# HG changeset patch # User wenzelm # Date 936359746 -7200 # Node ID f43d3670a3cd07ee0c7a652af4debf9686c593c3 # Parent 6dd6110968c9e5007c25a44b194c42844fc02f54 added no_qed; diff -r 6dd6110968c9 -r f43d3670a3cd doc-src/Ref/goals.tex --- a/doc-src/Ref/goals.tex Fri Sep 03 10:14:28 1999 +0200 +++ b/doc-src/Ref/goals.tex Fri Sep 03 13:55:46 1999 +0200 @@ -135,6 +135,7 @@ \index{theorems!extracting proved} \begin{ttbox} qed : string -> unit +no_qed : unit -> unit result : unit -> thm uresult : unit -> thm bind_thm : string * thm -> unit @@ -147,6 +148,11 @@ It combines \texttt{result} and \texttt{bind_thm}: it gets the theorem using \texttt{result()} and stores it the theorem database associated with its theory. See below for details. + +\item[\ttindexbold{no_qed}();] indicates that the proof is not concluded by a + proper \texttt{qed} command. This is a do-nothing operation, it merely + helps user interfaces such as Proof~General \cite{proofgeneral} to figure + out the structure of the {\ML} text. \item[\ttindexbold{result}()]\index{assumptions!of main goal} returns the final theorem, after converting the free variables to diff -r 6dd6110968c9 -r f43d3670a3cd src/Pure/Thy/thm_database.ML --- a/src/Pure/Thy/thm_database.ML Fri Sep 03 10:14:28 1999 +0200 +++ b/src/Pure/Thy/thm_database.ML Fri Sep 03 13:55:46 1999 +0200 @@ -14,6 +14,7 @@ val qed: string -> unit val qed_goal: string -> theory -> string -> (thm list -> tactic list) -> unit val qed_goalw: string -> theory -> thm list -> string -> (thm list -> tactic list) -> unit + val no_qed: unit -> unit (*these peek at the proof state!*) val thms_containing: xstring list -> (string * thm) list val findI: int -> (string * thm) list @@ -79,10 +80,13 @@ fun bind_thm (name, thm) = ml_store_thm (name, standard thm); fun bind_thms (name, thms) = ml_store_thms (name, map standard thms); + fun qed name = ml_store_thm (name, Goals.result ()); fun qed_goal name thy goal tacsf = ml_store_thm (name, prove_goal thy goal tacsf); fun qed_goalw name thy rews goal tacsf = ml_store_thm (name, prove_goalw thy rews goal tacsf); +fun no_qed () = (); + (** retrieve theorems **)