# HG changeset patch # User haftmann # Date 1266916309 -3600 # Node ID f80aee1ed4750061425b5702179b6dd511aadc8c # Parent 4140f31b2ed207024c86f9af7b9a1d64e0cc62f2 dropped axclass; dropped Id; session theory Hoare.thy diff -r 4140f31b2ed2 -r f80aee1ed475 src/HOL/Hoare/Hoare_Logic_Abort.thy --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Hoare/Hoare_Logic_Abort.thy Tue Feb 23 10:11:49 2010 +0100 @@ -0,0 +1,269 @@ +(* Title: HOL/Hoare/HoareAbort.thy + Author: Leonor Prensa Nieto & Tobias Nipkow + Copyright 2003 TUM + +Like Hoare.thy, but with an Abort statement for modelling run time errors. +*) + +theory Hoare_Logic_Abort +imports Main +uses ("hoare_tac.ML") +begin + +types + 'a bexp = "'a set" + 'a assn = "'a set" + +datatype + 'a com = Basic "'a \ 'a" + | Abort + | Seq "'a com" "'a com" ("(_;/ _)" [61,60] 60) + | Cond "'a bexp" "'a com" "'a com" ("(1IF _/ THEN _ / ELSE _/ FI)" [0,0,0] 61) + | While "'a bexp" "'a assn" "'a com" ("(1WHILE _/ INV {_} //DO _ /OD)" [0,0,0] 61) + +abbreviation annskip ("SKIP") where "SKIP == Basic id" + +types 'a sem = "'a option => 'a option => bool" + +consts iter :: "nat => 'a bexp => 'a sem => 'a sem" +primrec +"iter 0 b S = (\s s'. s \ Some ` b \ s=s')" +"iter (Suc n) b S = + (\s s'. s \ Some ` b \ (\s''. S s s'' \ iter n b S s'' s'))" + +consts Sem :: "'a com => 'a sem" +primrec +"Sem(Basic f) s s' = (case s of None \ s' = None | Some t \ s' = Some(f t))" +"Sem Abort s s' = (s' = None)" +"Sem(c1;c2) s s' = (\s''. Sem c1 s s'' \ Sem c2 s'' s')" +"Sem(IF b THEN c1 ELSE c2 FI) s s' = + (case s of None \ s' = None + | Some t \ ((t \ b \ Sem c1 s s') \ (t \ b \ Sem c2 s s')))" +"Sem(While b x c) s s' = + (if s = None then s' = None else \n. iter n b (Sem c) s s')" + +constdefs Valid :: "'a bexp \ 'a com \ 'a bexp \ bool" + "Valid p c q == \s s'. Sem c s s' \ s : Some ` p \ s' : Some ` q" + + + +(** parse translations **) + +syntax + "_assign" :: "id => 'b => 'a com" ("(2_ :=/ _)" [70,65] 61) + +syntax + "_hoare_abort_vars" :: "[idts, 'a assn,'a com,'a assn] => bool" + ("VARS _// {_} // _ // {_}" [0,0,55,0] 50) +syntax ("" output) + "_hoare_abort" :: "['a assn,'a com,'a assn] => bool" + ("{_} // _ // {_}" [0,55,0] 50) +ML {* + +local +fun free a = Free(a,dummyT) +fun abs((a,T),body) = + let val a = absfree(a, dummyT, body) + in if T = Bound 0 then a else Const(Syntax.constrainAbsC,dummyT) $ a $ T end +in + +fun mk_abstuple [x] body = abs (x, body) + | mk_abstuple (x::xs) body = + Syntax.const @{const_syntax split} $ abs (x, mk_abstuple xs body); + +fun mk_fbody a e [x as (b,_)] = if a=b then e else free b + | mk_fbody a e ((b,_)::xs) = + Syntax.const @{const_syntax Pair} $ (if a=b then e else free b) $ mk_fbody a e xs; + +fun mk_fexp a e xs = mk_abstuple xs (mk_fbody a e xs) +end +*} + +(* bexp_tr & assn_tr *) +(*all meta-variables for bexp except for TRUE are translated as if they + were boolean expressions*) +ML{* +fun bexp_tr (Const ("TRUE", _)) xs = Syntax.const "TRUE" (* FIXME !? *) + | bexp_tr b xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs b; + +fun assn_tr r xs = Syntax.const @{const_syntax Collect} $ mk_abstuple xs r; +*} +(* com_tr *) +ML{* +fun com_tr (Const (@{syntax_const "_assign"},_) $ Free (a,_) $ e) xs = + Syntax.const @{const_syntax Basic} $ mk_fexp a e xs + | com_tr (Const (@{const_syntax Basic},_) $ f) xs = Syntax.const @{const_syntax Basic} $ f + | com_tr (Const (@{const_syntax Seq},_) $ c1 $ c2) xs = + Syntax.const @{const_syntax Seq} $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) xs = + Syntax.const @{const_syntax Cond} $ bexp_tr b xs $ com_tr c1 xs $ com_tr c2 xs + | com_tr (Const (@{const_syntax While},_) $ b $ I $ c) xs = + Syntax.const @{const_syntax While} $ bexp_tr b xs $ assn_tr I xs $ com_tr c xs + | com_tr t _ = t (* if t is just a Free/Var *) +*} + +(* triple_tr *) (* FIXME does not handle "_idtdummy" *) +ML{* +local + +fun var_tr (Free (a, _)) = (a, Bound 0) (* Bound 0 = dummy term *) + | var_tr (Const (@{syntax_const "_constrain"}, _) $ Free (a, _) $ T) = (a, T); + +fun vars_tr (Const (@{syntax_const "_idts"}, _) $ idt $ vars) = var_tr idt :: vars_tr vars + | vars_tr t = [var_tr t] + +in +fun hoare_vars_tr [vars, pre, prg, post] = + let val xs = vars_tr vars + in Syntax.const @{const_syntax Valid} $ + assn_tr pre xs $ com_tr prg xs $ assn_tr post xs + end + | hoare_vars_tr ts = raise TERM ("hoare_vars_tr", ts); +end +*} + +parse_translation {* [(@{syntax_const "_hoare_abort_vars"}, hoare_vars_tr)] *} + + +(*****************************************************************************) + +(*** print translations ***) +ML{* +fun dest_abstuple (Const (@{const_syntax split},_) $ (Abs(v,_, body))) = + subst_bound (Syntax.free v, dest_abstuple body) + | dest_abstuple (Abs(v,_, body)) = subst_bound (Syntax.free v, body) + | dest_abstuple trm = trm; + +fun abs2list (Const (@{const_syntax split},_) $ (Abs(x,T,t))) = Free (x, T)::abs2list t + | abs2list (Abs(x,T,t)) = [Free (x, T)] + | abs2list _ = []; + +fun mk_ts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = mk_ts t + | mk_ts (Abs(x,_,t)) = mk_ts t + | mk_ts (Const (@{const_syntax Pair},_) $ a $ b) = a::(mk_ts b) + | mk_ts t = [t]; + +fun mk_vts (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = + ((Syntax.free x)::(abs2list t), mk_ts t) + | mk_vts (Abs(x,_,t)) = ([Syntax.free x], [t]) + | mk_vts t = raise Match; + +fun find_ch [] i xs = (false, (Syntax.free "not_ch", Syntax.free "not_ch")) + | find_ch ((v,t)::vts) i xs = + if t = Bound i then find_ch vts (i-1) xs + else (true, (v, subst_bounds (xs,t))); + +fun is_f (Const (@{const_syntax split},_) $ (Abs(x,_,t))) = true + | is_f (Abs(x,_,t)) = true + | is_f t = false; +*} + +(* assn_tr' & bexp_tr'*) +ML{* +fun assn_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T + | assn_tr' (Const (@{const_syntax inter},_) $ (Const (@{const_syntax Collect},_) $ T1) $ + (Const (@{const_syntax Collect},_) $ T2)) = + Syntax.const @{const_syntax inter} $ dest_abstuple T1 $ dest_abstuple T2 + | assn_tr' t = t; + +fun bexp_tr' (Const (@{const_syntax Collect},_) $ T) = dest_abstuple T + | bexp_tr' t = t; +*} + +(*com_tr' *) +ML{* +fun mk_assign f = + let val (vs, ts) = mk_vts f; + val (ch, which) = find_ch (vs~~ts) ((length vs)-1) (rev vs) + in + if ch then Syntax.const @{syntax_const "_assign"} $ fst which $ snd which + else Syntax.const @{const_syntax annskip} + end; + +fun com_tr' (Const (@{const_syntax Basic},_) $ f) = + if is_f f then mk_assign f else Syntax.const @{const_syntax Basic} $ f + | com_tr' (Const (@{const_syntax Seq},_) $ c1 $ c2) = + Syntax.const @{const_syntax Seq} $ com_tr' c1 $ com_tr' c2 + | com_tr' (Const (@{const_syntax Cond},_) $ b $ c1 $ c2) = + Syntax.const @{const_syntax Cond} $ bexp_tr' b $ com_tr' c1 $ com_tr' c2 + | com_tr' (Const (@{const_syntax While},_) $ b $ I $ c) = + Syntax.const @{const_syntax While} $ bexp_tr' b $ assn_tr' I $ com_tr' c + | com_tr' t = t; + +fun spec_tr' [p, c, q] = + Syntax.const @{syntax_const "_hoare_abort"} $ assn_tr' p $ com_tr' c $ assn_tr' q +*} + +print_translation {* [(@{const_syntax Valid}, spec_tr')] *} + +(*** The proof rules ***) + +lemma SkipRule: "p \ q \ Valid p (Basic id) q" +by (auto simp:Valid_def) + +lemma BasicRule: "p \ {s. f s \ q} \ Valid p (Basic f) q" +by (auto simp:Valid_def) + +lemma SeqRule: "Valid P c1 Q \ Valid Q c2 R \ Valid P (c1;c2) R" +by (auto simp:Valid_def) + +lemma CondRule: + "p \ {s. (s \ b \ s \ w) \ (s \ b \ s \ w')} + \ Valid w c1 q \ Valid w' c2 q \ Valid p (Cond b c1 c2) q" +by (fastsimp simp:Valid_def image_def) + +lemma iter_aux: + "! s s'. Sem c s s' \ s \ Some ` (I \ b) \ s' \ Some ` I \ + (\s s'. s \ Some ` I \ iter n b (Sem c) s s' \ s' \ Some ` (I \ -b))"; +apply(unfold image_def) +apply(induct n) + apply clarsimp +apply(simp (no_asm_use)) +apply blast +done + +lemma WhileRule: + "p \ i \ Valid (i \ b) c i \ i \ (-b) \ q \ Valid p (While b i c) q" +apply(simp add:Valid_def) +apply(simp (no_asm) add:image_def) +apply clarify +apply(drule iter_aux) + prefer 2 apply assumption + apply blast +apply blast +done + +lemma AbortRule: "p \ {s. False} \ Valid p Abort q" +by(auto simp:Valid_def) + + +subsection {* Derivation of the proof rules and, most importantly, the VCG tactic *} + +lemma Compl_Collect: "-(Collect b) = {x. ~(b x)}" + by blast + +use "hoare_tac.ML" + +method_setup vcg = {* + Scan.succeed (fn ctxt => SIMPLE_METHOD' (hoare_tac ctxt (K all_tac))) *} + "verification condition generator" + +method_setup vcg_simp = {* + Scan.succeed (fn ctxt => + SIMPLE_METHOD' (hoare_tac ctxt (asm_full_simp_tac (simpset_of ctxt)))) *} + "verification condition generator plus simplification" + +(* Special syntax for guarded statements and guarded array updates: *) + +syntax + guarded_com :: "bool \ 'a com \ 'a com" ("(2_ \/ _)" 71) + array_update :: "'a list \ nat \ 'a \ 'a com" ("(2_[_] :=/ _)" [70, 65] 61) +translations + "P \ c" == "IF P THEN c ELSE CONST Abort FI" + "a[i] := v" => "(i < CONST length a) \ (a := CONST list_update a i v)" + (* reverse translation not possible because of duplicate "a" *) + +text{* Note: there is no special syntax for guarded array access. Thus +you must write @{text"j < length a \ a[i] := a!j"}. *} + +end