# HG changeset patch # User wenzelm # Date 1635606610 -7200 # Node ID f831b6e589dc69e525d6cc450a9320dc39ed04c4 # Parent 4069afca81fd7dc297a7b069aa73e6ef8182b56e tuned proofs -- avoid z3, which is unavailable on arm64-linux; diff -r 4069afca81fd -r f831b6e589dc src/HOL/Analysis/Infinite_Sum.thy --- a/src/HOL/Analysis/Infinite_Sum.thy Sat Oct 30 13:26:33 2021 +0200 +++ b/src/HOL/Analysis/Infinite_Sum.thy Sat Oct 30 17:10:10 2021 +0200 @@ -320,7 +320,7 @@ fixes f :: "'a \ 'b::{topological_ab_group_add,t2_space}" assumes "f summable_on B" and "f summable_on A" and AB: "A \ B" shows infsum_Diff: "infsum f (B - A) = infsum f B - infsum f A" - by (smt (z3) AB assms(1) assms(2) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_Diff has_sum_def tendsto_Lim) + by (metis AB assms has_sum_Diff infsumI summable_on_def) lemma has_sum_mono_neutral: fixes f :: "'a\'b::{ordered_comm_monoid_add,linorder_topology}" @@ -440,7 +440,7 @@ proof - from ev_P obtain F' where \finite F'\ and \F' \ A\ and P_sup_F': \finite F \ F \ F' \ F \ A \ P F\ for F - apply atomize_elim by (simp add: eventually_finite_subsets_at_top) + by atomize_elim (simp add: eventually_finite_subsets_at_top) define F where \F = F' \ F1 \ F2\ have \finite F\ and \F \ A\ using F_def P_def[abs_def] that \finite F'\ \F' \ A\ by auto @@ -448,7 +448,7 @@ by (metis F_def \F \ A\ P_def P_sup_F' \finite F\ le_supE order_refl) from dist_F have \dist (sum (\x. norm (f x)) F) (sum (\x. norm (f x)) F2) < 2*d\ - by (smt (z3) P_def dist_norm real_norm_def that(2)) + by (smt (verit, ccfv_threshold) P_def dist_norm real_norm_def that(2)) then have \norm (sum (\x. norm (f x)) (F-F2)) < 2*d\ unfolding dist_norm by (metis F_def \finite F\ sum_diff sup_commute sup_ge1) @@ -458,7 +458,7 @@ by (metis F_def \finite F\ dist_norm sum_diff sup_commute sup_ge1) from dist_F have \dist (sum (\x. norm (f x)) F) (sum (\x. norm (f x)) F1) < 2*d\ - by (smt (z3) P_def dist_norm real_norm_def that(1)) + by (smt (verit, best) P_def dist_norm real_norm_def that(1)) then have \norm (sum (\x. norm (f x)) (F-F1)) < 2*d\ unfolding dist_norm by (metis F_def \finite F\ inf_sup_ord(3) order_trans sum_diff sup_ge2) @@ -652,7 +652,7 @@ have \has_sum (\x. f x + g x) A (infsum f A + infsum g A)\ by (simp add: assms(1) assms(2) has_sum_add) then show ?thesis - by (smt (z3) finite_subsets_at_top_neq_bot infsum_def summable_on_def has_sum_def tendsto_Lim) + using infsumI by blast qed @@ -1187,7 +1187,7 @@ unfolding FMB_def eventually_finite_subsets_at_top apply (rule exI[of _ G]) using \G \ Sigma A B\ \finite G\ that G_sum apply auto - by (smt (z3) Sigma_Un_distrib1 dual_order.trans subset_Un_eq) + by (meson Sigma_mono dual_order.refl order_trans) ultimately have \\\<^sub>F x in FMB. E (sum b M, a)\ by (smt (verit, best) DDE' eventually_elim2) then show \E (sum b M, a)\ diff -r 4069afca81fd -r f831b6e589dc src/HOL/Library/Extended_Nonnegative_Real.thy --- a/src/HOL/Library/Extended_Nonnegative_Real.thy Sat Oct 30 13:26:33 2021 +0200 +++ b/src/HOL/Library/Extended_Nonnegative_Real.thy Sat Oct 30 17:10:10 2021 +0200 @@ -1175,14 +1175,15 @@ (* Contributed by Dominique Unruh *) lemma ennreal_of_enat_plus[simp]: \ennreal_of_enat (a+b) = ennreal_of_enat a + ennreal_of_enat b\ - apply (induction a) - apply auto - by (smt (z3) add.commute add.right_neutral enat.exhaust enat.simps(4) enat.simps(5) ennreal_add_left_cancel ennreal_of_enat_def infinity_ennreal_def of_nat_add of_nat_eq_enat plus_enat_simps(2)) + apply (induct a) + apply (metis enat.exhaust ennreal_add_eq_top ennreal_of_enat_enat ennreal_of_enat_infty infinity_ennreal_def of_nat_add plus_enat_simps(1) plus_eq_infty_iff_enat) + apply simp + done (* Contributed by Dominique Unruh *) lemma sum_ennreal_of_enat[simp]: "(\i\I. ennreal_of_enat (f i)) = ennreal_of_enat (sum f I)" - apply (induction I rule: infinite_finite_induct) - by (auto simp: sum_nonneg) + by (induct I rule: infinite_finite_induct) (auto simp: sum_nonneg) + subsection \Topology on \<^typ>\ennreal\\