# HG changeset patch # User wenzelm # Date 962311688 -7200 # Node ID f171fa6a09891d66f5f4b947ec4d5baab695fe0c # Parent e865dda0313e05967d0d42a83113a1631c0caaa3 improved arrangement of files; tuned; diff -r e865dda0313e -r f171fa6a0989 src/FOL/IsaMakefile --- a/src/FOL/IsaMakefile Thu Jun 29 22:39:57 2000 +0200 +++ b/src/FOL/IsaMakefile Thu Jun 29 22:48:08 2000 +0200 @@ -43,7 +43,7 @@ $(LOG)/FOL-ex.gz: $(OUT)/FOL ex/If.ML ex/If.thy ex/IffOracle.ML \ ex/IffOracle.thy ex/List.ML ex/List.thy ex/Nat.ML ex/Nat.thy \ ex/Nat2.ML ex/Nat2.thy ex/Prolog.ML ex/Prolog.thy ex/ROOT.ML ex/cla.ML \ - ex/foundn.ML ex/int.ML ex/intro.ML ex/prop.ML ex/quant.ML + ex/foundn.ML ex/int.ML ex/int.thy ex/intro.ML ex/prop.ML ex/quant.ML @$(ISATOOL) usedir $(OUT)/FOL ex diff -r e865dda0313e -r f171fa6a0989 src/FOL/ex/If.ML --- a/src/FOL/ex/If.ML Thu Jun 29 22:39:57 2000 +0200 +++ b/src/FOL/ex/If.ML Thu Jun 29 22:48:08 2000 +0200 @@ -1,12 +1,11 @@ -(* Title: FOL/ex/if +(* Title: FOL/ex/If.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1991 University of Cambridge -First-Order Logic: the 'if' example +First-Order Logic: the 'if' example. *) -open If; open Cla; (*in case structure IntPr is open!*) val prems = Goalw [if_def] @@ -42,7 +41,7 @@ choplev 0; by (rewtac if_def); by (blast_tac FOL_cs 1); -result(); +qed ""; (*An invalid formula. High-level rules permit a simpler diagnosis*) @@ -58,7 +57,3 @@ (*Check that subgoals remain: proof failed.*) getgoal 1; by (REPEAT (step_tac FOL_cs 1)); - - - -writeln"Reached end of file."; diff -r e865dda0313e -r f171fa6a0989 src/FOL/ex/ROOT.ML --- a/src/FOL/ex/ROOT.ML Thu Jun 29 22:39:57 2000 +0200 +++ b/src/FOL/ex/ROOT.ML Thu Jun 29 22:48:08 2000 +0200 @@ -12,7 +12,7 @@ time_use_thy "Prolog"; writeln"\n** Intuitionistic examples **\n"; -time_use "int.ML"; +time_use_thy "int"; val thy = IFOL.thy and tac = IntPr.fast_tac 1; time_use "prop.ML"; diff -r e865dda0313e -r f171fa6a0989 src/FOL/ex/foundn.ML --- a/src/FOL/ex/foundn.ML Thu Jun 29 22:39:57 2000 +0200 +++ b/src/FOL/ex/foundn.ML Thu Jun 29 22:48:08 2000 +0200 @@ -6,8 +6,6 @@ Intuitionistic FOL: Examples from The Foundation of a Generic Theorem Prover *) -writeln"File FOL/ex/foundn.ML"; - goal IFOL.thy "A&B --> (C-->A&C)"; by (rtac impI 1); by (rtac impI 1); @@ -129,6 +127,3 @@ by (rtac allE 1 THEN assume_tac 1); by (assume_tac 1); result(); - - -writeln"Reached end of file."; diff -r e865dda0313e -r f171fa6a0989 src/FOL/ex/int.ML --- a/src/FOL/ex/int.ML Thu Jun 29 22:39:57 2000 +0200 +++ b/src/FOL/ex/int.ML Thu Jun 29 22:48:08 2000 +0200 @@ -1,9 +1,9 @@ -(* Title: FOL/ex/int +(* Title: FOL/ex/int.ML ID: $Id$ Author: Lawrence C Paulson, Cambridge University Computer Laboratory Copyright 1991 University of Cambridge -Intuitionistic First-Order Logic +Intuitionistic First-Order Logic. Single-step commands: by (IntPr.step_tac 1); @@ -15,9 +15,6 @@ by (IntPr.fast_tac 1); *) -context IFOL.thy; - -writeln"File FOL/ex/int."; (*Metatheorem (for PROPOSITIONAL formulae...): P is classically provable iff ~~P is intuitionistically provable. @@ -33,54 +30,54 @@ Goal "~~(P&Q) <-> ~~P & ~~Q"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "~~ ((~P --> Q) --> (~P --> ~Q) --> P)"; by (IntPr.fast_tac 1); -result(); +qed ""; (* ~~ does NOT distribute over | *) Goal "~~(P-->Q) <-> (~~P --> ~~Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "~~~P <-> ~P"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "~~((P --> Q | R) --> (P-->Q) | (P-->R))"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "(P<->Q) <-> (Q<->P)"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "((P --> (Q | (Q-->R))) --> R) --> R"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "(((G-->A) --> J) --> D --> E) --> (((H-->B)-->I)-->C-->J) \ \ --> (A-->H) --> F --> G --> (((C-->B)-->I)-->D)-->(A-->C) \ \ --> (((F-->A)-->B) --> I) --> E"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Lemmas for the propositional double-negation translation"; Goal "P --> ~~P"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "~~(~~P --> P)"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "~~P & ~~(P --> Q) --> ~~Q"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"The following are classically but not constructively valid."; @@ -103,7 +100,7 @@ \ ((Q<->R) --> P&Q&R) & \ \ ((R<->P) --> P&Q&R) --> P&Q&R"; by (IntPr.fast_tac 1); -result(); +qed ""; (*de Bruijn formula with five predicates*) @@ -113,7 +110,7 @@ \ ((S<->T) --> P&Q&R&S&T) & \ \ ((T<->P) --> P&Q&R&S&T) --> P&Q&R&S&T"; by (IntPr.fast_tac 1); -result(); +qed ""; (*** Problems from of Sahlin, Franzen and Haridi, @@ -131,7 +128,7 @@ (*Problem 3.1*) Goal "~ (EX x. ALL y. mem(y,x) <-> ~ mem(x,x))"; by (IntPr.fast_tac 1); -result(); +qed ""; (*Problem 4.1: hopeless!*) Goal "(ALL x. p(x) --> p(h(x)) | p(g(x))) & (EX x. p(x)) & (ALL x. ~p(h(x))) \ @@ -143,60 +140,60 @@ writeln"Problem ~~1"; Goal "~~((P-->Q) <-> (~Q --> ~P))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~2"; Goal "~~(~~P <-> P)"; by (IntPr.fast_tac 1); -result(); +qed ""; (*1 secs*) writeln"Problem 3"; Goal "~(P-->Q) --> (Q-->P)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~4"; Goal "~~((~P-->Q) <-> (~Q --> P))"; by (IntPr.fast_tac 1); -result(); +qed ""; (*9 secs*) writeln"Problem ~~5"; Goal "~~((P|Q-->P|R) --> P|(Q-->R))"; by (IntPr.fast_tac 1); -result(); +qed ""; (*10 secs*) writeln"Problem ~~6"; Goal "~~(P | ~P)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~7"; Goal "~~(P | ~~~P)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~8. Peirce's law"; Goal "~~(((P-->Q) --> P) --> P)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 9"; Goal "((P|Q) & (~P|Q) & (P| ~Q)) --> ~ (~P | ~Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; (*9 secs*) writeln"Problem 10"; Goal "(Q-->R) --> (R-->P&Q) --> (P-->(Q|R)) --> (P<->Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"11. Proved in each direction (incorrectly, says Pelletier!!) "; Goal "P<->P"; @@ -205,42 +202,42 @@ writeln"Problem ~~12. Dijkstra's law "; Goal "~~(((P <-> Q) <-> R) <-> (P <-> (Q <-> R)))"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "((P <-> Q) <-> R) --> ~~(P <-> (Q <-> R))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 13. Distributive law"; Goal "P | (Q & R) <-> (P | Q) & (P | R)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~14"; Goal "~~((P <-> Q) <-> ((Q | ~P) & (~Q|P)))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~15"; Goal "~~((P --> Q) <-> (~P | Q))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~16"; Goal "~~((P-->Q) | (Q-->P))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~17"; Goal "~~(((P & (Q-->R))-->S) <-> ((~P | Q | S) & (~P | ~R | S)))"; by (IntPr.fast_tac 1); -result(); +qed ""; (*Dijkstra's "Golden Rule"*) Goal "(P&Q) <-> P <-> Q <-> (P|Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"****Examples with quantifiers****"; @@ -250,23 +247,23 @@ Goal "(EX x. P(x)-->Q) --> (ALL x. P(x)) --> Q"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "((ALL x. P(x))-->Q) --> ~ (ALL x. P(x) & ~Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "((ALL x. ~P(x))-->Q) --> ~ (ALL x. ~ (P(x)|Q))"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "(ALL x. P(x)) | Q --> (ALL x. P(x) | Q)"; by (IntPr.fast_tac 1); -result(); +qed ""; Goal "(EX x. P --> Q(x)) --> (P --> (EX x. Q(x)))"; by (IntPr.fast_tac 1); -result(); +qed ""; @@ -313,7 +310,7 @@ Goal "(ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \ \ --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 21"; Goal "(EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> ~~(EX x. P<->Q(x))"; @@ -322,12 +319,12 @@ writeln"Problem 22"; Goal "(ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~23"; Goal "~~ ((ALL x. P | Q(x)) <-> (P | (ALL x. Q(x))))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 24"; Goal "~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & \ @@ -338,7 +335,7 @@ by (etac impE 1); by (IntPr.fast_tac 1); by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 25"; Goal "(EX x. P(x)) & \ @@ -347,7 +344,7 @@ \ ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) \ \ --> (EX x. Q(x)&P(x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~26"; Goal "(~~(EX x. p(x)) <-> ~~(EX x. q(x))) & \ @@ -362,7 +359,7 @@ \ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \ \ --> (ALL x. M(x) --> ~L(x))"; by (IntPr.fast_tac 1); (*21 secs*) -result(); +qed ""; writeln"Problem ~~28. AMENDED"; Goal "(ALL x. P(x) --> (ALL x. Q(x))) & \ @@ -370,21 +367,21 @@ \ (~~(EX x. S(x)) --> (ALL x. L(x) --> M(x))) \ \ --> (ALL x. P(x) & L(x) --> M(x))"; by (IntPr.fast_tac 1); (*48 secs*) -result(); +qed ""; writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; Goal "(EX x. P(x)) & (EX y. Q(y)) \ \ --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> \ \ (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~30"; Goal "(ALL x. (P(x) | Q(x)) --> ~ R(x)) & \ \ (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \ \ --> (ALL x. ~~S(x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 31"; Goal "~(EX x. P(x) & (Q(x) | R(x))) & \ @@ -392,7 +389,7 @@ \ (ALL x. ~ R(x) --> M(x)) \ \ --> (EX x. L(x) & M(x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 32"; Goal "(ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \ @@ -400,13 +397,13 @@ \ (ALL x. M(x) --> R(x)) \ \ --> (ALL x. P(x) & M(x) --> L(x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem ~~33"; Goal "(ALL x. ~~(P(a) & (P(x)-->P(b))-->P(c))) <-> \ \ (ALL x. ~~((~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c))))"; by (IntPr.best_tac 1); (*1.67s*) -result(); +qed ""; writeln"Problem 36"; @@ -416,7 +413,7 @@ \ (ALL x y. J(x,y) | G(x,y) --> (ALL z. J(y,z) | G(y,z) --> H(x,z))) \ \ --> (ALL x. EX y. H(x,y))"; by (IntPr.fast_tac 1); (*5 secs*) -result(); +qed ""; writeln"Problem 37"; Goal @@ -430,13 +427,13 @@ writeln"Problem 39"; Goal "~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 40. AMENDED"; Goal "(EX y. ALL x. F(x,y) <-> F(x,x)) --> \ \ ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 44"; Goal "(ALL x. f(x) --> \ @@ -444,40 +441,38 @@ \ (EX x. j(x) & (ALL y. g(y) --> h(x,y))) \ \ --> (EX x. j(x) & ~f(x))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 48"; Goal "(a=b | c=d) & (a=c | b=d) --> a=d | b=c"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 51"; Goal "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 52"; (*Almost the same as 51. *) Goal "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 56"; Goal "(ALL x. (EX y. P(y) & x=f(y)) --> P(x)) <-> (ALL x. P(x) --> P(f(x)))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 57"; Goal "P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \ \ (ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"; by (IntPr.fast_tac 1); -result(); +qed ""; writeln"Problem 60"; Goal "ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"; by (IntPr.fast_tac 1); -result(); - -writeln"Reached end of file."; +qed ""; diff -r e865dda0313e -r f171fa6a0989 src/FOL/ex/int.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/FOL/ex/int.thy Thu Jun 29 22:48:08 2000 +0200 @@ -0,0 +1,11 @@ +(* Title: FOL/ex/int.thy + ID: $Id$ + Author: Lawrence C Paulson, Cambridge University Computer Laboratory + Copyright 1991 University of Cambridge + +Intuitionistic First-Order Logic. +*) + +theory int = IFOL: + +end