# HG changeset patch # User paulson # Date 930818135 -7200 # Node ID f795b63139ec2d82053a88a90e65580d74ec68d8 # Parent 5577ffe4c2f1900fe073fac867a1ba66bbfafc8d many new theorems concerning multiplication and (in)equations diff -r 5577ffe4c2f1 -r f795b63139ec src/HOL/Integ/Int.ML --- a/src/HOL/Integ/Int.ML Thu Jul 01 10:33:50 1999 +0200 +++ b/src/HOL/Integ/Int.ML Thu Jul 01 10:35:35 1999 +0200 @@ -4,6 +4,8 @@ Copyright 1998 University of Cambridge Type "int" is a linear order + +And many further lemmas *) Goal "(w (nat w < nat z) = (w < z)"; +by (stac (zless_int RS sym) 1); +by (asm_simp_tac (simpset() addsimps [not_neg_nat, not_neg_eq_ge_nat0, + order_le_less]) 1); +by (case_tac "neg w" 1); +by (asm_simp_tac (simpset() addsimps [not_neg_nat]) 2); +by (asm_full_simp_tac (simpset() addsimps [neg_eq_less_nat0, neg_nat]) 1); +by (blast_tac (claset() addIs [order_less_trans]) 1); +qed "zless_nat"; + +(* a case theorem distinguishing non-negative and negative int *) val prems = Goal "[|!! n. P (int n); !! n. P (- (int (Suc n))) |] ==> P z"; by (case_tac "neg z" 1); @@ -225,3 +238,166 @@ fun int_case_tac x = res_inst_tac [("z",x)] int_cases; + +(*** Monotonicity of Multiplication ***) + +Goal "i <= (j::int) ==> i * int k <= j * int k"; +by (induct_tac "k" 1); +by (stac int_Suc_int_1 2); +by (ALLGOALS + (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2, zadd_zle_mono]))); +val lemma = result(); + +Goal "[| i <= j; int 0 <= k |] ==> i*k <= j*k"; +by (res_inst_tac [("t", "k")] (not_neg_nat RS subst) 1); +by (etac lemma 2); +by (full_simp_tac (simpset() addsimps [not_neg_eq_ge_nat0]) 1); +qed "zmult_zle_mono1"; + +Goal "[| i <= j; k <= int 0 |] ==> j*k <= i*k"; +by (rtac (zminus_zle_zminus RS iffD1) 1); +by (asm_simp_tac (simpset() addsimps [zmult_zminus_right RS sym, + zmult_zle_mono1, zle_zminus]) 1); +qed "zmult_zle_mono1_neg"; + +(*<=monotonicity, BOTH arguments*) +Goal "[| i <= j; k <= l; int 0 <= j; int 0 <= k |] ==> i*k <= j*l"; +by (etac (zmult_zle_mono1 RS order_trans) 1); +by (assume_tac 1); +by (rtac order_trans 1); +by (stac zmult_commute 2); +by (etac zmult_zle_mono1 2); +by (assume_tac 2); +by (simp_tac (simpset() addsimps [zmult_commute]) 1); +qed "zmult_zle_mono"; + + +(** strict, in 1st argument; proof is by induction on k>0 **) + +Goal "i 0 int k * i < int k * j"; +by (induct_tac "k" 1); +by (stac int_Suc_int_1 2); +by (case_tac "n=0" 2); +by (ALLGOALS (asm_full_simp_tac + (simpset() addsimps [zadd_zmult_distrib, zadd_zless_mono, + order_le_less]))); +val lemma = result() RS mp; + +Goal "[| i k*i < k*j"; +by (res_inst_tac [("t", "k")] (not_neg_nat RS subst) 1); +by (etac lemma 2); +by (asm_simp_tac (simpset() addsimps [not_neg_eq_ge_nat0, + order_le_less]) 1); +by (forward_tac [zless_nat RS iffD2] 1); +by Auto_tac; +qed "zmult_zless_mono2"; + +Goal "[| i i*k < j*k"; +by (dtac zmult_zless_mono2 1); +by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute]))); +qed "zmult_zless_mono1"; + +Goal "[| i j*k < i*k"; +by (rtac (zminus_zless_zminus RS iffD1) 1); +by (asm_simp_tac (simpset() addsimps [zmult_zminus_right RS sym, + zmult_zless_mono1, zless_zminus]) 1); +qed "zmult_zless_mono1_neg"; + +Goal "[| i k*j < k*i"; +by (rtac (zminus_zless_zminus RS iffD1) 1); +by (asm_simp_tac (simpset() addsimps [zmult_zminus RS sym, + zmult_zless_mono2, zless_zminus]) 1); +qed "zmult_zless_mono2_neg"; + + +(** Products of signs. Useful? **) + +Goal "[| m < int 0; n < int 0 |] ==> int 0 < m*n"; +by (dtac zmult_zless_mono1_neg 1); +by Auto_tac; +qed "neg_times_neg_is_pos"; + +Goal "[| m < int 0; int 0 < n |] ==> m*n < int 0"; +by (dtac zmult_zless_mono1 1); +by Auto_tac; +qed "neg_times_pos_is_neg"; + +Goal "[| int 0 < m; n < int 0 |] ==> m*n < int 0"; +by (dtac zmult_zless_mono1_neg 1); +by Auto_tac; +qed "pos_times_neg_is_neg"; + +Goal "[| int 0 < m; int 0 < n |] ==> int 0 < m*n"; +by (dtac zmult_zless_mono1 1); +by Auto_tac; +qed "pos_times_pos_is_pos"; + +Goal "(m*n = int 0) = (m = int 0 | n = int 0)"; +by (case_tac "m < int 0" 1); +by (auto_tac (claset(), + simpset() addsimps [linorder_not_less, order_le_less, + linorder_neq_iff])); +by (REPEAT + (force_tac (claset() addDs [zmult_zless_mono1_neg, zmult_zless_mono1], + simpset()) 1)); +qed "zmult_eq_iff"; + + +Goal "int 0 < k ==> (m*k < n*k) = (m (k*m < k*n) = (m (m*k < n*k) = (n (k*m < k*n) = (n (m*k <= n*k) = (m<=n)"; +by (asm_full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); +qed "zmult_zle_cancel2"; + +Goal "int 0 < k ==> (k*m <= k*n) = (m<=n)"; +by (asm_full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); +qed "zmult_zle_cancel1"; +Addsimps [zmult_zle_cancel1, zmult_zle_cancel2]; + +Goal "k < int 0 ==> (m*k <= n*k) = (n<=m)"; +by (asm_full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); +qed "zmult_zle_cancel2_neg"; + +Goal "k < int 0 ==> (k*m <= k*n) = (n<=m)"; +by (asm_full_simp_tac (simpset() addsimps [linorder_not_less RS sym]) 1); +qed "zmult_zle_cancel1_neg"; +Addsimps [zmult_zle_cancel1_neg, zmult_zle_cancel2_neg]; + +Goal "k ~= int 0 ==> (m*k = n*k) = (m=n)"; +by (cut_facts_tac [linorder_less_linear] 1); +by Safe_tac; +by (assume_tac 2); +by (REPEAT + (force_tac (claset() addD2 ("mono_neg", zmult_zless_mono1_neg) + addD2 ("mono_pos", zmult_zless_mono1), + simpset() addsimps [linorder_neq_iff]) 1)); +qed "zmult_cancel2"; + +Goal "k ~= int 0 ==> (k*m = k*n) = (m=n)"; +by (dtac zmult_cancel2 1); +by (asm_full_simp_tac (simpset() addsimps [zmult_commute]) 1); +qed "zmult_cancel1"; +Addsimps [zmult_cancel1, zmult_cancel2];