# HG changeset patch # User wenzelm # Date 1162924794 -3600 # Node ID faacfd4392b57fac5974f0ea4f65a45a4911b9a5 # Parent df149b8c86b86133ec65518ca8996b676b9d962a fixed locale fact references; diff -r df149b8c86b8 -r faacfd4392b5 src/HOL/ex/Tarski.thy --- a/src/HOL/ex/Tarski.thy Tue Nov 07 19:39:53 2006 +0100 +++ b/src/HOL/ex/Tarski.thy Tue Nov 07 19:39:54 2006 +0100 @@ -229,9 +229,9 @@ lemmas CL_imp_PO = CL_subset_PO [THEN subsetD] -declare CL_imp_PO [THEN Tarski.PO_imp_refl, simp] -declare CL_imp_PO [THEN Tarski.PO_imp_sym, simp] -declare CL_imp_PO [THEN Tarski.PO_imp_trans, simp] +declare CL_imp_PO [THEN PO.PO_imp_refl, simp] +declare CL_imp_PO [THEN PO.PO_imp_sym, simp] +declare CL_imp_PO [THEN PO.PO_imp_trans, simp] lemma (in CL) CO_refl: "refl A r" by (rule PO_imp_refl) @@ -382,7 +382,7 @@ apply (subst glb_dual_lub) apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) -apply (rule Tarski.lub_in_lattice) +apply (rule CL.lub_in_lattice) apply (rule dualPO) apply (rule CL_dualCL) apply (simp add: dualA_iff) @@ -392,7 +392,7 @@ apply (subst glb_dual_lub) apply (simp add: r_def) apply (rule dualr_iff [THEN subst]) -apply (rule Tarski.lub_upper) +apply (rule CL.lub_upper) apply (rule dualPO) apply (rule CL_dualCL) apply (simp add: dualA_iff A_def, assumption) @@ -520,7 +520,7 @@ -- {* Tarski for glb *} apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) -apply (rule Tarski.lubH_is_fixp) +apply (rule CLF.lubH_is_fixp) apply (rule dualPO) apply (rule CL_dualCL) apply (rule f_cl [THEN CLF_dual]) @@ -530,7 +530,7 @@ lemma (in CLF) T_thm_1_glb: "glb P cl = glb {x. (f x, x) \ r & x \ A} cl" apply (simp add: glb_dual_lub P_def A_def r_def) apply (rule dualA_iff [THEN subst]) -apply (simp add: Tarski.T_thm_1_lub [of _ f, OF dualPO CL_dualCL] +apply (simp add: CLF.T_thm_1_lub [of _ f, OF dualPO CL_dualCL] dualPO CL_dualCL CLF_dual dualr_iff) done @@ -590,7 +590,7 @@ "[| a \ A; b \ A; interval r a b \ {}; S \ interval r a b; isGlb S cl G; S \ {} |] ==> G \ interval r a b" apply (simp add: interval_dual) -apply (simp add: Tarski.L_in_interval [of _ f] +apply (simp add: CLF.L_in_interval [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual isGlb_dual_isLub) done @@ -687,7 +687,7 @@ lemma (in CLF) Top_in_lattice: "Top cl \ A" apply (simp add: Top_dual_Bot A_def) apply (rule dualA_iff [THEN subst]) -apply (blast intro!: Tarski.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl) +apply (blast intro!: CLF.Bot_in_lattice dualPO CL_dualCL CLF_dual f_cl) done lemma (in CLF) Top_prop: "x \ A ==> (x, Top cl) \ r" @@ -701,7 +701,7 @@ lemma (in CLF) Bot_prop: "x \ A ==> (Bot cl, x) \ r" apply (simp add: Bot_dual_Top r_def) apply (rule dualr_iff [THEN subst]) -apply (simp add: Tarski.Top_prop [of _ f] +apply (simp add: CLF.Top_prop [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual) done @@ -718,9 +718,9 @@ prefer 2 apply assumption apply (simp add: A_def) apply (rule dualA_iff [THEN subst]) -apply (blast intro!: Tarski.Top_in_lattice +apply (blast intro!: CLF.Top_in_lattice f_cl dualPO CL_dualCL CLF_dual) -apply (simp add: Tarski.Top_intv_not_empty [of _ f] +apply (simp add: CLF.Top_intv_not_empty [of _ f] dualA_iff A_def dualPO CL_dualCL CLF_dual) done @@ -805,7 +805,7 @@ apply (unfold P_def) apply (rule_tac A = "intY1" in fixf_subset) apply (rule intY1_subset) -apply (simp add: Tarski.glbH_is_fixp [OF _ intY1_is_cl, simplified] +apply (simp add: CLF.glbH_is_fixp [OF _ intY1_is_cl, simplified] v_def CL_imp_PO intY1_is_cl CLF_def intY1_func intY1_mono) done @@ -847,7 +847,7 @@ apply (rule_tac b = "Top cl" in interval_imp_mem) apply (simp add: v_def) apply (fold intY1_def) -apply (rule Tarski.glb_in_lattice [OF _ intY1_is_cl, simplified]) +apply (rule CL.glb_in_lattice [OF _ intY1_is_cl, simplified]) apply (simp add: CL_imp_PO intY1_is_cl, force) -- {* @{text v} is LEAST ub *} apply clarify @@ -857,7 +857,7 @@ apply (unfold v_def) apply (rule indE) apply (rule_tac [2] intY1_subset) -apply (rule Tarski.glb_lower [OF _ intY1_is_cl, simplified]) +apply (rule CL.glb_lower [OF _ intY1_is_cl, simplified]) apply (simp add: CL_imp_PO intY1_is_cl) apply force apply (simp add: induced_def intY1_f_closed z_in_interval) diff -r df149b8c86b8 -r faacfd4392b5 src/ZF/Constructible/Reflection.thy --- a/src/ZF/Constructible/Reflection.thy Tue Nov 07 19:39:53 2006 +0100 +++ b/src/ZF/Constructible/Reflection.thy Tue Nov 07 19:39:54 2006 +0100 @@ -199,7 +199,7 @@ "(!!a. [| Cl(a); Ord(a) |] ==> \x\Mset(a). P(x) <-> Q(a,x)) ==> Closed_Unbounded(ClEx(P))" apply (unfold ClEx_eq FF_def F0_def M_def) -apply (rule Reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl]) +apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl]) apply (rule ex_reflection.intro, assumption) apply (blast intro: ex_reflection_axioms.intro) done