# HG changeset patch # User lcp # Date 797159238 -7200 # Node ID f505385d9e32b35bcdc8f177e06464fdc57cb034 # Parent 65188e5200242b8f096a70e489f60eb0f20b9632 Changed comments and timings. diff -r 65188e520024 -r f505385d9e32 src/FOL/ex/int.ML --- a/src/FOL/ex/int.ML Thu Apr 06 11:04:37 1995 +0200 +++ b/src/FOL/ex/int.ML Thu Apr 06 11:07:18 1995 +0200 @@ -17,22 +17,28 @@ writeln"File FOL/ex/int."; -(*Note: for PROPOSITIONAL formulae... - ~A is classically provable iff it is intuitionistically provable. - Therefore A is classically provable iff ~~A is intuitionistically provable. +(*Metatheorem (for PROPOSITIONAL formulae...): + P is classically provable iff ~~P is intuitionistically provable. + Therefore ~P is classically provable iff it is intuitionistically provable. -Let Q be the conjuction of the propositions A|~A, one for each atom A in -P. If P is provable classically, then clearly P&Q is provable -intuitionistically, so ~~(P&Q) is also provable intuitionistically. -The latter is intuitionistically equivalent to ~~P&~~Q, hence to ~~P, -since ~~Q is intuitionistically provable. Finally, if P is a negation then -~~P is intuitionstically equivalent to P. [Andy Pitts] -*) +Proof: Let Q be the conjuction of the propositions A|~A, one for each atom A +in P. Now ~~Q is intuitionistically provable because ~~(A|~A) is and because +~~ distributes over &. If P is provable classically, then clearly Q-->P is +provable intuitionistically, so ~~(Q-->P) is also provable intuitionistically. +The latter is intuitionistically equivalent to ~~Q-->~~P, hence to ~~P, since +~~Q is intuitionistically provable. Finally, if P is a negation then ~~P is +intuitionstically equivalent to P. [Andy Pitts] *) goal IFOL.thy "~~(P&Q) <-> ~~P & ~~Q"; by (Int.fast_tac 1); result(); +(* ~~ does NOT distribute over | *) + +goal IFOL.thy "~~(P-->Q) <-> (~~P --> ~~Q)"; +by (Int.fast_tac 1); +result(); + goal IFOL.thy "~~~P <-> ~P"; by (Int.fast_tac 1); result(); @@ -294,7 +300,7 @@ \ (ALL x. M(x) & L(x) --> P(x)) & \ \ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \ \ --> (ALL x. M(x) --> ~L(x))"; -by (Int.fast_tac 1); (*44 secs*) +by (Int.fast_tac 1); (*21 secs*) result(); writeln"Problem ~~28. AMENDED"; @@ -302,7 +308,7 @@ \ (~~(ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & \ \ (~~(EX x.S(x)) --> (ALL x. L(x) --> M(x))) \ \ --> (ALL x. P(x) & L(x) --> M(x))"; -by (Int.fast_tac 1); (*101 secs*) +by (Int.fast_tac 1); (*48 secs*) result(); writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; @@ -388,7 +394,7 @@ goal IFOL.thy "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX z. ALL x. EX w. (ALL y. P(x,y) <-> y=w) <-> x=z)"; -by (Int.best_tac 1); (*60 seconds*) +by (Int.best_tac 1); (*34 seconds*) result(); writeln"Problem 52"; @@ -396,7 +402,7 @@ goal IFOL.thy "(EX z w. ALL x y. P(x,y) <-> (x=z & y=w)) --> \ \ (EX w. ALL y. EX z. (ALL x. P(x,y) <-> x=z) <-> y=w)"; -by (Int.best_tac 1); (*60 seconds*) +by (Int.best_tac 1); (*34 seconds*) result(); writeln"Problem 56";