# HG changeset patch # User wenzelm # Date 973359697 -3600 # Node ID f27afee8475da9fe944cd2e9ebe5e5ab5b7e4464 # Parent 0025fd11882ca6694596ad6145547f6b13b981f3 tuned; diff -r 0025fd11882c -r f27afee8475d src/HOL/Library/Multiset.thy --- a/src/HOL/Library/Multiset.thy Sat Nov 04 18:39:44 2000 +0100 +++ b/src/HOL/Library/Multiset.thy Sat Nov 04 18:41:37 2000 +0100 @@ -443,7 +443,7 @@ (\b. b :# K --> (b, a) \ r)}" mult :: "('a \ 'a) set => ('a multiset \ 'a multiset) set" - "mult r == (mult1 r)^+" + "mult r == (mult1 r)\<^sup>+" lemma not_less_empty [iff]: "(M, {#}) \ mult1 r" by (simp add: mult1_def) diff -r 0025fd11882c -r f27afee8475d src/HOL/Library/Quotient.thy --- a/src/HOL/Library/Quotient.thy Sat Nov 04 18:39:44 2000 +0100 +++ b/src/HOL/Library/Quotient.thy Sat Nov 04 18:41:37 2000 +0100 @@ -36,7 +36,7 @@ \emph{equivalence classes} over elements of the base type @{typ 'a}. *} -typedef 'a quot = "{{x. a \ x}| a::'a::eqv. True}" +typedef 'a quot = "{{x. a \ x} | a::'a::eqv. True}" by blast lemma quotI [intro]: "{x. a \ x} \ quot" diff -r 0025fd11882c -r f27afee8475d src/HOL/Library/While_Combinator_Example.thy --- a/src/HOL/Library/While_Combinator_Example.thy Sat Nov 04 18:39:44 2000 +0100 +++ b/src/HOL/Library/While_Combinator_Example.thy Sat Nov 04 18:41:37 2000 +0100 @@ -7,11 +7,11 @@ An example of using the @{term while} combinator. *} -lemma aux: "{f n| n. A n \ B n} = {f n| n. A n} \ {f n| n. B n}" +lemma aux: "{f n | n. A n \ B n} = {f n | n. A n} \ {f n | n. B n}" apply blast done -theorem "P (lfp (\N::int set. {#0} \ {(n + #2) mod #6| n. n \ N})) = +theorem "P (lfp (\N::int set. {#0} \ {(n + #2) mod #6 | n. n \ N})) = P {#0, #4, #2}" apply (subst lfp_conv_while [where ?U = "{#0, #1, #2, #3, #4, #5}"]) apply (rule monoI)