# HG changeset patch # User wenzelm # Date 1456428905 -3600 # Node ID f1b0908028cfed1a6f5967e6fff2d0a806b64302 # Parent d515293f59709f342907224417f0055af17ade58 tuned proof; diff -r d515293f5970 -r f1b0908028cf src/HOL/Library/Convex.thy --- a/src/HOL/Library/Convex.thy Thu Feb 25 20:23:32 2016 +0100 +++ b/src/HOL/Library/Convex.thy Thu Feb 25 20:35:05 2016 +0100 @@ -323,9 +323,9 @@ shows "convex_on A f" proof fix t x y assume A: "x \ A" "y \ A" "(t::real) > 0" "t < 1" - case (goal1 t x y) - with goal1 assms[of t x y] assms[of "1 - t" y x] - show ?case by (cases x y rule: linorder_cases) (auto simp: algebra_simps) + with assms[of t x y] assms[of "1 - t" y x] + show "f ((1 - t) *\<^sub>R x + t *\<^sub>R y) \ (1 - t) * f x + t * f y" + by (cases x y rule: linorder_cases) (auto simp: algebra_simps) qed lemma convex_onD: