# HG changeset patch # User wenzelm # Date 1205789663 -3600 # Node ID f8a7fac36e13ca05293d37b5dbe721eb16935488 # Parent fb52fe23acc417a4a20452c181cd7c24644c1ecb only one version of group.rcos_self; diff -r fb52fe23acc4 -r f8a7fac36e13 src/HOL/Algebra/AbelCoset.thy --- a/src/HOL/Algebra/AbelCoset.thy Mon Mar 17 20:51:23 2008 +0100 +++ b/src/HOL/Algebra/AbelCoset.thy Mon Mar 17 22:34:23 2008 +0100 @@ -413,7 +413,7 @@ lemma (in abelian_subgroup) a_rcos_self: shows "x \ carrier G \ x \ H +> x" -by (rule group.rcos_self [OF a_group a_subgroup, +by (rule group.rcos_self [OF a_group _ a_subgroup, folded a_r_coset_def, simplified monoid_record_simps]) lemma (in abelian_subgroup) a_rcosets_part_G: diff -r fb52fe23acc4 -r f8a7fac36e13 src/HOL/Algebra/Coset.thy --- a/src/HOL/Algebra/Coset.thy Mon Mar 17 20:51:23 2008 +0100 +++ b/src/HOL/Algebra/Coset.thy Mon Mar 17 22:34:23 2008 +0100 @@ -369,7 +369,7 @@ by (simp add: normal_def subgroup_def) lemma (in group) normalI: - "subgroup H G \ (\x \ carrier G. H #> x = x <# H) \ H \ G"; + "subgroup H G \ (\x \ carrier G. H #> x = x <# H) \ H \ G" by (simp add: normal_def normal_axioms_def prems) lemma (in normal) inv_op_closed1: @@ -385,7 +385,7 @@ lemma (in normal) inv_op_closed2: "\x \ carrier G; h \ H\ \ x \ h \ (inv x) \ H" apply (subgoal_tac "inv (inv x) \ h \ (inv x) \ H") -apply (simp add: ); +apply (simp add: ) apply (blast intro: inv_op_closed1) done @@ -640,7 +640,7 @@ h \ H; ha \ H; hb \ H\ \ hb \ a \ (\h\H. {h \ b})" apply (rule UN_I [of "hb \ ((inv ha) \ h)"]) -apply (simp add: ); +apply (simp add: ) apply (simp add: m_assoc transpose_inv) done @@ -731,14 +731,6 @@ order :: "('a, 'b) monoid_scheme \ nat" "order S \ card (carrier S)" -lemma (in group) rcos_self: - includes subgroup - shows "x \ carrier G \ x \ H #> x" -apply (simp add: r_coset_def) -apply (rule_tac x="\" in bexI) -apply (auto simp add: ); -done - lemma (in group) rcosets_part_G: includes subgroup shows "\(rcosets H) = carrier G" @@ -873,7 +865,7 @@ kernel :: "('a, 'm) monoid_scheme \ ('b, 'n) monoid_scheme \ ('a \ 'b) \ 'a set" --{*the kernel of a homomorphism*} - "kernel G H h \ {x. x \ carrier G & h x = \\<^bsub>H\<^esub>}"; + "kernel G H h \ {x. x \ carrier G & h x = \\<^bsub>H\<^esub>}" lemma (in group_hom) subgroup_kernel: "subgroup (kernel G H h) G" apply (rule subgroup.intro) @@ -939,10 +931,10 @@ lemma (in group_hom) FactGroup_subset: "\g \ carrier G; g' \ carrier G; h g = h g'\ \ kernel G H h #> g \ kernel G H h #> g'" -apply (clarsimp simp add: kernel_def r_coset_def image_def); +apply (clarsimp simp add: kernel_def r_coset_def image_def) apply (rename_tac y) apply (rule_tac x="y \ g \ inv g'" in exI) -apply (simp add: G.m_assoc); +apply (simp add: G.m_assoc) done lemma (in group_hom) FactGroup_inj_on: @@ -977,7 +969,7 @@ fix y assume y: "y \ carrier H" with h obtain g where g: "g \ carrier G" "h g = y" - by (blast elim: equalityE); + by (blast elim: equalityE) hence "(\x\kernel G H h #> g. {h x}) = {y}" by (auto simp add: y kernel_def r_coset_def) with g show "y \ (\X. contents (h ` X)) ` carrier (G Mod kernel G H h)"