# HG changeset patch # User nipkow # Date 1355761161 -3600 # Node ID fbb973a5310662b1682dd184a7ba65d4944968fa # Parent 8ccffe44d19344ee1c60be6b6de90430cec7204e made element and subset relations non-associative (just like all orderings) diff -r 8ccffe44d193 -r fbb973a53106 src/HOL/Set.thy --- a/src/HOL/Set.thy Mon Dec 17 15:18:39 2012 +0100 +++ b/src/HOL/Set.thy Mon Dec 17 17:19:21 2012 +0100 @@ -18,26 +18,26 @@ notation member ("op :") and - member ("(_/ : _)" [50, 51] 50) + member ("(_/ : _)" [51, 51] 50) abbreviation not_member where "not_member x A \ ~ (x : A)" -- "non-membership" notation not_member ("op ~:") and - not_member ("(_/ ~: _)" [50, 51] 50) + not_member ("(_/ ~: _)" [51, 51] 50) notation (xsymbols) member ("op \") and - member ("(_/ \ _)" [50, 51] 50) and + member ("(_/ \ _)" [51, 51] 50) and not_member ("op \") and - not_member ("(_/ \ _)" [50, 51] 50) + not_member ("(_/ \ _)" [51, 51] 50) notation (HTML output) member ("op \") and - member ("(_/ \ _)" [50, 51] 50) and + member ("(_/ \ _)" [51, 51] 50) and not_member ("op \") and - not_member ("(_/ \ _)" [50, 51] 50) + not_member ("(_/ \ _)" [51, 51] 50) text {* Set comprehensions *} @@ -156,21 +156,21 @@ notation (output) subset ("op <") and - subset ("(_/ < _)" [50, 51] 50) and + subset ("(_/ < _)" [51, 51] 50) and subset_eq ("op <=") and - subset_eq ("(_/ <= _)" [50, 51] 50) + subset_eq ("(_/ <= _)" [51, 51] 50) notation (xsymbols) subset ("op \") and - subset ("(_/ \ _)" [50, 51] 50) and + subset ("(_/ \ _)" [51, 51] 50) and subset_eq ("op \") and - subset_eq ("(_/ \ _)" [50, 51] 50) + subset_eq ("(_/ \ _)" [51, 51] 50) notation (HTML output) subset ("op \") and - subset ("(_/ \ _)" [50, 51] 50) and + subset ("(_/ \ _)" [51, 51] 50) and subset_eq ("op \") and - subset_eq ("(_/ \ _)" [50, 51] 50) + subset_eq ("(_/ \ _)" [51, 51] 50) abbreviation (input) supset :: "'a set \ 'a set \ bool" where @@ -182,9 +182,9 @@ notation (xsymbols) supset ("op \") and - supset ("(_/ \ _)" [50, 51] 50) and + supset ("(_/ \ _)" [51, 51] 50) and supset_eq ("op \") and - supset_eq ("(_/ \ _)" [50, 51] 50) + supset_eq ("(_/ \ _)" [51, 51] 50) definition Ball :: "'a set \ ('a \ bool) \ bool" where "Ball A P \ (\x. x \ A \ P x)" -- "bounded universal quantifiers"