# HG changeset patch # User wenzelm # Date 1330373220 -3600 # Node ID f88b187ad8caa314338432fd74cd6b80c7f52b6b # Parent 9722171731af4430a8457dd88fd6bf04af477462 tuned proofs; diff -r 9722171731af -r f88b187ad8ca src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Mon Feb 27 20:55:30 2012 +0100 +++ b/src/HOL/Algebra/Coset.thy Mon Feb 27 21:07:00 2012 +0100 @@ -232,7 +232,7 @@ also from carr have "\ = x' \ ((inv x) \ x)" by (simp add: m_assoc) also from carr - have "\ = x' \ \" by (simp add: l_inv) + have "\ = x' \ \" by simp also from carr have "\ = x'" by simp finally @@ -520,8 +520,7 @@ apply (auto simp add: subgroup.m_closed set_mult_def Sigma_def image_def) apply (rule_tac x = x in bexI) apply (rule bexI [of _ "\"]) -apply (auto simp add: subgroup.m_closed subgroup.one_closed - r_one subgroup.subset [THEN subsetD]) +apply (auto simp add: subgroup.one_closed subgroup.subset [THEN subsetD]) done @@ -612,7 +611,7 @@ fix x y assume [simp]: "x \ carrier G" "y \ carrier G" and "inv x \ y \ H" - hence "inv (inv x \ y) \ H" by (simp add: m_inv_closed) + hence "inv (inv x \ y) \ H" by simp thus "inv y \ x \ H" by (simp add: inv_mult_group) qed next @@ -722,7 +721,7 @@ assume abrcong: "(a, b) \ rcong H" and ccarr: "c \ carrier G" - from ccarr have "c \ Units G" by (simp add: Units_eq) + from ccarr have "c \ Units G" by simp hence cinvc_one: "inv c \ c = \" by (rule Units_l_inv) from abrcong diff -r 9722171731af -r f88b187ad8ca src/HOL/Algebra/FiniteProduct.thy --- a/src/HOL/Algebra/FiniteProduct.thy Mon Feb 27 20:55:30 2012 +0100 +++ b/src/HOL/Algebra/FiniteProduct.thy Mon Feb 27 21:07:00 2012 +0100 @@ -190,7 +190,7 @@ lemma (in LCD) foldD_closed [simp]: "[| finite A; e \ D; A \ B |] ==> foldD D f e A \ D" proof (induct set: finite) - case empty then show ?case by (simp add: foldD_empty) + case empty then show ?case by simp next case insert then show ?case by (simp add: foldD_insert) qed @@ -328,7 +328,7 @@ apply fast apply fast apply assumption - apply (fastforce intro: m_closed) + apply fastforce apply simp+ apply fast apply (auto simp add: finprod_def) @@ -372,14 +372,13 @@ finprod G g A \ finprod G g B" -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *} proof (induct set: finite) - case empty then show ?case by (simp add: finprod_closed) + case empty then show ?case by simp next case (insert a A) then have a: "g a \ carrier G" by fast from insert have A: "g \ A -> carrier G" by fast from insert A a show ?case - by (simp add: m_ac Int_insert_left insert_absorb finprod_closed - Int_mono2) + by (simp add: m_ac Int_insert_left insert_absorb Int_mono2) qed lemma finprod_Un_disjoint: @@ -387,7 +386,7 @@ g \ A -> carrier G; g \ B -> carrier G |] ==> finprod G g (A Un B) = finprod G g A \ finprod G g B" apply (subst finprod_Un_Int [symmetric]) - apply (auto simp add: finprod_closed) + apply auto done lemma finprod_multf: @@ -498,9 +497,8 @@ assumes fin: "finite A" shows "f : (h ` A) \ carrier G \ inj_on h A ==> finprod G f (h ` A) = finprod G (%x. f (h x)) A" - using fin apply induct - apply (auto simp add: finprod_insert Pi_def) -done + using fin + by induct (auto simp add: Pi_def) lemma finprod_const: assumes fin [simp]: "finite A" @@ -512,7 +510,7 @@ apply auto apply (subst m_comm) apply auto -done + done (* The following lemma was contributed by Jesus Aransay. *) diff -r 9722171731af -r f88b187ad8ca src/HOL/Algebra/Ring.thy --- a/src/HOL/Algebra/Ring.thy Mon Feb 27 20:55:30 2012 +0100 +++ b/src/HOL/Algebra/Ring.thy Mon Feb 27 21:07:00 2012 +0100 @@ -259,16 +259,12 @@ context ring begin -lemma is_abelian_group: - "abelian_group R" - .. +lemma is_abelian_group: "abelian_group R" .. -lemma is_monoid: - "monoid R" +lemma is_monoid: "monoid R" by (auto intro!: monoidI m_assoc) -lemma is_ring: - "ring R" +lemma is_ring: "ring R" by (rule ring_axioms) end @@ -444,12 +440,13 @@ show "\ = \" by simp qed -lemma carrier_one_zero: - shows "(carrier R = {\}) = (\ = \)" - by (rule, erule one_zeroI, erule one_zeroD) +lemma carrier_one_zero: "(carrier R = {\}) = (\ = \)" + apply rule + apply (erule one_zeroI) + apply (erule one_zeroD) + done -lemma carrier_one_not_zero: - shows "(carrier R \ {\}) = (\ \ \)" +lemma carrier_one_not_zero: "(carrier R \ {\}) = (\ \ \)" by (simp add: carrier_one_zero) end @@ -571,7 +568,7 @@ from bcarr have "b = \ \ b" by algebra also from aUnit acarr - have "... = (inv a \ a) \ b" by (simp add: Units_l_inv) + have "... = (inv a \ a) \ b" by simp also from acarr bcarr aUnit[THEN Units_inv_closed] have "... = (inv a) \ (a \ b)" by algebra also from ab and acarr bcarr aUnit