# HG changeset patch # User wenzelm # Date 925920836 -7200 # Node ID fc06a79e1f09bf6350cdbfa0950327aeb9f76d04 # Parent fe2f5024f89e3fe78c5aeea8e3dba7a3b24f76f4 improved Makefile; diff -r fe2f5024f89e -r fc06a79e1f09 doc-src/ZF/Makefile --- a/doc-src/ZF/Makefile Wed May 05 18:08:01 1999 +0200 +++ b/doc-src/ZF/Makefile Wed May 05 18:13:56 1999 +0200 @@ -1,34 +1,29 @@ -# $Id$ -######################################################################### -# # -# Makefile for the report "Isabelle's Logics: FOL and ZF" # -# # -######################################################################### +# +# $Id$ +# + +## targets + +default: dvi +dist: dvi -FILES = logics-ZF.tex ../Logics/syntax.tex FOL.tex ZF.tex\ - ../rail.sty ../proof.sty ../iman.sty ../extra.sty +## dependencies + +include ../Makefile.in + +NAME = logics-ZF +FILES = logics-ZF.tex ../Logics/syntax.tex FOL.tex ZF.tex \ + ../rail.sty ../proof.sty ../iman.sty ../extra.sty + +dvi: $(NAME).dvi -logics-ZF.dvi.gz: $(FILES) - test -r isabelle_zf.eps || ln -s ../gfx/isabelle_zf.eps . - -rm logics-ZF.dvi* - latex logics-ZF - rail logics-ZF - bibtex logics-ZF - latex logics-ZF - latex logics-ZF - ../sedindex logics-ZF - latex logics-ZF - gzip -f logics-ZF.dvi - -dist: $(FILES) - test -r isabelle_zf.eps || ln -s ../gfx/isabelle_zf.eps . - -rm logics-ZF.dvi* - latex logics-ZF - latex logics-ZF - ../sedindex logics-ZF - latex logics-ZF - -clean: - @rm *.aux *.log *.toc *.idx *.rai - +$(NAME).dvi: $(FILES) isabelle_zf.eps + touch $(NAME).ind + $(LATEX) $(NAME) + $(RAIL) $(NAME) + $(BIBTEX) $(NAME) + $(LATEX) $(NAME) + $(LATEX) $(NAME) + $(SEDINDEX) $(NAME) + $(LATEX) $(NAME) diff -r fe2f5024f89e -r fc06a79e1f09 doc-src/ZF/logics-ZF.bbl --- a/doc-src/ZF/logics-ZF.bbl Wed May 05 18:08:01 1999 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,123 +0,0 @@ -\begin{thebibliography}{10} - -\bibitem{abrial93} -J.~R. Abrial and G.~Laffitte. -\newblock Towards the mechanization of the proofs of some classical theorems of - set theory. -\newblock preprint, February 1993. - -\bibitem{basin91} -David Basin and Matt Kaufmann. -\newblock The {Boyer-Moore} prover and {Nuprl}: An experimental comparison. -\newblock In {G\'erard} Huet and Gordon Plotkin, editors, {\em Logical - Frameworks}, pages 89--119. Cambridge University Press, 1991. - -\bibitem{boyer86} -Robert Boyer, Ewing Lusk, William McCune, Ross Overbeek, Mark Stickel, and - Lawrence Wos. -\newblock Set theory in first-order logic: Clauses for {G\"{o}del's} axioms. -\newblock {\em J. Auto. Reas.}, 2(3):287--327, 1986. - -\bibitem{camilleri92} -J.~Camilleri and T.~F. Melham. -\newblock Reasoning with inductively defined relations in the {HOL} theorem - prover. -\newblock Technical Report 265, Computer Laboratory, University of Cambridge, - August 1992. - -\bibitem{davey&priestley} -B.~A. Davey and H.~A. Priestley. -\newblock {\em Introduction to Lattices and Order}. -\newblock Cambridge University Press, 1990. - -\bibitem{devlin79} -Keith~J. Devlin. -\newblock {\em Fundamentals of Contemporary Set Theory}. -\newblock Springer, 1979. - -\bibitem{dummett} -Michael Dummett. -\newblock {\em Elements of Intuitionism}. -\newblock Oxford University Press, 1977. - -\bibitem{dyckhoff} -Roy Dyckhoff. -\newblock Contraction-free sequent calculi for intuitionistic logic. -\newblock {\em J. Symb. Logic}, 57(3):795--807, 1992. - -\bibitem{halmos60} -Paul~R. Halmos. -\newblock {\em Naive Set Theory}. -\newblock Van Nostrand, 1960. - -\bibitem{kunen80} -Kenneth Kunen. -\newblock {\em Set Theory: An Introduction to Independence Proofs}. -\newblock North-Holland, 1980. - -\bibitem{noel} -Philippe No{\"e}l. -\newblock Experimenting with {Isabelle} in {ZF} set theory. -\newblock {\em J. Auto. Reas.}, 10(1):15--58, 1993. - -\bibitem{paulin-tlca} -Christine Paulin-Mohring. -\newblock Inductive definitions in the system {Coq}: Rules and properties. -\newblock In M.~Bezem and J.F. Groote, editors, {\em Typed Lambda Calculi and - Applications}, LNCS 664, pages 328--345. Springer, 1993. - -\bibitem{paulson87} -Lawrence~C. Paulson. -\newblock {\em Logic and Computation: Interactive proof with Cambridge LCF}. -\newblock Cambridge University Press, 1987. - -\bibitem{paulson-set-I} -Lawrence~C. Paulson. -\newblock Set theory for verification: {I}. {From} foundations to functions. -\newblock {\em J. Auto. Reas.}, 11(3):353--389, 1993. - -\bibitem{paulson-CADE} -Lawrence~C. Paulson. -\newblock A fixedpoint approach to implementing (co)inductive definitions. -\newblock In Alan Bundy, editor, {\em Automated Deduction --- {CADE}-12 - International Conference}, LNAI 814, pages 148--161. Springer, 1994. - -\bibitem{paulson-set-II} -Lawrence~C. Paulson. -\newblock Set theory for verification: {II}. {Induction} and recursion. -\newblock {\em J. Auto. Reas.}, 15(2):167--215, 1995. - -\bibitem{paulson-generic} -Lawrence~C. Paulson. -\newblock Generic automatic proof tools. -\newblock In Robert Veroff, editor, {\em Automated Reasoning and its - Applications: Essays in Honor of {Larry Wos}}, chapter~3. MIT Press, 1997. - -\bibitem{paulson-mscs} -Lawrence~C. Paulson. -\newblock Final coalgebras as greatest fixed points in zf set theory. -\newblock {\em Mathematical Structures in Computer Science}, 9, 1999. -\newblock in press. - -\bibitem{quaife92} -Art Quaife. -\newblock Automated deduction in {von Neumann-Bernays-G\"{o}del} set theory. -\newblock {\em J. Auto. Reas.}, 8(1):91--147, 1992. - -\bibitem{suppes72} -Patrick Suppes. -\newblock {\em Axiomatic Set Theory}. -\newblock Dover, 1972. - -\bibitem{principia} -A.~N. Whitehead and B.~Russell. -\newblock {\em Principia Mathematica}. -\newblock Cambridge University Press, 1962. -\newblock Paperback edition to *56, abridged from the 2nd edition (1927). - -\bibitem{winskel93} -Glynn Winskel. -\newblock {\em The Formal Semantics of Programming Languages}. -\newblock MIT Press, 1993. - -\end{thebibliography} diff -r fe2f5024f89e -r fc06a79e1f09 doc-src/ZF/logics-ZF.ind --- a/doc-src/ZF/logics-ZF.ind Wed May 05 18:08:01 1999 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,591 +0,0 @@ -\begin{theindex} - - \item {\tt\#*} symbol, 45 - \item {\tt\#+} symbol, 45 - \item {\tt\#-} symbol, 45 - \item {\tt\&} symbol, 5 - \item {\tt *} symbol, 25 - \item {\tt +} symbol, 41 - \item {\tt -} symbol, 24 - \item {\tt -->} symbol, 5 - \item {\tt ->} symbol, 25 - \item {\tt -``} symbol, 24 - \item {\tt :} symbol, 24 - \item {\tt <->} symbol, 5 - \item {\tt <=} symbol, 24 - \item {\tt =} symbol, 5 - \item {\tt `} symbol, 24 - \item {\tt ``} symbol, 24 - \item {\tt |} symbol, 5 - - \indexspace - - \item {\tt 0} constant, 24 - - \indexspace - - \item {\tt add_0} theorem, 45 - \item {\tt add_mult_dist} theorem, 45 - \item {\tt add_succ} theorem, 45 - \item {\tt AddTCs}, \bold{49} - \item {\tt addTCs}, \bold{49} - \item {\tt ALL} symbol, 5, 25 - \item {\tt All} constant, 5 - \item {\tt all_dupE} theorem, 3, 7 - \item {\tt all_impE} theorem, 7 - \item {\tt allE} theorem, 3, 7 - \item {\tt allI} theorem, 6 - \item {\tt and_def} theorem, 41 - \item {\tt apply_def} theorem, 29 - \item {\tt apply_equality} theorem, 38, 39, 70, 71 - \item {\tt apply_equality2} theorem, 38 - \item {\tt apply_iff} theorem, 38 - \item {\tt apply_Pair} theorem, 38, 71 - \item {\tt apply_type} theorem, 38 - \item {\tt Arith} theory, 42 - \item assumptions - \subitem contradictory, 14 - - \indexspace - - \item {\tt Ball} constant, 24, 27 - \item {\tt ball_cong} theorem, 31, 32 - \item {\tt Ball_def} theorem, 28 - \item {\tt ballE} theorem, 31, 32 - \item {\tt ballI} theorem, 31 - \item {\tt beta} theorem, 38, 39 - \item {\tt Bex} constant, 24, 27 - \item {\tt bex_cong} theorem, 31, 32 - \item {\tt Bex_def} theorem, 28 - \item {\tt bexCI} theorem, 31 - \item {\tt bexE} theorem, 31 - \item {\tt bexI} theorem, 31 - \item {\tt bij} constant, 44 - \item {\tt bij_converse_bij} theorem, 44 - \item {\tt bij_def} theorem, 44 - \item {\tt bij_disjoint_Un} theorem, 44 - \item {\tt Blast_tac}, 15, 68, 69 - \item {\tt blast_tac}, 16, 17, 19 - \item {\tt bnd_mono_def} theorem, 43 - \item {\tt Bool} theory, 39 - \item {\tt bool_0I} theorem, 41 - \item {\tt bool_1I} theorem, 41 - \item {\tt bool_def} theorem, 41 - \item {\tt boolE} theorem, 41 - \item {\tt bspec} theorem, 31 - - \indexspace - - \item {\tt case} constant, 41 - \item {\tt case_def} theorem, 41 - \item {\tt case_Inl} theorem, 41 - \item {\tt case_Inr} theorem, 41 - \item {\tt coinduct} theorem, 43 - \item {\tt coinductive}, 58--63 - \item {\tt Collect} constant, 24, 25, 30 - \item {\tt Collect_def} theorem, 28 - \item {\tt Collect_subset} theorem, 35 - \item {\tt CollectD1} theorem, 32, 33 - \item {\tt CollectD2} theorem, 32, 33 - \item {\tt CollectE} theorem, 32, 33 - \item {\tt CollectI} theorem, 33 - \item {\tt comp_assoc} theorem, 44 - \item {\tt comp_bij} theorem, 44 - \item {\tt comp_def} theorem, 44 - \item {\tt comp_func} theorem, 44 - \item {\tt comp_func_apply} theorem, 44 - \item {\tt comp_inj} theorem, 44 - \item {\tt comp_surj} theorem, 44 - \item {\tt comp_type} theorem, 44 - \item {\tt cond_0} theorem, 41 - \item {\tt cond_1} theorem, 41 - \item {\tt cond_def} theorem, 41 - \item congruence rules, 32 - \item {\tt conj_cong}, 4 - \item {\tt conj_impE} theorem, 7, 8 - \item {\tt conjE} theorem, 7 - \item {\tt conjI} theorem, 6 - \item {\tt conjunct1} theorem, 6 - \item {\tt conjunct2} theorem, 6 - \item {\tt cons} constant, 23, 24 - \item {\tt cons_def} theorem, 29 - \item {\tt Cons_iff} theorem, 47 - \item {\tt consCI} theorem, 34 - \item {\tt consE} theorem, 34 - \item {\tt ConsI} theorem, 47 - \item {\tt consI1} theorem, 34 - \item {\tt consI2} theorem, 34 - \item {\tt converse} constant, 24, 37 - \item {\tt converse_def} theorem, 29 - \item {\tt cut_facts_tac}, 17 - - \indexspace - - \item {\tt datatype}, 49--56 - \item {\tt DelTCs}, \bold{49} - \item {\tt delTCs}, \bold{49} - \item {\tt Diff_cancel} theorem, 40 - \item {\tt Diff_contains} theorem, 35 - \item {\tt Diff_def} theorem, 28 - \item {\tt Diff_disjoint} theorem, 40 - \item {\tt Diff_Int} theorem, 40 - \item {\tt Diff_partition} theorem, 40 - \item {\tt Diff_subset} theorem, 35 - \item {\tt Diff_Un} theorem, 40 - \item {\tt DiffD1} theorem, 34 - \item {\tt DiffD2} theorem, 34 - \item {\tt DiffE} theorem, 34 - \item {\tt DiffI} theorem, 34 - \item {\tt disj_impE} theorem, 7, 8, 12 - \item {\tt disjCI} theorem, 9 - \item {\tt disjE} theorem, 6 - \item {\tt disjI1} theorem, 6 - \item {\tt disjI2} theorem, 6 - \item {\tt div} symbol, 45 - \item {\tt div_def} theorem, 45 - \item {\tt domain} constant, 24, 37 - \item {\tt domain_def} theorem, 29 - \item {\tt domain_of_fun} theorem, 38 - \item {\tt domain_subset} theorem, 37 - \item {\tt domain_type} theorem, 38 - \item {\tt domainE} theorem, 37 - \item {\tt domainI} theorem, 37 - \item {\tt double_complement} theorem, 40 - \item {\tt dresolve_tac}, 67 - - \indexspace - - \item {\tt empty_subsetI} theorem, 31 - \item {\tt emptyE} theorem, 31 - \item {\tt eq_mp_tac}, \bold{8} - \item {\tt equalityD1} theorem, 31 - \item {\tt equalityD2} theorem, 31 - \item {\tt equalityE} theorem, 31 - \item {\tt equalityI} theorem, 31, 66 - \item {\tt equals0D} theorem, 31 - \item {\tt equals0I} theorem, 31 - \item {\tt eresolve_tac}, 14 - \item {\tt eta} theorem, 38, 39 - \item {\tt EX} symbol, 5, 25 - \item {\tt Ex} constant, 5 - \item {\tt EX!} symbol, 5 - \item {\tt ex/Term} theory, 51 - \item {\tt Ex1} constant, 5 - \item {\tt ex1_def} theorem, 6 - \item {\tt ex1E} theorem, 7 - \item {\tt ex1I} theorem, 7 - \item {\tt ex_impE} theorem, 7 - \item {\tt exCI} theorem, 9, 13 - \item {\tt excluded_middle} theorem, 9 - \item {\tt exE} theorem, 6 - \item {\tt exhaust_tac}, \bold{54} - \item {\tt exI} theorem, 6 - \item {\tt extension} theorem, 28 - - \indexspace - - \item {\tt False} constant, 5 - \item {\tt FalseE} theorem, 6 - \item {\tt field} constant, 24 - \item {\tt field_def} theorem, 29 - \item {\tt field_subset} theorem, 37 - \item {\tt fieldCI} theorem, 37 - \item {\tt fieldE} theorem, 37 - \item {\tt fieldI1} theorem, 37 - \item {\tt fieldI2} theorem, 37 - \item {\tt Fin.consI} theorem, 46 - \item {\tt Fin.emptyI} theorem, 46 - \item {\tt Fin_induct} theorem, 46 - \item {\tt Fin_mono} theorem, 46 - \item {\tt Fin_subset} theorem, 46 - \item {\tt Fin_UnI} theorem, 46 - \item {\tt Fin_UnionI} theorem, 46 - \item first-order logic, 3--21 - \item {\tt Fixedpt} theory, 42 - \item {\tt flat} constant, 47 - \item {\tt FOL} theory, 3, 9 - \item {\tt FOL_cs}, \bold{9}, 48 - \item {\tt FOL_ss}, \bold{4}, 48 - \item {\tt foundation} theorem, 28 - \item {\tt fst} constant, 24, 30 - \item {\tt fst_conv} theorem, 36 - \item {\tt fst_def} theorem, 29 - \item {\tt fun_disjoint_apply1} theorem, 38, 70 - \item {\tt fun_disjoint_apply2} theorem, 38 - \item {\tt fun_disjoint_Un} theorem, 38, 71 - \item {\tt fun_empty} theorem, 38 - \item {\tt fun_extension} theorem, 38, 39 - \item {\tt fun_is_rel} theorem, 38 - \item {\tt fun_single} theorem, 38 - \item function applications - \subitem in \ZF, 24 - - \indexspace - - \item {\tt gfp_def} theorem, 43 - \item {\tt gfp_least} theorem, 43 - \item {\tt gfp_mono} theorem, 43 - \item {\tt gfp_subset} theorem, 43 - \item {\tt gfp_Tarski} theorem, 43 - \item {\tt gfp_upperbound} theorem, 43 - \item {\tt Goalw}, 16, 17 - - \indexspace - - \item {\tt hyp_subst_tac}, 4 - - \indexspace - - \item {\textit {i}} type, 23 - \item {\tt id} constant, 44 - \item {\tt id_def} theorem, 44 - \item {\tt if} constant, 24 - \item {\tt if_def} theorem, 16, 28 - \item {\tt if_not_P} theorem, 34 - \item {\tt if_P} theorem, 34 - \item {\tt ifE} theorem, 17 - \item {\tt iff_def} theorem, 6 - \item {\tt iff_impE} theorem, 7 - \item {\tt iffCE} theorem, 9 - \item {\tt iffD1} theorem, 7 - \item {\tt iffD2} theorem, 7 - \item {\tt iffE} theorem, 7 - \item {\tt iffI} theorem, 7, 17 - \item {\tt ifI} theorem, 17 - \item {\tt IFOL} theory, 3 - \item {\tt IFOL_ss}, \bold{4} - \item {\tt image_def} theorem, 29 - \item {\tt imageE} theorem, 37 - \item {\tt imageI} theorem, 37 - \item {\tt imp_impE} theorem, 7, 12 - \item {\tt impCE} theorem, 9 - \item {\tt impE} theorem, 7, 8 - \item {\tt impI} theorem, 6 - \item {\tt in} symbol, 26 - \item {\tt induct} theorem, 43 - \item {\tt induct_tac}, \bold{53} - \item {\tt inductive}, 58--63 - \item {\tt Inf} constant, 24, 30 - \item {\tt infinity} theorem, 29 - \item {\tt inj} constant, 44 - \item {\tt inj_converse_inj} theorem, 44 - \item {\tt inj_def} theorem, 44 - \item {\tt Inl} constant, 41 - \item {\tt Inl_def} theorem, 41 - \item {\tt Inl_inject} theorem, 41 - \item {\tt Inl_neq_Inr} theorem, 41 - \item {\tt Inr} constant, 41 - \item {\tt Inr_def} theorem, 41 - \item {\tt Inr_inject} theorem, 41 - \item {\tt INT} symbol, 25, 27 - \item {\tt Int} symbol, 24 - \item {\tt Int_absorb} theorem, 40 - \item {\tt Int_assoc} theorem, 40 - \item {\tt Int_commute} theorem, 40 - \item {\tt Int_def} theorem, 28 - \item {\tt INT_E} theorem, 33 - \item {\tt Int_greatest} theorem, 35, 66, 68 - \item {\tt INT_I} theorem, 33 - \item {\tt Int_lower1} theorem, 35, 67 - \item {\tt Int_lower2} theorem, 35, 67 - \item {\tt Int_Un_distrib} theorem, 40 - \item {\tt Int_Union_RepFun} theorem, 40 - \item {\tt IntD1} theorem, 34 - \item {\tt IntD2} theorem, 34 - \item {\tt IntE} theorem, 34, 67 - \item {\tt Inter} constant, 24 - \item {\tt Inter_def} theorem, 28 - \item {\tt Inter_greatest} theorem, 35 - \item {\tt Inter_lower} theorem, 35 - \item {\tt Inter_Un_distrib} theorem, 40 - \item {\tt InterD} theorem, 33 - \item {\tt InterE} theorem, 33 - \item {\tt InterI} theorem, 32, 33 - \item {\tt IntI} theorem, 34 - \item {\tt IntPr.best_tac}, \bold{9} - \item {\tt IntPr.fast_tac}, \bold{8}, 11 - \item {\tt IntPr.inst_step_tac}, \bold{8} - \item {\tt IntPr.safe_step_tac}, \bold{8} - \item {\tt IntPr.safe_tac}, \bold{8} - \item {\tt IntPr.step_tac}, \bold{8} - - \indexspace - - \item {\tt lam} symbol, 25, 27 - \item {\tt lam_def} theorem, 29 - \item {\tt lam_type} theorem, 38 - \item {\tt Lambda} constant, 24, 27 - \item $\lambda$-abstractions - \subitem in \ZF, 25 - \item {\tt lamE} theorem, 38, 39 - \item {\tt lamI} theorem, 38, 39 - \item {\tt le_cs}, \bold{48} - \item {\tt left_comp_id} theorem, 44 - \item {\tt left_comp_inverse} theorem, 44 - \item {\tt left_inverse} theorem, 44 - \item {\tt length} constant, 47 - \item {\tt Let} constant, 23, 24 - \item {\tt let} symbol, 26 - \item {\tt Let_def} theorem, 23, 28 - \item {\tt lfp_def} theorem, 43 - \item {\tt lfp_greatest} theorem, 43 - \item {\tt lfp_lowerbound} theorem, 43 - \item {\tt lfp_mono} theorem, 43 - \item {\tt lfp_subset} theorem, 43 - \item {\tt lfp_Tarski} theorem, 43 - \item {\tt list} constant, 47 - \item {\tt List.induct} theorem, 47 - \item {\tt list_case} constant, 47 - \item {\tt list_mono} theorem, 47 - \item {\tt logic} class, 3 - - \indexspace - - \item {\tt map} constant, 47 - \item {\tt map_app_distrib} theorem, 47 - \item {\tt map_compose} theorem, 47 - \item {\tt map_flat} theorem, 47 - \item {\tt map_ident} theorem, 47 - \item {\tt map_type} theorem, 47 - \item {\tt mem_asym} theorem, 34, 35 - \item {\tt mem_irrefl} theorem, 34 - \item {\tt mk_cases}, 56, 63 - \item {\tt mod} symbol, 45 - \item {\tt mod_def} theorem, 45 - \item {\tt mod_quo_equality} theorem, 45 - \item {\tt mp} theorem, 6 - \item {\tt mp_tac}, \bold{8} - \item {\tt mult_0} theorem, 45 - \item {\tt mult_assoc} theorem, 45 - \item {\tt mult_commute} theorem, 45 - \item {\tt mult_succ} theorem, 45 - \item {\tt mult_type} theorem, 45 - - \indexspace - - \item {\tt Nat} theory, 42 - \item {\tt nat} constant, 45 - \item {\tt nat_0I} theorem, 45 - \item {\tt nat_case} constant, 45 - \item {\tt nat_case_0} theorem, 45 - \item {\tt nat_case_def} theorem, 45 - \item {\tt nat_case_succ} theorem, 45 - \item {\tt nat_def} theorem, 45 - \item {\tt nat_induct} theorem, 45 - \item {\tt nat_succI} theorem, 45 - \item {\tt Nil_Cons_iff} theorem, 47 - \item {\tt NilI} theorem, 47 - \item {\tt Not} constant, 5 - \item {\tt not_def} theorem, 6, 41 - \item {\tt not_impE} theorem, 7 - \item {\tt notE} theorem, 7, 8 - \item {\tt notI} theorem, 7 - \item {\tt notnotD} theorem, 9 - - \indexspace - - \item {\tt O} symbol, 44 - \item {\textit {o}} type, 3 - \item {\tt or_def} theorem, 41 - - \indexspace - - \item {\tt Pair} constant, 24, 25 - \item {\tt Pair_def} theorem, 29 - \item {\tt Pair_inject} theorem, 36 - \item {\tt Pair_inject1} theorem, 36 - \item {\tt Pair_inject2} theorem, 36 - \item {\tt Pair_neq_0} theorem, 36 - \item {\tt pairing} theorem, 33 - \item {\tt Perm} theory, 42 - \item {\tt Pi} constant, 24, 27, 39 - \item {\tt Pi_def} theorem, 29 - \item {\tt Pi_type} theorem, 38, 39 - \item {\tt Pow} constant, 24 - \item {\tt Pow_iff} theorem, 28 - \item {\tt Pow_mono} theorem, 66 - \item {\tt PowD} theorem, 31, 67 - \item {\tt PowI} theorem, 31, 67 - \item {\tt primrec}, 57--58 - \item {\tt PrimReplace} constant, 24, 30 - \item priorities, 1 - \item {\tt PROD} symbol, 25, 27 - \item {\tt prop_cs}, \bold{9} - - \indexspace - - \item {\tt qcase_def} theorem, 42 - \item {\tt qconverse} constant, 39 - \item {\tt qconverse_def} theorem, 42 - \item {\tt qed_spec_mp}, 55 - \item {\tt qfsplit_def} theorem, 42 - \item {\tt QInl_def} theorem, 42 - \item {\tt QInr_def} theorem, 42 - \item {\tt QPair} theory, 39 - \item {\tt QPair_def} theorem, 42 - \item {\tt QSigma} constant, 39 - \item {\tt QSigma_def} theorem, 42 - \item {\tt qsplit} constant, 39 - \item {\tt qsplit_def} theorem, 42 - \item {\tt qsum_def} theorem, 42 - \item {\tt QUniv} theory, 46 - - \indexspace - - \item {\tt range} constant, 24 - \item {\tt range_def} theorem, 29 - \item {\tt range_of_fun} theorem, 38, 39 - \item {\tt range_subset} theorem, 37 - \item {\tt range_type} theorem, 38 - \item {\tt rangeE} theorem, 37 - \item {\tt rangeI} theorem, 37 - \item {\tt rank} constant, 63 - \item recursion - \subitem primitive, 57--58 - \item recursive functions, \see{recursion}{57} - \item {\tt refl} theorem, 6 - \item {\tt RepFun} constant, 24, 27, 30, 32 - \item {\tt RepFun_def} theorem, 28 - \item {\tt RepFunE} theorem, 33 - \item {\tt RepFunI} theorem, 33 - \item {\tt Replace} constant, 24, 25, 30, 32 - \item {\tt Replace_def} theorem, 28 - \item {\tt ReplaceE} theorem, 33 - \item {\tt ReplaceI} theorem, 33 - \item {\tt replacement} theorem, 28 - \item {\tt restrict} constant, 24, 30 - \item {\tt restrict} theorem, 38 - \item {\tt restrict_bij} theorem, 44 - \item {\tt restrict_def} theorem, 29 - \item {\tt restrict_type} theorem, 38 - \item {\tt rev} constant, 47 - \item {\tt rew_tac}, 17 - \item {\tt rewrite_rule}, 17 - \item {\tt right_comp_id} theorem, 44 - \item {\tt right_comp_inverse} theorem, 44 - \item {\tt right_inverse} theorem, 44 - - \indexspace - - \item {\tt separation} theorem, 33 - \item set theory, 22--71 - \item {\tt Sigma} constant, 24, 27, 30, 36 - \item {\tt Sigma_def} theorem, 29 - \item {\tt SigmaE} theorem, 36 - \item {\tt SigmaE2} theorem, 36 - \item {\tt SigmaI} theorem, 36 - \item simplification - \subitem of conjunctions, 4 - \item {\tt singletonE} theorem, 34 - \item {\tt singletonI} theorem, 34 - \item {\tt snd} constant, 24, 30 - \item {\tt snd_conv} theorem, 36 - \item {\tt snd_def} theorem, 29 - \item {\tt spec} theorem, 6 - \item {\tt split} constant, 24, 30 - \item {\tt split} theorem, 36 - \item {\tt split_def} theorem, 29 - \item {\tt ssubst} theorem, 7 - \item {\tt Step_tac}, 20 - \item {\tt step_tac}, 21 - \item {\tt subset_def} theorem, 28 - \item {\tt subset_refl} theorem, 31 - \item {\tt subset_trans} theorem, 31 - \item {\tt subsetCE} theorem, 31 - \item {\tt subsetD} theorem, 31, 69 - \item {\tt subsetI} theorem, 31, 67, 68 - \item {\tt subst} theorem, 6 - \item {\tt succ} constant, 24, 30 - \item {\tt succ_def} theorem, 29 - \item {\tt succ_inject} theorem, 34 - \item {\tt succ_neq_0} theorem, 34 - \item {\tt succCI} theorem, 34 - \item {\tt succE} theorem, 34 - \item {\tt succI1} theorem, 34 - \item {\tt succI2} theorem, 34 - \item {\tt SUM} symbol, 25, 27 - \item {\tt Sum} theory, 39 - \item {\tt sum_def} theorem, 41 - \item {\tt sum_InlI} theorem, 41 - \item {\tt sum_InrI} theorem, 41 - \item {\tt SUM_Int_distrib1} theorem, 40 - \item {\tt SUM_Int_distrib2} theorem, 40 - \item {\tt SUM_Un_distrib1} theorem, 40 - \item {\tt SUM_Un_distrib2} theorem, 40 - \item {\tt sumE2} theorem, 41 - \item {\tt surj} constant, 44 - \item {\tt surj_def} theorem, 44 - \item {\tt swap} theorem, 9 - \item {\tt swap_res_tac}, 14 - \item {\tt sym} theorem, 7 - - \indexspace - - \item {\tt tcset}, \bold{49} - \item {\tt term} class, 3 - \item {\tt THE} symbol, 25, 27, 35 - \item {\tt The} constant, 24, 27, 30 - \item {\tt the_def} theorem, 28 - \item {\tt the_equality} theorem, 34, 35 - \item {\tt theI} theorem, 34, 35 - \item {\tt trace_induct}, \bold{60} - \item {\tt trans} theorem, 7 - \item {\tt True} constant, 5 - \item {\tt True_def} theorem, 6 - \item {\tt TrueI} theorem, 7 - \item {\tt Trueprop} constant, 5 - \item type-checking tactics, 48 - \item {\tt type_solver_tac}, \bold{49} - \item {\tt Typecheck_tac}, 49, \bold{49} - \item {\tt typecheck_tac}, \bold{49} - - \indexspace - - \item {\tt UN} symbol, 25, 27 - \item {\tt Un} symbol, 24 - \item {\tt Un_absorb} theorem, 40 - \item {\tt Un_assoc} theorem, 40 - \item {\tt Un_commute} theorem, 40 - \item {\tt Un_def} theorem, 28 - \item {\tt UN_E} theorem, 33 - \item {\tt UN_I} theorem, 33 - \item {\tt Un_Int_distrib} theorem, 40 - \item {\tt Un_Inter_RepFun} theorem, 40 - \item {\tt Un_least} theorem, 35 - \item {\tt Un_upper1} theorem, 35 - \item {\tt Un_upper2} theorem, 35 - \item {\tt UnCI} theorem, 32, 34 - \item {\tt UnE} theorem, 34 - \item {\tt UnI1} theorem, 32, 34, 70 - \item {\tt UnI2} theorem, 32, 34 - \item {\tt Union} constant, 24 - \item {\tt Union_iff} theorem, 28 - \item {\tt Union_least} theorem, 35 - \item {\tt Union_Un_distrib} theorem, 40 - \item {\tt Union_upper} theorem, 35 - \item {\tt UnionE} theorem, 33, 69 - \item {\tt UnionI} theorem, 33, 69 - \item {\tt Univ} theory, 42 - \item {\tt Upair} constant, 23, 24, 30 - \item {\tt Upair_def} theorem, 28 - \item {\tt UpairE} theorem, 33 - \item {\tt UpairI1} theorem, 33 - \item {\tt UpairI2} theorem, 33 - - \indexspace - - \item {\tt vimage_def} theorem, 29 - \item {\tt vimageE} theorem, 37 - \item {\tt vimageI} theorem, 37 - - \indexspace - - \item {\tt xor_def} theorem, 41 - - \indexspace - - \item {\tt ZF} theory, 22 - \item {\tt ZF_cs}, \bold{48} - \item {\tt ZF_ss}, \bold{48} - -\end{theindex} diff -r fe2f5024f89e -r fc06a79e1f09 doc-src/ZF/logics-ZF.rao --- a/doc-src/ZF/logics-ZF.rao Wed May 05 18:08:01 1999 +0200 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,54 +0,0 @@ -% This file was generated by 'rail' from 'logics-ZF.rai' -\rail@i {1}{ datatype : ( 'datatype' | 'codatatype' ) datadecls; \par datadecls: ( '"' id arglist '"' '=' (constructor + '|') ) + 'and' ; constructor : name ( () | consargs ) ( () | ( '(' mixfix ')' ) ) ; consargs : '(' ('"' var ':' term '"' + ',') ')' ; } -\rail@o {1}{ -\rail@begin{2}{datatype} -\rail@bar -\rail@term{datatype}[] -\rail@nextbar{1} -\rail@term{codatatype}[] -\rail@endbar -\rail@nont{datadecls}[] -\rail@end -\rail@begin{3}{datadecls} -\rail@plus -\rail@term{"}[] -\rail@nont{id}[] -\rail@nont{arglist}[] -\rail@term{"}[] -\rail@term{=}[] -\rail@plus -\rail@nont{constructor}[] -\rail@nextplus{1} -\rail@cterm{|}[] -\rail@endplus -\rail@nextplus{2} -\rail@cterm{and}[] -\rail@endplus -\rail@end -\rail@begin{2}{constructor} -\rail@nont{name}[] -\rail@bar -\rail@nextbar{1} -\rail@nont{consargs}[] -\rail@endbar -\rail@bar -\rail@nextbar{1} -\rail@term{(}[] -\rail@nont{mixfix}[] -\rail@term{)}[] -\rail@endbar -\rail@end -\rail@begin{2}{consargs} -\rail@term{(}[] -\rail@plus -\rail@term{"}[] -\rail@nont{var}[] -\rail@term{:}[] -\rail@nont{term}[] -\rail@term{"}[] -\rail@nextplus{1} -\rail@cterm{,}[] -\rail@endplus -\rail@term{)}[] -\rail@end -}