# HG changeset patch # User urbanc # Date 1203310276 -3600 # Node ID f31d4fe763aa2531ef8c1c89c69a171b00e5265b # Parent ec111fa4f8c5ccaa861880843d518d22c1af7bba updated diff -r ec111fa4f8c5 -r f31d4fe763aa src/HOL/Nominal/Examples/Class.thy --- a/src/HOL/Nominal/Examples/Class.thy Mon Feb 18 03:12:08 2008 +0100 +++ b/src/HOL/Nominal/Examples/Class.thy Mon Feb 18 05:51:16 2008 +0100 @@ -11159,14 +11159,24 @@ apply(simp add: pt_Collect_eqvt[OF pt_name_inst, OF at_name_inst]) apply(subgoal_tac "{u. (pi1\f) u \ u} = {u. ((rev pi1)\((pi1\f) u)) \ ((rev pi1)\u)}") apply(perm_simp) -apply(simp add: pt_subseteq_eqvt[OF pt_name_inst,OF at_name_inst]) +apply(rule Collect_cong) +apply(rule iffI) +apply(rule subseteq_eqvt(1)[THEN iffD1]) +apply(simp add: perm_bool) +apply(drule subseteq_eqvt(1)[THEN iffD2]) +apply(simp add: perm_bool) apply(simp add: lfp_def) apply(simp add: Inf_set_def) apply(simp add: big_inter_eqvt) apply(simp add: pt_Collect_eqvt[OF pt_coname_inst, OF at_coname_inst]) apply(subgoal_tac "{u. (pi2\g) u \ u} = {u. ((rev pi2)\((pi2\g) u)) \ ((rev pi2)\u)}") apply(perm_simp) -apply(simp add: pt_subseteq_eqvt[OF pt_coname_inst,OF at_coname_inst]) +apply(rule Collect_cong) +apply(rule iffI) +apply(rule subseteq_eqvt(2)[THEN iffD1]) +apply(simp add: perm_bool) +apply(drule subseteq_eqvt(2)[THEN iffD2]) +apply(simp add: perm_bool) done abbreviation diff -r ec111fa4f8c5 -r f31d4fe763aa src/HOL/Nominal/Examples/Fsub.thy --- a/src/HOL/Nominal/Examples/Fsub.thy Mon Feb 18 03:12:08 2008 +0100 +++ b/src/HOL/Nominal/Examples/Fsub.thy Mon Feb 18 05:51:16 2008 +0100 @@ -147,12 +147,9 @@ assumes a: "S closed_in \" shows "(pi\S) closed_in (pi\\)" using a -proof (unfold "closed_in_def") - assume "supp S \ (domain \)" - hence "pi\(supp S) \ pi\(domain \)" - by (simp add: pt_subseteq_eqvt[OF pt_tyvrs_inst, OF at_tyvrs_inst]) - thus "(supp (pi\S)) \ (domain (pi\\))" - by (simp add: domain_eqvt pt_perm_supp[OF pt_tyvrs_inst, OF at_tyvrs_inst]) +proof - + from a have "pi\(S closed_in \)" by (simp add: perm_bool) + then show "(pi\S) closed_in (pi\\)" by (simp add: closed_in_def eqvts) qed lemma ty_vrs_prm_simp: