# HG changeset patch # User wenzelm # Date 1176672352 -7200 # Node ID f44439cdce776e2ac0f00dbf1dd4545a52098aaa # Parent 9ab51bac6287ea795814f481e83aec103a7e554f read prop as prop, not term; diff -r 9ab51bac6287 -r f44439cdce77 src/HOL/Integ/IntDef.thy --- a/src/HOL/Integ/IntDef.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/HOL/Integ/IntDef.thy Sun Apr 15 23:25:52 2007 +0200 @@ -76,7 +76,7 @@ by (auto simp add: Integ_def intrel_def quotient_def) text{*Reduces equality on abstractions to equality on representatives: - @{term "\x \ Integ; y \ Integ\ \ (Abs_Integ x = Abs_Integ y) = (x=y)"} *} + @{prop "\x \ Integ; y \ Integ\ \ (Abs_Integ x = Abs_Integ y) = (x=y)"} *} declare Abs_Integ_inject [simp] Abs_Integ_inverse [simp] text{*Case analysis on the representation of an integer as an equivalence diff -r 9ab51bac6287 -r f44439cdce77 src/HOL/Real/PReal.thy --- a/src/HOL/Real/PReal.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/HOL/Real/PReal.thy Sun Apr 15 23:25:52 2007 +0200 @@ -932,7 +932,7 @@ subsection{*Subtraction for Positive Reals*} -text{*Gleason prop. 9-3.5(iv), page 123: proving @{term "A < B ==> \D. A + D = +text{*Gleason prop. 9-3.5(iv), page 123: proving @{prop "A < B ==> \D. A + D = B"}. We define the claimed @{term D} and show that it is a positive real*} text{*Part 1 of Dedekind sections definition*} diff -r 9ab51bac6287 -r f44439cdce77 src/Pure/Isar/constdefs.ML --- a/src/Pure/Isar/constdefs.ML Sun Apr 15 23:25:50 2007 +0200 +++ b/src/Pure/Isar/constdefs.ML Sun Apr 15 23:25:52 2007 +0200 @@ -22,7 +22,7 @@ (** add_constdefs(_i) **) -fun gen_constdef prep_vars prep_term prep_att +fun gen_constdef prep_vars prep_prop prep_att structs (raw_decl, ((raw_name, raw_atts), raw_prop)) thy = let fun err msg ts = error (cat_lines (msg :: map (Sign.string_of_term thy) ts)); @@ -36,7 +36,7 @@ struct_ctxt |> prep_vars [raw_var] |-> (fn [(x, T, mx)] => ProofContext.add_fixes_legacy [(x, T, mx)] #> snd #> pair (SOME x, mx))); - val prop = prep_term var_ctxt raw_prop; + val prop = prep_prop var_ctxt raw_prop; val (c, T) = #1 (LocalDefs.cert_def thy_ctxt (Logic.strip_imp_concl prop)); val _ = (case d of NONE => () | SOME c' => if c <> c' then @@ -53,15 +53,15 @@ |> PureThy.add_defs_i false [((name, def), atts)] |> snd; in ((c, T), thy') end; -fun gen_constdefs prep_vars prep_term prep_att (raw_structs, specs) thy = +fun gen_constdefs prep_vars prep_prop prep_att (raw_structs, specs) thy = let val ctxt = ProofContext.init thy; val (structs, _) = prep_vars (map (fn (x, T) => (x, T, Structure)) raw_structs) ctxt; - val (decls, thy') = fold_map (gen_constdef prep_vars prep_term prep_att structs) specs thy; + val (decls, thy') = fold_map (gen_constdef prep_vars prep_prop prep_att structs) specs thy; in Pretty.writeln (ProofDisplay.pretty_consts ctxt (K true) decls); thy' end; val add_constdefs = gen_constdefs ProofContext.read_vars_legacy - ProofContext.read_term_legacy Attrib.attribute; -val add_constdefs_i = gen_constdefs ProofContext.cert_vars_legacy ProofContext.cert_term (K I); + ProofContext.read_prop_legacy Attrib.attribute; +val add_constdefs_i = gen_constdefs ProofContext.cert_vars_legacy ProofContext.cert_prop (K I); end; diff -r 9ab51bac6287 -r f44439cdce77 src/ZF/Constructible/Datatype_absolute.thy --- a/src/ZF/Constructible/Datatype_absolute.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/ZF/Constructible/Datatype_absolute.thy Sun Apr 15 23:25:52 2007 +0200 @@ -648,7 +648,7 @@ subsection {*Absoluteness for @{term transrec}*} -text{* @{term "transrec(a,H) \ wfrec(Memrel(eclose({a})), a, H)"} *} +text{* @{prop "transrec(a,H) \ wfrec(Memrel(eclose({a})), a, H)"} *} definition is_transrec :: "[i=>o, [i,i,i]=>o, i, i] => o" where diff -r 9ab51bac6287 -r f44439cdce77 src/ZF/Constructible/Relative.thy --- a/src/ZF/Constructible/Relative.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/ZF/Constructible/Relative.thy Sun Apr 15 23:25:52 2007 +0200 @@ -1431,12 +1431,12 @@ definition is_Nil :: "[i=>o, i] => o" where - --{* because @{term "[] \ Inl(0)"}*} + --{* because @{prop "[] \ Inl(0)"}*} "is_Nil(M,xs) == \zero[M]. empty(M,zero) & is_Inl(M,zero,xs)" definition is_Cons :: "[i=>o,i,i,i] => o" where - --{* because @{term "Cons(a, l) \ Inr(\a,l\)"}*} + --{* because @{prop "Cons(a, l) \ Inr(\a,l\)"}*} "is_Cons(M,a,l,Z) == \p[M]. pair(M,a,l,p) & is_Inr(M,p,Z)" diff -r 9ab51bac6287 -r f44439cdce77 src/ZF/OrderArith.thy --- a/src/ZF/OrderArith.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/ZF/OrderArith.thy Sun Apr 15 23:25:52 2007 +0200 @@ -369,7 +369,7 @@ done text{*But note that the combination of @{text wf_imp_wf_on} and - @{text wf_rvimage} gives @{term "wf(r) ==> wf[C](rvimage(A,f,r))"}*} + @{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*} lemma wf_on_rvimage: "[| f: A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))" apply (rule wf_onI2) apply (subgoal_tac "ALL z:A. f`z=f`y --> z: Ba") diff -r 9ab51bac6287 -r f44439cdce77 src/ZF/WF.thy --- a/src/ZF/WF.thy Sun Apr 15 23:25:50 2007 +0200 +++ b/src/ZF/WF.thy Sun Apr 15 23:25:52 2007 +0200 @@ -84,7 +84,7 @@ text{*If @{term r} allows well-founded induction over @{term A} then we have @{term "wf[A](r)"}. Premise is equivalent to - @{term "!!B. ALL x:A. (ALL y. : r --> y:B) --> x:B ==> A<=B"} *} + @{prop "!!B. ALL x:A. (ALL y. : r --> y:B) --> x:B ==> A<=B"} *} lemma wf_onI2: assumes prem: "!!y B. [| ALL x:A. (ALL y:A. :r --> y:B) --> x:B; y:A |] ==> y:B"