# HG changeset patch # User nipkow # Date 1063620994 -7200 # Node ID f471cd4c7282c5334d31f8537aeb94cb8f5f50ce # Parent 26dfcd0ac436744cbe4207d845faf8556932f203 *** empty log message *** diff -r 26dfcd0ac436 -r f471cd4c7282 doc-src/TutorialI/Datatype/Fundata.thy --- a/doc-src/TutorialI/Datatype/Fundata.thy Sun Sep 14 17:53:27 2003 +0200 +++ b/doc-src/TutorialI/Datatype/Fundata.thy Mon Sep 15 12:16:34 2003 +0200 @@ -25,9 +25,9 @@ "map_bt f (Br a F) = Br (f a) (\i. map_bt f (F i))" text{*\noindent This is a valid \isacommand{primrec} definition because the -recursive calls of @{term"map_bt"} involve only subtrees obtained from -@{term"F"}: the left-hand side. Thus termination is assured. The -seasoned functional programmer might try expressing +recursive calls of @{term"map_bt"} involve only subtrees of +@{term"F"}, which is itself a subterm of the left-hand side. Thus termination +is assured. The seasoned functional programmer might try expressing @{term"%i. map_bt f (F i)"} as @{term"map_bt f o F"}, which Isabelle however will reject. Applying @{term"map_bt"} to only one of its arguments makes the termination proof less obvious. diff -r 26dfcd0ac436 -r f471cd4c7282 doc-src/TutorialI/Datatype/document/Fundata.tex --- a/doc-src/TutorialI/Datatype/document/Fundata.tex Sun Sep 14 17:53:27 2003 +0200 +++ b/doc-src/TutorialI/Datatype/document/Fundata.tex Mon Sep 15 12:16:34 2003 +0200 @@ -31,9 +31,9 @@ % \begin{isamarkuptext}% \noindent This is a valid \isacommand{primrec} definition because the -recursive calls of \isa{map{\isacharunderscore}bt} involve only subtrees obtained from -\isa{F}: the left-hand side. Thus termination is assured. The -seasoned functional programmer might try expressing +recursive calls of \isa{map{\isacharunderscore}bt} involve only subtrees of +\isa{F}, which is itself a subterm of the left-hand side. Thus termination +is assured. The seasoned functional programmer might try expressing \isa{{\isasymlambda}i{\isachardot}\ map{\isacharunderscore}bt\ f\ {\isacharparenleft}F\ i{\isacharparenright}} as \isa{map{\isacharunderscore}bt\ f\ {\isasymcirc}\ F}, which Isabelle however will reject. Applying \isa{map{\isacharunderscore}bt} to only one of its arguments makes the termination proof less obvious.