# HG changeset patch # User wenzelm # Date 951424412 -3600 # Node ID f5fdb69ad4d23edd00a58fae1c6f66ad262eb31b # Parent c721220203803b7674072d2c3ef959157f5c78a5 simplified induct method; diff -r c72122020380 -r f5fdb69ad4d2 src/HOL/Isar_examples/MutilatedCheckerboard.thy --- a/src/HOL/Isar_examples/MutilatedCheckerboard.thy Thu Feb 24 16:04:25 2000 +0100 +++ b/src/HOL/Isar_examples/MutilatedCheckerboard.thy Thu Feb 24 21:33:32 2000 +0100 @@ -35,7 +35,7 @@ proof; assume "t : tiling A" (is "_ : ?T"); thus "u : ?T --> t Int u = {} --> t Un u : ?T" (is "?P t"); - proof (induct t in set: tiling); + proof induct; show "?P {}"; by simp; fix a t; @@ -168,7 +168,7 @@ assume b: "b < 2"; assume "d : domino"; thus ?thesis (is "?P d"); - proof (induct d in set: domino); + proof induct; from b; have b_cases: "b = 0 | b = 1"; by arith; fix i j; note [simp] = evnodd_empty evnodd_insert mod_Suc; @@ -192,7 +192,7 @@ proof -; assume "t : ?T"; thus "?F t"; - proof (induct t in set: tiling); + proof induct; show "?F {}"; by (rule Finites.emptyI); fix a t; assume "?F t"; assume "a : domino"; hence "?F a"; by (rule domino_finite); @@ -206,7 +206,7 @@ proof -; assume "t : ?T"; thus "?P t"; - proof (induct t in set: tiling); + proof induct; show "?P {}"; by (simp add: evnodd_def); fix a t; diff -r c72122020380 -r f5fdb69ad4d2 src/HOL/Isar_examples/W_correct.thy --- a/src/HOL/Isar_examples/W_correct.thy Thu Feb 24 16:04:25 2000 +0100 +++ b/src/HOL/Isar_examples/W_correct.thy Thu Feb 24 21:33:32 2000 +0100 @@ -45,7 +45,7 @@ proof -; assume "a |- e :: t"; thus ?thesis (is "?P a e t"); - proof (induct a e t in set: has_type); + proof induct; fix a n; assume "n < length (a::typ list)"; hence "n < length (map ($ s) a)"; by simp;