# HG changeset patch # User nipkow # Date 1050339133 -7200 # Node ID f9a9ef16466fc04cc969ef41975acc8d34eb0d9b # Parent a5247a49c85e423f5d6619583f626987947ebcc8 Added thms diff -r a5247a49c85e -r f9a9ef16466f src/HOL/Fun.thy --- a/src/HOL/Fun.thy Mon Apr 14 13:51:31 2003 +0200 +++ b/src/HOL/Fun.thy Mon Apr 14 18:52:13 2003 +0200 @@ -37,11 +37,15 @@ *) constdefs - id :: "'a => 'a" - "id == %x. x" + overwrite :: "('a => 'b) => ('a => 'b) => 'a set => ('a => 'b)" + ("_/'(_|/_')" [900,0,0]900) +"f(g|A) == %a. if a : A then g a else f a" - comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55) - "f o g == %x. f(g(x))" + id :: "'a => 'a" +"id == %x. x" + + comp :: "['b => 'c, 'a => 'b, 'a] => 'c" (infixl "o" 55) +"f o g == %x. f(g(x))" text{*compatibility*} lemmas o_def = comp_def @@ -335,6 +339,17 @@ lemma fun_upd_twist: "a ~= c ==> (m(a:=b))(c:=d) = (m(c:=d))(a:=b)" by (rule ext, auto) +subsection{* overwrite *} + +lemma overwrite_emptyset[simp]: "f(g|{}) = f" +by(simp add:overwrite_def) + +lemma overwrite_apply_notin[simp]: "a ~: A ==> (f(g|A)) a = f a" +by(simp add:overwrite_def) + +lemma overwrite_apply_in[simp]: "a : A ==> (f(g|A)) a = g a" +by(simp add:overwrite_def) + text{*The ML section includes some compatibility bindings and a simproc for function updates, in addition to the usual ML-bindings of theorems.*} ML diff -r a5247a49c85e -r f9a9ef16466f src/HOL/Map.thy --- a/src/HOL/Map.thy Mon Apr 14 13:51:31 2003 +0200 +++ b/src/HOL/Map.thy Mon Apr 14 18:52:13 2003 +0200 @@ -17,11 +17,13 @@ ran :: "('a ~=> 'b) => 'b set" map_of :: "('a * 'b)list => 'a ~=> 'b" map_upds:: "('a ~=> 'b) => 'a list => 'b list => - ('a ~=> 'b)" ("_/'(_[|->]_/')" [900,0,0]900) + ('a ~=> 'b)" ("_/'(_[|->]_/')" [900,0,0]900) +map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\\<^sub>m" 50) + syntax empty :: "'a ~=> 'b" map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" - ("_/'(_/|->_')" [900,0,0]900) + ("_/'(_/|->_')" [900,0,0]900) syntax (xsymbols) "~=>" :: "[type, type] => type" (infixr "\" 0) @@ -37,7 +39,6 @@ "m(a|->b)" == "m(a:=Some b)" defs - chg_map_def: "chg_map f a m == case m a of None => m | Some b => m(a|->f b)" override_def: "m1++m2 == %x. case m2 x of None => m1 x | Some y => Some y" @@ -45,6 +46,8 @@ dom_def: "dom(m) == {a. m a ~= None}" ran_def: "ran(m) == {b. ? a. m a = Some b}" +map_le_def: "m1 \\<^sub>m m2 == ALL a : dom m1. m1 a = m2 a" + primrec "map_of [] = empty" "map_of (p#ps) = (map_of ps)(fst p |-> snd p)" @@ -55,19 +58,17 @@ section {* empty *} -lemma empty_upd_none: "empty(x := None) = empty" +lemma empty_upd_none[simp]: "empty(x := None) = empty" apply (rule ext) apply (simp (no_asm)) done -declare empty_upd_none [simp] + (* FIXME: what is this sum_case nonsense?? *) -lemma sum_case_empty_empty: "sum_case empty empty = empty" +lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" apply (rule ext) apply (simp (no_asm) split add: sum.split) done -declare sum_case_empty_empty [simp] - section {* map\_upd *} @@ -76,12 +77,11 @@ apply (simp (no_asm_simp)) done -lemma map_upd_nonempty: "t(k|->x) ~= empty" +lemma map_upd_nonempty[simp]: "t(k|->x) ~= empty" apply safe apply (drule_tac x = "k" in fun_cong) apply (simp (no_asm_use)) done -declare map_upd_nonempty [simp] lemma finite_range_updI: "finite (range f) ==> finite (range (f(a|->b)))" apply (unfold image_def) @@ -95,53 +95,58 @@ (* FIXME: what is this sum_case nonsense?? *) section {* sum\_case and empty/map\_upd *} -lemma sum_case_map_upd_empty: "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" +lemma sum_case_map_upd_empty[simp]: + "sum_case (m(k|->y)) empty = (sum_case m empty)(Inl k|->y)" apply (rule ext) apply (simp (no_asm) split add: sum.split) done -declare sum_case_map_upd_empty [simp] -lemma sum_case_empty_map_upd: "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" +lemma sum_case_empty_map_upd[simp]: + "sum_case empty (m(k|->y)) = (sum_case empty m)(Inr k|->y)" apply (rule ext) apply (simp (no_asm) split add: sum.split) done -declare sum_case_empty_map_upd [simp] -lemma sum_case_map_upd_map_upd: "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" +lemma sum_case_map_upd_map_upd[simp]: + "sum_case (m1(k1|->y1)) (m2(k2|->y2)) = (sum_case (m1(k1|->y1)) m2)(Inr k2|->y2)" apply (rule ext) apply (simp (no_asm) split add: sum.split) done -declare sum_case_map_upd_map_upd [simp] section {* map\_upds *} -lemma map_upds_twist [rule_format (no_asm)]: "a ~: set as --> (!m bs. (m(a|->b)(as[|->]bs)) = (m(as[|->]bs)(a|->b)))" -apply (induct_tac "as") -apply (auto simp del: fun_upd_apply) -apply (drule spec)+ -apply (rotate_tac -1) -apply (erule subst) -apply (erule fun_upd_twist [THEN subst]) -apply (rule refl) +lemma map_upd_upds_conv_if: + "!!x y ys f. (f(x|->y))(xs [|->] ys) = + (if x : set xs then f(xs [|->] ys) else (f(xs [|->] ys))(x|->y))" +apply(induct xs) + apply simp +apply(simp split:split_if add:fun_upd_twist eq_sym_conv) done -declare map_upds_twist [simp] + +lemma map_upds_twist [simp]: + "a ~: set as ==> m(a|->b)(as[|->]bs) = m(as[|->]bs)(a|->b)" +by (simp add: map_upd_upds_conv_if) +lemma map_upds_apply_nontin[simp]: + "!!ys. x ~: set xs ==> (f(xs[|->]ys)) x = f x" +apply(induct xs) + apply simp +apply(simp add: fun_upd_apply map_upd_upds_conv_if split:split_if) +done section {* chg\_map *} -lemma chg_map_new: "m a = None ==> chg_map f a m = m" +lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" apply (unfold chg_map_def) apply auto done -lemma chg_map_upd: "m a = Some b ==> chg_map f a m = m(a|->f b)" +lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a|->f b)" apply (unfold chg_map_def) apply auto done -declare chg_map_new [simp] chg_map_upd [simp] - section {* map\_of *} @@ -186,33 +191,30 @@ section {* option\_map related *} -lemma option_map_o_empty: "option_map f o empty = empty" +lemma option_map_o_empty[simp]: "option_map f o empty = empty" apply (rule ext) apply (simp (no_asm)) done -lemma option_map_o_map_upd: "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" +lemma option_map_o_map_upd[simp]: + "option_map f o m(a|->b) = (option_map f o m)(a|->f b)" apply (rule ext) apply (simp (no_asm)) done -declare option_map_o_empty [simp] option_map_o_map_upd [simp] - section {* ++ *} -lemma override_empty: "m ++ empty = m" +lemma override_empty[simp]: "m ++ empty = m" apply (unfold override_def) apply (simp (no_asm)) done -declare override_empty [simp] -lemma empty_override: "empty ++ m = m" +lemma empty_override[simp]: "empty ++ m = m" apply (unfold override_def) apply (rule ext) apply (simp split add: option.split) done -declare empty_override [simp] lemma override_Some_iff [rule_format (no_asm)]: "((m ++ n) k = Some x) = (n k = Some x | n k = None & m k = Some x)" @@ -223,26 +225,23 @@ lemmas override_SomeD = override_Some_iff [THEN iffD1, standard] declare override_SomeD [dest!] -lemma override_find_right: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" +lemma override_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" apply (subst override_Some_iff) apply fast done -declare override_find_right [simp] -lemma override_None: "((m ++ n) k = None) = (n k = None & m k = None)" +lemma override_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" apply (unfold override_def) apply (simp (no_asm) split add: option.split) done -declare override_None [iff] -lemma override_upd: "f ++ g(x|->y) = (f ++ g)(x|->y)" +lemma override_upd[simp]: "f ++ g(x|->y) = (f ++ g)(x|->y)" apply (unfold override_def) apply (rule ext) apply auto done -declare override_upd [simp] -lemma map_of_override: "map_of ys ++ map_of xs = map_of (xs@ys)" +lemma map_of_override[simp]: "map_of ys ++ map_of xs = map_of (xs@ys)" apply (unfold override_def) apply (rule sym) apply (induct_tac "xs") @@ -250,7 +249,6 @@ apply (rule ext) apply (simp (no_asm_simp) split add: option.split) done -declare map_of_override [simp] declare fun_upd_apply [simp del] lemma finite_range_map_of_override: "finite (range f) ==> finite (range (f ++ map_of l))" @@ -273,25 +271,27 @@ apply auto done -lemma domIff: "(a : dom m) = (m a ~= None)" +lemma domIff[iff]: "(a : dom m) = (m a ~= None)" apply (unfold dom_def) apply auto done -declare domIff [iff] declare domIff [simp del] -lemma dom_empty: "dom empty = {}" +lemma dom_empty[simp]: "dom empty = {}" apply (unfold dom_def) apply (simp (no_asm)) done -declare dom_empty [simp] -lemma dom_map_upd: "dom(m(a|->b)) = insert a (dom m)" +lemma dom_fun_upd[simp]: + "dom(f(x := y)) = (if y=None then dom f - {x} else insert x (dom f))" +by (simp add:dom_def) blast +(* +lemma dom_map_upd[simp]: "dom(m(a|->b)) = insert a (dom m)" apply (unfold dom_def) apply (simp (no_asm)) apply blast done -declare dom_map_upd [simp] +*) lemma finite_dom_map_of: "finite (dom (map_of l))" apply (unfold dom_def) @@ -299,32 +299,42 @@ apply (auto simp add: insert_Collect [symmetric]) done -lemma dom_override: "dom(m++n) = dom n Un dom m" +lemma dom_map_upds[simp]: "!!m vs. dom(m(xs[|->]vs)) = set xs Un dom m" +by(induct xs, simp_all) + +lemma dom_override[simp]: "dom(m++n) = dom n Un dom m" apply (unfold dom_def) apply auto done -declare dom_override [simp] + +lemma dom_overwrite[simp]: + "dom(f(g|A)) = (dom f - {a. a : A - dom g}) Un {a. a : A Int dom g}" +by(auto simp add: dom_def overwrite_def) section {* ran *} -lemma ran_empty: "ran empty = {}" +lemma ran_empty[simp]: "ran empty = {}" apply (unfold ran_def) apply (simp (no_asm)) done -declare ran_empty [simp] -lemma ran_empty': "ran (%u. None) = {}" -apply (unfold ran_def) -apply auto -done -declare ran_empty' [simp] - -lemma ran_map_upd: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" +lemma ran_map_upd[simp]: "m a = None ==> ran(m(a|->b)) = insert b (ran m)" apply (unfold ran_def) apply auto apply (subgoal_tac "~ (aa = a) ") apply auto done -declare ran_map_upd [simp] + +section{* @{text"\\<^sub>m"} *} + +lemma [simp]: "empty \\<^sub>m g" +by(simp add:map_le_def) + +lemma map_le_upd[simp]: "f \\<^sub>m g ==> f(a := b) \\<^sub>m g(a := b)" +by(fastsimp simp add:map_le_def) + +lemma map_le_upds[simp]: + "!!f g bs. f \\<^sub>m g ==> f(as [|->] bs) \\<^sub>m g(as [|->] bs)" +by(induct as, auto) end