# HG changeset patch # User huffman # Date 1277957626 25200 # Node ID f37f6babf51ca18dc8866275353849e299974885 # Parent 41b7dfdc4941dd1bc0c613cf2002207a47850331 add lemma at_within_interior diff -r 41b7dfdc4941 -r f37f6babf51c src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy --- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Jun 30 19:00:15 2010 -0700 +++ b/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy Wed Jun 30 21:13:46 2010 -0700 @@ -1959,20 +1959,19 @@ show "?thesis" .. qed +lemma at_within_interior: + "x \ interior S \ at x within S = at x" + by (simp add: expand_net_eq eventually_within_interior) + lemma lim_within_interior: "x \ interior S \ (f ---> l) (at x within S) \ (f ---> l) (at x)" - unfolding tendsto_def by (simp add: eventually_within_interior) + by (simp add: at_within_interior) lemma netlimit_within_interior: - fixes x :: "'a::{perfect_space, real_normed_vector}" - (* FIXME: generalize to perfect_space *) + fixes x :: "'a::perfect_space" assumes "x \ interior S" - shows "netlimit(at x within S) = x" (is "?lhs = ?rhs") -proof- - from assms obtain e::real where e:"e>0" "ball x e \ S" using open_interior[of S] unfolding open_contains_ball using interior_subset[of S] by auto - hence "\ trivial_limit (at x within S)" using islimpt_subset[of x "ball x e" S] unfolding trivial_limit_within islimpt_ball centre_in_cball by auto - thus ?thesis using netlimit_within by auto -qed + shows "netlimit (at x within S) = x" +using assms by (simp add: at_within_interior netlimit_at) subsection{* Boundedness. *}