# HG changeset patch # User immler # Date 1395133978 -3600 # Node ID f0d2609c4cdcc85ae43de7e43a9a63ce0f6654b6 # Parent c4daa97ac57a2b697ecc082fbd279274af7751d0 additional lemmas diff -r c4daa97ac57a -r f0d2609c4cdc src/HOL/Multivariate_Analysis/Integration.thy --- a/src/HOL/Multivariate_Analysis/Integration.thy Tue Mar 18 10:12:58 2014 +0100 +++ b/src/HOL/Multivariate_Analysis/Integration.thy Tue Mar 18 10:12:58 2014 +0100 @@ -5231,6 +5231,14 @@ apply auto done +lemma integral_component_lbound_real: + assumes "f integrable_on {a ::real .. b}" + and "\x\{a .. b}. B \ f(x)\k" + and "k \ Basis" + shows "B * content {a .. b} \ (integral {a .. b} f)\k" + using assms + by (metis box_real(2) integral_component_lbound) + lemma integral_component_ubound: fixes f :: "'a::euclidean_space \ 'b::euclidean_space" assumes "f integrable_on cbox a b" @@ -5243,6 +5251,14 @@ apply auto done +lemma integral_component_ubound_real: + fixes f :: "real \ 'a::euclidean_space" + assumes "f integrable_on {a .. b}" + and "\x\{a .. b}. f x\k \ B" + and "k \ Basis" + shows "(integral {a .. b} f)\k \ B * content {a .. b}" + using assms + by (metis box_real(2) integral_component_ubound) subsection {* Uniform limit of integrable functions is integrable. *} diff -r c4daa97ac57a -r f0d2609c4cdc src/HOL/Multivariate_Analysis/Ordered_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Ordered_Euclidean_Space.thy Tue Mar 18 10:12:58 2014 +0100 +++ b/src/HOL/Multivariate_Analysis/Ordered_Euclidean_Space.thy Tue Mar 18 10:12:58 2014 +0100 @@ -205,6 +205,12 @@ using bounded_cbox[of a b] by (metis interval_cbox) +lemma convex_closed_interval: + fixes a :: "'a::ordered_euclidean_space" + shows "convex {a .. b}" + using convex_box[of a b] + by (metis interval_cbox) + lemma image_affinity_interval: fixes m::real fixes a b c :: "'a::ordered_euclidean_space" shows "(\x. m *\<^sub>R x + c) ` {a..b} = @@ -223,6 +229,11 @@ "is_interval {a .. (b::'a::ordered_euclidean_space)}" by (metis cbox_interval is_interval_cbox) +lemma compact_interval: + fixes a b::"'a::ordered_euclidean_space" + shows "compact {a .. b}" + by (metis compact_cbox interval_cbox) + no_notation eucl_less (infix "