# HG changeset patch # User bulwahn # Date 1352401361 -3600 # Node ID f2a32197a33a38984114b9a5d1a4ff660f393a20 # Parent aa83d943c18bc9a8753b99b30ad159d4f9104294 tuned proofs diff -r aa83d943c18b -r f2a32197a33a src/HOL/Algebra/Divisibility.thy --- a/src/HOL/Algebra/Divisibility.thy Thu Nov 08 19:55:37 2012 +0100 +++ b/src/HOL/Algebra/Divisibility.thy Thu Nov 08 20:02:41 2012 +0100 @@ -244,7 +244,7 @@ apply (elim dividesE, intro dividesI, assumption) apply (rule l_cancel[of c]) apply (simp add: m_assoc carr)+ -apply (fast intro: divides_mult_lI carr) +apply (fast intro: carr) done lemma (in comm_monoid) divides_mult_rI [intro]: diff -r aa83d943c18b -r f2a32197a33a src/HOL/Library/Permutation.thy --- a/src/HOL/Library/Permutation.thy Thu Nov 08 19:55:37 2012 +0100 +++ b/src/HOL/Library/Permutation.thy Thu Nov 08 20:02:41 2012 +0100 @@ -193,7 +193,7 @@ show ?case proof (intro exI[of _ "Fun.swap 0 1 id"] conjI allI impI) show "bij_betw (Fun.swap 0 1 id) {.. \ p dvd n ==> gcd p n = 1" apply (auto simp add: prime_def) - apply (metis One_nat_def gcd_dvd1 gcd_dvd2) + apply (metis gcd_dvd1 gcd_dvd2) done text {*