# HG changeset patch # User huffman # Date 1313880866 25200 # Node ID f057535311c588459492bc5d4b0b6963375e4dc2 # Parent 40101794c52f7ddcfe76bd73639af122886f2dcd remove redundant lemma real_0_le_divide_iff in favor or zero_le_divide_iff diff -r 40101794c52f -r f057535311c5 src/HOL/Decision_Procs/Approximation.thy --- a/src/HOL/Decision_Procs/Approximation.thy Sat Aug 20 13:07:00 2011 -0700 +++ b/src/HOL/Decision_Procs/Approximation.thy Sat Aug 20 15:54:26 2011 -0700 @@ -712,7 +712,7 @@ case False hence "real ?DIV \ 1" unfolding less_float_def by auto - have "0 \ x / ?R" using `0 \ real x` `0 < ?R` unfolding real_0_le_divide_iff by auto + have "0 \ x / ?R" using `0 \ real x` `0 < ?R` unfolding zero_le_divide_iff by auto hence "0 \ real ?DIV" using monotone by (rule order_trans) have "arctan x = 2 * arctan (x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left . diff -r 40101794c52f -r f057535311c5 src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Sat Aug 20 13:07:00 2011 -0700 +++ b/src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy Sat Aug 20 15:54:26 2011 -0700 @@ -1168,7 +1168,7 @@ thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4) - unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff + unfolding add_divide_distrib[THEN sym] and zero_le_divide_iff by (auto simp add: scaleR_left_distrib scaleR_right_distrib) qed note * = this have u1:"u1 \ 1" unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto diff -r 40101794c52f -r f057535311c5 src/HOL/NthRoot.thy --- a/src/HOL/NthRoot.thy Sat Aug 20 13:07:00 2011 -0700 +++ b/src/HOL/NthRoot.thy Sat Aug 20 15:54:26 2011 -0700 @@ -629,7 +629,7 @@ apply (rule_tac y = "u/sqrt 2" in order_le_less_trans) apply (erule_tac [2] lemma_real_divide_sqrt_less) apply (rule power2_le_imp_le) -apply (auto simp add: real_0_le_divide_iff power_divide) +apply (auto simp add: zero_le_divide_iff power_divide) apply (rule_tac t = "u\" in real_sum_of_halves [THEN subst]) apply (rule add_mono) apply (auto simp add: four_x_squared intro: power_mono) diff -r 40101794c52f -r f057535311c5 src/HOL/RealDef.thy --- a/src/HOL/RealDef.thy Sat Aug 20 13:07:00 2011 -0700 +++ b/src/HOL/RealDef.thy Sat Aug 20 15:54:26 2011 -0700 @@ -1553,11 +1553,6 @@ subsection{* Simprules combining x+y and 0: ARE THEY NEEDED?*} -text{*Needed in this non-standard form by Hyperreal/Transcendental*} -lemma real_0_le_divide_iff: - "((0::real) \ x/y) = ((x \ 0 | 0 \ y) & (0 \ x | y \ 0))" -by (auto simp add: zero_le_divide_iff) - lemma real_add_minus_iff [simp]: "(x + - a = (0::real)) = (x=a)" by arith