# HG changeset patch # User nipkow # Date 1220289457 -7200 # Node ID f329e59cebab185b4f72d08a4302fc4169f883f2 # Parent ba4de3022862dd19d82c92ac99efea963899b70f moved more lemmas here from AFP/Integration/Rats diff -r ba4de3022862 -r f329e59cebab src/HOL/Library/NatPair.thy --- a/src/HOL/Library/NatPair.thy Mon Sep 01 19:17:04 2008 +0200 +++ b/src/HOL/Library/NatPair.thy Mon Sep 01 19:17:37 2008 +0200 @@ -7,17 +7,18 @@ header {* Pairs of Natural Numbers *} theory NatPair -imports Plain "~~/src/HOL/Presburger" +imports Main begin text{* - An injective function from @{text "\\"} to @{text \}. Definition + A bijection between @{text "\\"} and @{text \}. Definition and proofs are from \cite[page 85]{Oberschelp:1993}. *} -definition - nat2_to_nat:: "(nat * nat) \ nat" where - "nat2_to_nat pair = (let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n)" +definition nat2_to_nat:: "(nat * nat) \ nat" where +"nat2_to_nat pair = (let (n,m) = pair in (n+m) * Suc (n+m) div 2 + n)" +definition nat_to_nat2:: "nat \ (nat * nat)" where +"nat_to_nat2 = inv nat2_to_nat" lemma dvd2_a_x_suc_a: "2 dvd a * (Suc a)" proof (cases "2 dvd a") @@ -88,4 +89,46 @@ then show ?thesis unfolding inj_on_def by simp qed +lemma nat_to_nat2_surj: "surj nat_to_nat2" +by (simp only: nat_to_nat2_def nat2_to_nat_inj inj_imp_surj_inv) + + +lemma gauss_sum_nat_upto: "2 * (\i\n::nat. i) = n * (n + 1)" +using gauss_sum[where 'a = nat] +by (simp add:atLeast0AtMost setsum_shift_lb_Suc0_0 numeral_2_eq_2) + +lemma nat2_to_nat_surj: "surj nat2_to_nat" +proof (unfold surj_def) + { + fix z::nat + def r \ "Max {r. (\i\r. i) \ z}" + def x \ "z - (\i\r. i)" + + hence "finite {r. (\i\r. i) \ z}" + by (simp add: lessThan_Suc_atMost[symmetric] lessThan_Suc finite_less_ub) + also have "0 \ {r. (\i\r. i) \ z}" by simp + hence "{r::nat. (\i\r. i) \ z} \ {}" by fast + ultimately have a: "r \ {r. (\i\r. i) \ z} \ (\s \ {r. (\i\r. i) \ z}. s \ r)" + by (simp add: r_def del:mem_Collect_eq) + { + assume "rx" by simp + hence "(\i\r. i)+(r+1)\z" using x_def by arith + hence "(r+1) \ {r. (\i\r. i) \ z}" by simp + with a have "(r+1)\r" by simp + } + hence b: "x\r" by force + + def y \ "r-x" + have "2*z=2*(\i\r. i)+2*x" using x_def a by simp arith + also have "\ = r * (r+1) + 2*x" using gauss_sum_nat_upto by simp + also have "\ = (x+y)*(x+y+1)+2*x" using y_def b by simp + also { have "2 dvd ((x+y)*(x+y+1))" using dvd2_a_x_suc_a by simp } + hence "\ = 2 * nat2_to_nat(x,y)" + using nat2_to_nat_def by (simp add: Let_def dvd_mult_div_cancel) + finally have "z=nat2_to_nat (x, y)" by simp + } + thus "\y. \x. y = nat2_to_nat x" by fast +qed + end