(z)*y"; +Goal "[| 0 < z; x < y |] ==> hrinv(z)*x < hrinv(z)*y"; by (blast_tac (claset() addSIs [hypreal_mult_less_mono2, hypreal_hrinv_gt_zero]) 1); qed "hypreal_mult_hrinv_less_mono2"; -Goal "[| 0hr < z; x*z < y*z |] ==> x < y"; +Goal "[| (0::hypreal) < z; x*z < y*z |] ==> x < y"; by (forw_inst_tac [("x","x*z")] hypreal_mult_hrinv_less_mono1 1); by (dtac (hypreal_not_refl2 RS not_sym) 2); by (auto_tac (claset() addSDs [hypreal_mult_hrinv], simpset() addsimps hypreal_mult_ac)); qed "hypreal_less_mult_right_cancel"; -Goal "[| 0hr < z; z*x < z*y |] ==> x < y"; +Goal "[| (0::hypreal) < z; z*x < z*y |] ==> x < y"; by (auto_tac (claset() addIs [hypreal_less_mult_right_cancel], simpset() addsimps [hypreal_mult_commute])); qed "hypreal_less_mult_left_cancel"; -Goal "[| 0hr < r; 0hr < ra; \ +Goal "[| 0 < r; (0::hypreal) < ra; \ \ r < x; ra < y |] \ \ ==> r*ra < x*y"; by (forw_inst_tac [("R2.0","r")] hypreal_less_trans 1); @@ -1450,7 +1445,7 @@ by (auto_tac (claset() addIs [hypreal_less_trans],simpset())); qed "hypreal_mult_less_gt_zero"; -Goal "[| 0hr < r; 0hr < ra; \ +Goal "[| 0 < r; (0::hypreal) < ra; \ \ r <= x; ra <= y |] \ \ ==> r*ra <= x*y"; by (REPEAT(dtac hypreal_le_imp_less_or_eq 1)); @@ -1460,7 +1455,7 @@ simpset())); qed "hypreal_mult_le_ge_zero"; -Goal "? (x::hypreal). x < y"; +Goal "EX (x::hypreal). x < y"; by (rtac (hypreal_add_zero_right RS subst) 1); by (res_inst_tac [("x","y + -1hr")] exI 1); by (auto_tac (claset() addSIs [hypreal_add_less_mono2], @@ -1478,22 +1473,22 @@ by (asm_full_simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1); qed "hypreal_less_add_left_cancel"; -Goal "0hr <= x*x"; -by (res_inst_tac [("x","0hr"),("y","x")] hypreal_linear_less2 1); +Goal "(0::hypreal) <= x*x"; +by (res_inst_tac [("x","0"),("y","x")] hypreal_linear_less2 1); by (auto_tac (claset() addIs [hypreal_mult_order, hypreal_mult_less_zero1,hypreal_less_imp_le], simpset())); qed "hypreal_le_square"; Addsimps [hypreal_le_square]; -Goalw [hypreal_le_def] "- (x*x) <= 0hr"; +Goalw [hypreal_le_def] "- (x*x) <= (0::hypreal)"; by (auto_tac (claset() addSDs [(hypreal_le_square RS hypreal_le_less_trans)],simpset() addsimps [hypreal_minus_zero_less_iff,hypreal_less_not_refl])); qed "hypreal_less_minus_square"; Addsimps [hypreal_less_minus_square]; -Goal "[|x ~= 0hr; y ~= 0hr |] ==> \ +Goal "[|x ~= 0; y ~= 0 |] ==> \ \ hrinv(x) + hrinv(y) = (x + y)*hrinv(x*y)"; by (asm_full_simp_tac (simpset() addsimps [hypreal_hrinv_distrib, hypreal_add_mult_distrib,hypreal_mult_assoc RS sym]) 1); @@ -1502,7 +1497,7 @@ by (asm_full_simp_tac (simpset() addsimps [hypreal_add_commute]) 1); qed "hypreal_hrinv_add"; -Goal "x = -x ==> x = 0hr"; +Goal "x = -x ==> x = (0::hypreal)"; by (dtac (hypreal_eq_minus_iff RS iffD1 RS sym) 1); by (Asm_full_simp_tac 1); by (dtac (hypreal_add_self RS subst) 1); @@ -1511,7 +1506,7 @@ (2,hypreal_mult_not_0)]) 1); qed "hypreal_self_eq_minus_self_zero"; -Goal "(x + x = 0hr) = (x = 0hr)"; +Goal "(x + x = 0) = (x = (0::hypreal))"; by Auto_tac; by (dtac (hypreal_add_self RS subst) 1); by (rtac ccontr 1 THEN rtac hypreal_mult_not_0E 1); @@ -1519,14 +1514,14 @@ qed "hypreal_add_self_zero_cancel"; Addsimps [hypreal_add_self_zero_cancel]; -Goal "(x + x + y = y) = (x = 0hr)"; +Goal "(x + x + y = y) = (x = (0::hypreal))"; by Auto_tac; by (dtac (hypreal_eq_minus_iff RS iffD1) 1 THEN dtac sym 1); by (auto_tac (claset(),simpset() addsimps [hypreal_add_assoc])); qed "hypreal_add_self_zero_cancel2"; Addsimps [hypreal_add_self_zero_cancel2]; -Goal "(x + (x + y) = y) = (x = 0hr)"; +Goal "(x + (x + y) = y) = (x = (0::hypreal))"; by (simp_tac (simpset() addsimps [hypreal_add_assoc RS sym]) 1); qed "hypreal_add_self_zero_cancel2a"; Addsimps [hypreal_add_self_zero_cancel2a]; @@ -1607,18 +1602,18 @@ hypreal_gt_half_sum]) 1); qed "hypreal_dense"; -Goal "(x * x = 0hr) = (x = 0hr)"; +Goal "(x * x = 0) = (x = (0::hypreal))"; by Auto_tac; by (blast_tac (claset() addIs [hypreal_mult_not_0E]) 1); qed "hypreal_mult_self_eq_zero_iff"; Addsimps [hypreal_mult_self_eq_zero_iff]; -Goal "(0hr = x * x) = (x = 0hr)"; +Goal "(0 = x * x) = (x = (0::hypreal))"; by (auto_tac (claset() addDs [sym],simpset())); qed "hypreal_mult_self_eq_zero_iff2"; Addsimps [hypreal_mult_self_eq_zero_iff2]; -Goal "(x*x + y*y = 0hr) = (x = 0hr & y = 0hr)"; +Goal "(x*x + y*y = 0) = (x = 0 & y = (0::hypreal))"; by Auto_tac; by (dtac (sym RS (hypreal_eq_minus_iff3 RS iffD1)) 1); by (dtac (sym RS (hypreal_eq_minus_iff4 RS iffD1)) 2); @@ -1638,25 +1633,24 @@ qed "hypreal_squares_add_zero_iff"; Addsimps [hypreal_squares_add_zero_iff]; -Goal "x * x ~= 0hr ==> 0hr < x* x + y*y + z*z"; +Goal "x * x ~= 0 ==> (0::hypreal) < x* x + y*y + z*z"; by (cut_inst_tac [("x1","x")] (hypreal_le_square RS hypreal_le_imp_less_or_eq) 1); by (auto_tac (claset() addSIs [hypreal_add_order_le],simpset())); qed "hypreal_sum_squares3_gt_zero"; -Goal "x * x ~= 0hr ==> 0hr < y*y + x*x + z*z"; +Goal "x * x ~= 0 ==> (0::hypreal) < y*y + x*x + z*z"; by (dtac hypreal_sum_squares3_gt_zero 1); by (auto_tac (claset(),simpset() addsimps hypreal_add_ac)); qed "hypreal_sum_squares3_gt_zero2"; -Goal "x * x ~= 0hr ==> 0hr < y*y + z*z + x*x"; +Goal "x * x ~= 0 ==> (0::hypreal) < y*y + z*z + x*x"; by (dtac hypreal_sum_squares3_gt_zero 1); by (auto_tac (claset(),simpset() addsimps hypreal_add_ac)); qed "hypreal_sum_squares3_gt_zero3"; -Goal "(x*x + y*y + z*z = 0hr) = \ -\ (x = 0hr & y = 0hr & z = 0hr)"; +Goal "(x*x + y*y + z*z = 0) = (x = 0 & y = 0 & z = (0::hypreal))"; by Auto_tac; by (ALLGOALS(rtac ccontr)); by (ALLGOALS(dtac hypreal_mult_self_not_zero)); @@ -1746,7 +1740,7 @@ (* a few lemmas first *) Goal "{n::nat. x = real_of_posnat n} = {} | \ -\ (? y. {n::nat. x = real_of_posnat n} = {y})"; +\ (EX y. {n::nat. x = real_of_posnat n} = {y})"; by (auto_tac (claset() addDs [inj_real_of_posnat RS injD],simpset())); qed "lemma_omega_empty_singleton_disj"; @@ -1756,7 +1750,7 @@ qed "lemma_finite_omega_set"; Goalw [omega_def,hypreal_of_real_def] - "~ (? x. hypreal_of_real x = whr)"; + "~ (EX x. hypreal_of_real x = whr)"; by (auto_tac (claset(),simpset() addsimps [lemma_finite_omega_set RS FreeUltrafilterNat_finite])); qed "not_ex_hypreal_of_real_eq_omega"; @@ -1770,7 +1764,7 @@ (* corresponding to any real number *) Goal "{n::nat. x = rinv(real_of_posnat n)} = {} | \ -\ (? y. {n::nat. x = rinv(real_of_posnat n)} = {y})"; +\ (EX y. {n::nat. x = rinv(real_of_posnat n)} = {y})"; by (Step_tac 1 THEN Step_tac 1); by (auto_tac (claset() addIs [real_of_posnat_rinv_inj],simpset())); qed "lemma_epsilon_empty_singleton_disj"; @@ -1781,7 +1775,7 @@ qed "lemma_finite_epsilon_set"; Goalw [epsilon_def,hypreal_of_real_def] - "~ (? x. hypreal_of_real x = ehr)"; + "~ (EX x. hypreal_of_real x = ehr)"; by (auto_tac (claset(),simpset() addsimps [lemma_finite_epsilon_set RS FreeUltrafilterNat_finite])); qed "not_ex_hypreal_of_real_eq_epsilon"; @@ -1791,13 +1785,13 @@ by Auto_tac; qed "hypreal_of_real_not_eq_epsilon"; -Goalw [epsilon_def,hypreal_zero_def] "ehr ~= 0hr"; +Goalw [epsilon_def,hypreal_zero_def] "ehr ~= 0"; by (auto_tac (claset(),simpset() addsimps [rename_numerals thy real_of_posnat_rinv_not_zero])); qed "hypreal_epsilon_not_zero"; Addsimps [rename_numerals thy real_of_posnat_not_eq_zero]; -Goalw [omega_def,hypreal_zero_def] "whr ~= 0hr"; +Goalw [omega_def,hypreal_zero_def] "whr ~= 0"; by (Simp_tac 1); qed "hypreal_omega_not_zero"; @@ -1811,7 +1805,7 @@ Another embedding of the naturals in the hyperreals (see hypreal_of_posnat) ----------------------------------------------------------------*) -Goalw [hypreal_of_nat_def] "hypreal_of_nat 0 = 0hr"; +Goalw [hypreal_of_nat_def] "hypreal_of_nat 0 = 0"; by (full_simp_tac (simpset() addsimps [hypreal_of_posnat_one]) 1); qed "hypreal_of_nat_zero"; diff -r 0e48e7d4d4f9 -r f020e00c6304 src/HOL/Real/Hyperreal/HyperDef.thy --- a/src/HOL/Real/Hyperreal/HyperDef.thy Wed Jun 07 17:14:19 2000 +0200 +++ b/src/HOL/Real/Hyperreal/HyperDef.thy Wed Jun 07 17:14:58 2000 +0200 @@ -22,14 +22,13 @@ "hyprel == {p. ? X Y. p = ((X::nat=>real),Y) & {n::nat. X(n) = Y(n)}: FreeUltrafilterNat}" -typedef hypreal = "{x::nat=>real. True}/hyprel" (Equiv.quotient_def) +typedef hypreal = "{x::nat=>real. True}/hyprel" (Equiv.quotient_def) instance - hypreal :: {ord,plus,times,minus} + hypreal :: {ord, zero, plus, times, minus} consts - "0hr" :: hypreal ("0hr") "1hr" :: hypreal ("1hr") "whr" :: hypreal ("whr") "ehr" :: hypreal ("ehr") @@ -37,7 +36,7 @@ defs - hypreal_zero_def "0hr == Abs_hypreal(hyprel^^{%n::nat. (#0::real)})" + hypreal_zero_def "0 == Abs_hypreal(hyprel^^{%n::nat. (#0::real)})" hypreal_one_def "1hr == Abs_hypreal(hyprel^^{%n::nat. (#1::real)})" (* an infinite number = [<1,2,3,...>] *) @@ -47,7 +46,7 @@ epsilon_def "ehr == Abs_hypreal(hyprel^^{%n::nat. rinv(real_of_posnat n)})" hypreal_minus_def - "- P == Abs_hypreal(UN X: Rep_hypreal(P). hyprel^^{%n::nat. - (X n)})" + "- P == Abs_hypreal(UN X: Rep_hypreal(P). hyprel^^{%n::nat. - (X n)})" hypreal_diff_def "x - y == x + -(y::hypreal)"