# HG changeset patch # User nipkow # Date 1108997865 -3600 # Node ID fa23e05614266850ce74189a46351557aa45e8aa # Parent 333a8824456991b447db46ee075ecffb4872d5b7 removed superfluous setsum_constant diff -r 333a88244569 -r fa23e0561426 src/HOL/Integ/IntDef.thy --- a/src/HOL/Integ/IntDef.thy Mon Feb 21 15:04:10 2005 +0100 +++ b/src/HOL/Integ/IntDef.thy Mon Feb 21 15:57:45 2005 +0100 @@ -790,11 +790,6 @@ lemma int_setprod: "int (setprod f A) = setprod (int \ f) A" by (simp add: int_eq_of_nat setprod_of_nat) -lemma setsum_constant [simp]: "finite A ==> (\x \ A. y) = of_nat(card A) * y" - apply (erule finite_induct) - apply (auto simp add: ring_distrib add_ac) - done - lemma setprod_nonzero_nat: "finite A ==> (\x \ A. f x \ (0::nat)) ==> setprod f A \ 0" by (rule setprod_nonzero, auto)