# HG changeset patch # User chaieb # Date 1242145970 -3600 # Node ID fc654c95c29e362b6240af01069a0e46891e76dd # Parent 2532bb2d65c7cddbd03d2fdfd4fbe9bdd61fac8b A generic arithmetic prover based on Positivstellensatz certificates --- also implements Fourrier-Motzkin elimination as a special case Fourrier-Motzkin elimination diff -r 2532bb2d65c7 -r fc654c95c29e src/HOL/Library/positivstellensatz.ML --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/HOL/Library/positivstellensatz.ML Tue May 12 17:32:50 2009 +0100 @@ -0,0 +1,787 @@ +(* Title: Library/positivstellensatz + Author: Amine Chaieb, University of Cambridge + Description: A generic arithmetic prover based on Positivstellensatz certificates --- + also implements Fourrier-Motzkin elimination as a special case Fourrier-Motzkin elimination. +*) + +(* A functor for finite mappings based on Tables *) +signature FUNC = +sig + type 'a T + type key + val apply : 'a T -> key -> 'a + val applyd :'a T -> (key -> 'a) -> key -> 'a + val combine : ('a -> 'a -> 'a) -> ('a -> bool) -> 'a T -> 'a T -> 'a T + val defined : 'a T -> key -> bool + val dom : 'a T -> key list + val fold : (key * 'a -> 'b -> 'b) -> 'a T -> 'b -> 'b + val fold_rev : (key * 'a -> 'b -> 'b) -> 'a T -> 'b -> 'b + val graph : 'a T -> (key * 'a) list + val is_undefined : 'a T -> bool + val mapf : ('a -> 'b) -> 'a T -> 'b T + val tryapplyd : 'a T -> key -> 'a -> 'a + val undefine : key -> 'a T -> 'a T + val undefined : 'a T + val update : key * 'a -> 'a T -> 'a T + val updatep : (key * 'a -> bool) -> key * 'a -> 'a T -> 'a T + val choose : 'a T -> key * 'a + val onefunc : key * 'a -> 'a T + val get_first: (key*'a -> 'a option) -> 'a T -> 'a option +end; + +functor FuncFun(Key: KEY) : FUNC= +struct + +type key = Key.key; +structure Tab = TableFun(Key); +type 'a T = 'a Tab.table; + +val undefined = Tab.empty; +val is_undefined = Tab.is_empty; +val mapf = Tab.map; +val fold = Tab.fold; +val fold_rev = Tab.fold_rev; +val graph = Tab.dest; +fun dom a = sort Key.ord (Tab.keys a); +fun applyd f d x = case Tab.lookup f x of + SOME y => y + | NONE => d x; + +fun apply f x = applyd f (fn _ => raise Tab.UNDEF x) x; +fun tryapplyd f a d = applyd f (K d) a; +val defined = Tab.defined; +fun undefine x t = (Tab.delete x t handle UNDEF => t); +val update = Tab.update; +fun updatep p (k,v) t = if p (k, v) then t else update (k,v) t +fun combine f z a b = + let + fun h (k,v) t = case Tab.lookup t k of + NONE => Tab.update (k,v) t + | SOME v' => let val w = f v v' + in if z w then Tab.delete k t else Tab.update (k,w) t end; + in Tab.fold h a b end; + +fun choose f = case Tab.min_key f of + SOME k => (k,valOf (Tab.lookup f k)) + | NONE => error "FuncFun.choose : Completely undefined function" + +fun onefunc kv = update kv undefined + +local +fun find f (k,v) NONE = f (k,v) + | find f (k,v) r = r +in +fun get_first f t = fold (find f) t NONE +end +end; + +structure Intfunc = FuncFun(type key = int val ord = int_ord); +structure Symfunc = FuncFun(type key = string val ord = fast_string_ord); +structure Termfunc = FuncFun(type key = term val ord = TermOrd.fast_term_ord); +structure Ctermfunc = FuncFun(type key = cterm val ord = (fn (s,t) => TermOrd.fast_term_ord(term_of s, term_of t))); + +structure Ratfunc = FuncFun(type key = Rat.rat val ord = Rat.ord); + (* Some conversions-related stuff which has been forbidden entrance into Pure/conv.ML*) +structure Conv2 = +struct + open Conv +fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms) +fun is_comb t = case (term_of t) of _$_ => true | _ => false; +fun is_abs t = case (term_of t) of Abs _ => true | _ => false; + +fun end_itlist f l = + case l of + [] => error "end_itlist" + | [x] => x + | (h::t) => f h (end_itlist f t); + + fun absc cv ct = case term_of ct of + Abs (v,_, _) => + let val (x,t) = Thm.dest_abs (SOME v) ct + in Thm.abstract_rule ((fst o dest_Free o term_of) x) x (cv t) + end + | _ => all_conv ct; + +fun cache_conv conv = + let + val tab = ref Termtab.empty + fun cconv t = + case Termtab.lookup (!tab) (term_of t) of + SOME th => th + | NONE => let val th = conv t + in ((tab := Termtab.insert Thm.eq_thm (term_of t, th) (!tab)); th) end + in cconv end; +fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct')) + handle CTERM _ => false; + +local + fun thenqc conv1 conv2 tm = + case try conv1 tm of + SOME th1 => (case try conv2 (Thm.rhs_of th1) of SOME th2 => Thm.transitive th1 th2 | NONE => th1) + | NONE => conv2 tm + + fun thencqc conv1 conv2 tm = + let val th1 = conv1 tm + in (case try conv2 (Thm.rhs_of th1) of SOME th2 => Thm.transitive th1 th2 | NONE => th1) + end + fun comb_qconv conv tm = + let val (l,r) = Thm.dest_comb tm + in (case try conv l of + SOME th1 => (case try conv r of SOME th2 => Thm.combination th1 th2 + | NONE => Drule.fun_cong_rule th1 r) + | NONE => Drule.arg_cong_rule l (conv r)) + end + fun repeatqc conv tm = thencqc conv (repeatqc conv) tm + fun sub_qconv conv tm = if is_abs tm then absc conv tm else comb_qconv conv tm + fun once_depth_qconv conv tm = + (conv else_conv (sub_qconv (once_depth_qconv conv))) tm + fun depth_qconv conv tm = + thenqc (sub_qconv (depth_qconv conv)) + (repeatqc conv) tm + fun redepth_qconv conv tm = + thenqc (sub_qconv (redepth_qconv conv)) + (thencqc conv (redepth_qconv conv)) tm + fun top_depth_qconv conv tm = + thenqc (repeatqc conv) + (thencqc (sub_qconv (top_depth_qconv conv)) + (thencqc conv (top_depth_qconv conv))) tm + fun top_sweep_qconv conv tm = + thenqc (repeatqc conv) + (sub_qconv (top_sweep_qconv conv)) tm +in +val (once_depth_conv, depth_conv, rdepth_conv, top_depth_conv, top_sweep_conv) = + (fn c => try_conv (once_depth_qconv c), + fn c => try_conv (depth_qconv c), + fn c => try_conv (redepth_qconv c), + fn c => try_conv (top_depth_qconv c), + fn c => try_conv (top_sweep_qconv c)); +end; +end; + + + (* Some useful derived rules *) +fun deduct_antisym_rule tha thb = + equal_intr (implies_intr (cprop_of thb) tha) + (implies_intr (cprop_of tha) thb); + +fun prove_hyp tha thb = + if exists (curry op aconv (concl_of tha)) (#hyps (rep_thm thb)) + then equal_elim (symmetric (deduct_antisym_rule tha thb)) tha else thb; + + + +signature REAL_ARITH = +sig + datatype positivstellensatz = + Axiom_eq of int + | Axiom_le of int + | Axiom_lt of int + | Rational_eq of Rat.rat + | Rational_le of Rat.rat + | Rational_lt of Rat.rat + | Square of cterm + | Eqmul of cterm * positivstellensatz + | Sum of positivstellensatz * positivstellensatz + | Product of positivstellensatz * positivstellensatz; + +val gen_gen_real_arith : + Proof.context -> (Rat.rat -> Thm.cterm) * conv * conv * conv * + conv * conv * conv * conv * conv * conv * + ( (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val real_linear_prover : + (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm + +val gen_real_arith : Proof.context -> + (Rat.rat -> cterm) * conv * conv * conv * conv * conv * conv * conv * + ( (thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val gen_prover_real_arith : Proof.context -> + ((thm list * thm list * thm list -> positivstellensatz -> thm) -> + thm list * thm list * thm list -> thm) -> conv +val real_arith : Proof.context -> conv +end + +structure RealArith (* : REAL_ARITH *)= +struct + + open Conv Thm;; +(* ------------------------------------------------------------------------- *) +(* Data structure for Positivstellensatz refutations. *) +(* ------------------------------------------------------------------------- *) + +datatype positivstellensatz = + Axiom_eq of int + | Axiom_le of int + | Axiom_lt of int + | Rational_eq of Rat.rat + | Rational_le of Rat.rat + | Rational_lt of Rat.rat + | Square of cterm + | Eqmul of cterm * positivstellensatz + | Sum of positivstellensatz * positivstellensatz + | Product of positivstellensatz * positivstellensatz; + (* Theorems used in the procedure *) + + +val my_eqs = ref ([] : thm list); +val my_les = ref ([] : thm list); +val my_lts = ref ([] : thm list); +val my_proof = ref (Axiom_eq 0); +val my_context = ref @{context}; + +val my_mk_numeric = ref ((K @{cterm True}) :Rat.rat -> cterm); +val my_numeric_eq_conv = ref no_conv; +val my_numeric_ge_conv = ref no_conv; +val my_numeric_gt_conv = ref no_conv; +val my_poly_conv = ref no_conv; +val my_poly_neg_conv = ref no_conv; +val my_poly_add_conv = ref no_conv; +val my_poly_mul_conv = ref no_conv; + +fun conjunctions th = case try Conjunction.elim th of + SOME (th1,th2) => (conjunctions th1) @ conjunctions th2 + | NONE => [th]; + +val pth = @{lemma "(((x::real) < y) == (y - x > 0)) &&& ((x <= y) == (y - x >= 0)) + &&& ((x = y) == (x - y = 0)) &&& ((~(x < y)) == (x - y >= 0)) &&& ((~(x <= y)) == (x - y > 0)) + &&& ((~(x = y)) == (x - y > 0 | -(x - y) > 0))" + by (atomize (full), auto simp add: less_diff_eq le_diff_eq not_less)} |> +conjunctions; + +val pth_final = @{lemma "(~p ==> False) ==> p" by blast} +val pth_add = + @{lemma "(x = (0::real) ==> y = 0 ==> x + y = 0 ) &&& ( x = 0 ==> y >= 0 ==> x + y >= 0) + &&& (x = 0 ==> y > 0 ==> x + y > 0) &&& (x >= 0 ==> y = 0 ==> x + y >= 0) + &&& (x >= 0 ==> y >= 0 ==> x + y >= 0) &&& (x >= 0 ==> y > 0 ==> x + y > 0) + &&& (x > 0 ==> y = 0 ==> x + y > 0) &&& (x > 0 ==> y >= 0 ==> x + y > 0) + &&& (x > 0 ==> y > 0 ==> x + y > 0)" by simp_all} |> conjunctions ; + +val pth_mul = + @{lemma "(x = (0::real) ==> y = 0 ==> x * y = 0) &&& (x = 0 ==> y >= 0 ==> x * y = 0) &&& + (x = 0 ==> y > 0 ==> x * y = 0) &&& (x >= 0 ==> y = 0 ==> x * y = 0) &&& + (x >= 0 ==> y >= 0 ==> x * y >= 0 ) &&& ( x >= 0 ==> y > 0 ==> x * y >= 0 ) &&& + (x > 0 ==> y = 0 ==> x * y = 0 ) &&& ( x > 0 ==> y >= 0 ==> x * y >= 0 ) &&& + (x > 0 ==> y > 0 ==> x * y > 0)" + by (auto intro: mult_mono[where a="0::real" and b="x" and d="y" and c="0", simplified] + mult_strict_mono[where b="x" and d="y" and a="0" and c="0", simplified])} |> conjunctions; + +val pth_emul = @{lemma "y = (0::real) ==> x * y = 0" by simp}; +val pth_square = @{lemma "x * x >= (0::real)" by simp}; + +val weak_dnf_simps = List.take (simp_thms, 34) + @ conjunctions @{lemma "((P & (Q | R)) = ((P&Q) | (P&R))) &&& ((Q | R) & P) = ((Q&P) | (R&P)) &&& (P & Q) = (Q & P) &&& ((P | Q) = (Q | P))" by blast+}; + +val nnfD_simps = conjunctions @{lemma "((~(P & Q)) = (~P | ~Q)) &&& ((~(P | Q)) = (~P & ~Q) ) &&& ((P --> Q) = (~P | Q) ) &&& ((P = Q) = ((P & Q) | (~P & ~ Q))) &&& ((~(P = Q)) = ((P & ~ Q) | (~P & Q)) ) &&& ((~ ~(P)) = P)" by blast+} + +val choice_iff = @{lemma "(ALL x. EX y. P x y) = (EX f. ALL x. P x (f x))" by metis}; +val prenex_simps = map (fn th => th RS sym) ([@{thm "all_conj_distrib"}, @{thm "ex_disj_distrib"}] @ @{thms "all_simps"(1-4)} @ @{thms "ex_simps"(1-4)}); + +val real_abs_thms1 = conjunctions @{lemma + "((-1 * abs(x::real) >= r) = (-1 * x >= r & 1 * x >= r)) &&& + ((-1 * abs(x) + a >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& + ((a + -1 * abs(x) >= r) = (a + -1 * x >= r & a + 1 * x >= r)) &&& + ((a + -1 * abs(x) + b >= r) = (a + -1 * x + b >= r & a + 1 * x + b >= r)) &&& + ((a + b + -1 * abs(x) >= r) = (a + b + -1 * x >= r & a + b + 1 * x >= r)) &&& + ((a + b + -1 * abs(x) + c >= r) = (a + b + -1 * x + c >= r & a + b + 1 * x + c >= r)) &&& + ((-1 * max x y >= r) = (-1 * x >= r & -1 * y >= r)) &&& + ((-1 * max x y + a >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& + ((a + -1 * max x y >= r) = (a + -1 * x >= r & a + -1 * y >= r)) &&& + ((a + -1 * max x y + b >= r) = (a + -1 * x + b >= r & a + -1 * y + b >= r)) &&& + ((a + b + -1 * max x y >= r) = (a + b + -1 * x >= r & a + b + -1 * y >= r)) &&& + ((a + b + -1 * max x y + c >= r) = (a + b + -1 * x + c >= r & a + b + -1 * y + c >= r)) &&& + ((1 * min x y >= r) = (1 * x >= r & 1 * y >= r)) &&& + ((1 * min x y + a >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& + ((a + 1 * min x y >= r) = (a + 1 * x >= r & a + 1 * y >= r)) &&& + ((a + 1 * min x y + b >= r) = (a + 1 * x + b >= r & a + 1 * y + b >= r) )&&& + ((a + b + 1 * min x y >= r) = (a + b + 1 * x >= r & a + b + 1 * y >= r)) &&& + ((a + b + 1 * min x y + c >= r) = (a + b + 1 * x + c >= r & a + b + 1 * y + c >= r)) &&& + ((min x y >= r) = (x >= r & y >= r)) &&& + ((min x y + a >= r) = (a + x >= r & a + y >= r)) &&& + ((a + min x y >= r) = (a + x >= r & a + y >= r)) &&& + ((a + min x y + b >= r) = (a + x + b >= r & a + y + b >= r)) &&& + ((a + b + min x y >= r) = (a + b + x >= r & a + b + y >= r) )&&& + ((a + b + min x y + c >= r) = (a + b + x + c >= r & a + b + y + c >= r)) &&& + ((-1 * abs(x) > r) = (-1 * x > r & 1 * x > r)) &&& + ((-1 * abs(x) + a > r) = (a + -1 * x > r & a + 1 * x > r)) &&& + ((a + -1 * abs(x) > r) = (a + -1 * x > r & a + 1 * x > r)) &&& + ((a + -1 * abs(x) + b > r) = (a + -1 * x + b > r & a + 1 * x + b > r)) &&& + ((a + b + -1 * abs(x) > r) = (a + b + -1 * x > r & a + b + 1 * x > r)) &&& + ((a + b + -1 * abs(x) + c > r) = (a + b + -1 * x + c > r & a + b + 1 * x + c > r)) &&& + ((-1 * max x y > r) = ((-1 * x > r) & -1 * y > r)) &&& + ((-1 * max x y + a > r) = (a + -1 * x > r & a + -1 * y > r)) &&& + ((a + -1 * max x y > r) = (a + -1 * x > r & a + -1 * y > r)) &&& + ((a + -1 * max x y + b > r) = (a + -1 * x + b > r & a + -1 * y + b > r)) &&& + ((a + b + -1 * max x y > r) = (a + b + -1 * x > r & a + b + -1 * y > r)) &&& + ((a + b + -1 * max x y + c > r) = (a + b + -1 * x + c > r & a + b + -1 * y + c > r)) &&& + ((min x y > r) = (x > r & y > r)) &&& + ((min x y + a > r) = (a + x > r & a + y > r)) &&& + ((a + min x y > r) = (a + x > r & a + y > r)) &&& + ((a + min x y + b > r) = (a + x + b > r & a + y + b > r)) &&& + ((a + b + min x y > r) = (a + b + x > r & a + b + y > r)) &&& + ((a + b + min x y + c > r) = (a + b + x + c > r & a + b + y + c > r))" + by auto}; + +val abs_split' = @{lemma "P (abs (x::'a::ordered_idom)) == (x >= 0 & P x | x < 0 & P (-x))" + by (atomize (full)) (auto split add: abs_split)}; + +val max_split = @{lemma "P (max x y) == ((x::'a::linorder) <= y & P y | x > y & P x)" + by (atomize (full)) (cases "x <= y", auto simp add: max_def)}; + +val min_split = @{lemma "P (min x y) == ((x::'a::linorder) <= y & P x | x > y & P y)" + by (atomize (full)) (cases "x <= y", auto simp add: min_def)}; + + + (* Miscalineous *) +fun literals_conv bops uops cv = + let fun h t = + case (term_of t) of + b$_$_ => if member (op aconv) bops b then binop_conv h t else cv t + | u$_ => if member (op aconv) uops u then arg_conv h t else cv t + | _ => cv t + in h end; + +fun cterm_of_rat x = +let val (a, b) = Rat.quotient_of_rat x +in + if b = 1 then Numeral.mk_cnumber @{ctyp "real"} a + else Thm.capply (Thm.capply @{cterm "op / :: real => _"} + (Numeral.mk_cnumber @{ctyp "real"} a)) + (Numeral.mk_cnumber @{ctyp "real"} b) +end; + + fun dest_ratconst t = case term_of t of + Const(@{const_name divide}, _)$a$b => Rat.rat_of_quotient(HOLogic.dest_number a |> snd, HOLogic.dest_number b |> snd) + | _ => Rat.rat_of_int (HOLogic.dest_number (term_of t) |> snd) + fun is_ratconst t = can dest_ratconst t + +fun find_term p t = if p t then t else + case t of + a$b => (find_term p a handle TERM _ => find_term p b) + | Abs (_,_,t') => find_term p t' + | _ => raise TERM ("find_term",[t]); + +fun find_cterm p t = if p t then t else + case term_of t of + a$b => (find_cterm p (Thm.dest_fun t) handle CTERM _ => find_cterm p (Thm.dest_arg t)) + | Abs (_,_,t') => find_cterm p (Thm.dest_abs NONE t |> snd) + | _ => raise CTERM ("find_cterm",[t]); + + + (* Some conversions-related stuff which has been forbidden entrance into Pure/conv.ML*) +fun instantiate_cterm' ty tms = Drule.cterm_rule (Drule.instantiate' ty tms) +fun is_comb t = case (term_of t) of _$_ => true | _ => false; + +fun cache_conv conv = + let + val tab = ref Termtab.empty + fun cconv t = + case Termtab.lookup (!tab) (term_of t) of + SOME th => th + | NONE => let val th = conv t + in ((tab := Termtab.insert Thm.eq_thm (term_of t, th) (!tab)); th) end + in cconv end; +fun is_binop ct ct' = ct aconvc (Thm.dest_fun (Thm.dest_fun ct')) + handle CTERM _ => false; + + (* A general real arithmetic prover *) + +fun gen_gen_real_arith ctxt (mk_numeric, + numeric_eq_conv,numeric_ge_conv,numeric_gt_conv, + poly_conv,poly_neg_conv,poly_add_conv,poly_mul_conv, + absconv1,absconv2,prover) = +let + open Conv Thm; + val _ = my_context := ctxt + val _ = (my_mk_numeric := mk_numeric ; my_numeric_eq_conv := numeric_eq_conv ; + my_numeric_ge_conv := numeric_ge_conv; my_numeric_gt_conv := numeric_gt_conv ; + my_poly_conv := poly_conv; my_poly_neg_conv := poly_neg_conv; + my_poly_add_conv := poly_add_conv; my_poly_mul_conv := poly_mul_conv) + val pre_ss = HOL_basic_ss addsimps simp_thms@ ex_simps@ all_simps@[@{thm not_all},@{thm not_ex},ex_disj_distrib, all_conj_distrib, @{thm if_bool_eq_disj}] + val prenex_ss = HOL_basic_ss addsimps prenex_simps + val skolemize_ss = HOL_basic_ss addsimps [choice_iff] + val presimp_conv = Simplifier.rewrite (Simplifier.context ctxt pre_ss) + val prenex_conv = Simplifier.rewrite (Simplifier.context ctxt prenex_ss) + val skolemize_conv = Simplifier.rewrite (Simplifier.context ctxt skolemize_ss) + val weak_dnf_ss = HOL_basic_ss addsimps weak_dnf_simps + val weak_dnf_conv = Simplifier.rewrite (Simplifier.context ctxt weak_dnf_ss) + fun eqT_elim th = equal_elim (symmetric th) @{thm TrueI} + fun oprconv cv ct = + let val g = Thm.dest_fun2 ct + in if g aconvc @{cterm "op <= :: real => _"} + orelse g aconvc @{cterm "op < :: real => _"} + then arg_conv cv ct else arg1_conv cv ct + end + + fun real_ineq_conv th ct = + let + val th' = (instantiate (match (lhs_of th, ct)) th + handle MATCH => raise CTERM ("real_ineq_conv", [ct])) + in transitive th' (oprconv poly_conv (Thm.rhs_of th')) + end + val [real_lt_conv, real_le_conv, real_eq_conv, + real_not_lt_conv, real_not_le_conv, _] = + map real_ineq_conv pth + fun match_mp_rule ths ths' = + let + fun f ths ths' = case ths of [] => raise THM("match_mp_rule",0,ths) + | th::ths => (ths' MRS th handle THM _ => f ths ths') + in f ths ths' end + fun mul_rule th th' = fconv_rule (arg_conv (oprconv poly_mul_conv)) + (match_mp_rule pth_mul [th, th']) + fun add_rule th th' = fconv_rule (arg_conv (oprconv poly_add_conv)) + (match_mp_rule pth_add [th, th']) + fun emul_rule ct th = fconv_rule (arg_conv (oprconv poly_mul_conv)) + (instantiate' [] [SOME ct] (th RS pth_emul)) + fun square_rule t = fconv_rule (arg_conv (oprconv poly_conv)) + (instantiate' [] [SOME t] pth_square) + + fun hol_of_positivstellensatz(eqs,les,lts) proof = + let + val _ = (my_eqs := eqs ; my_les := les ; my_lts := lts ; my_proof := proof) + fun translate prf = case prf of + Axiom_eq n => nth eqs n + | Axiom_le n => nth les n + | Axiom_lt n => nth lts n + | Rational_eq x => eqT_elim(numeric_eq_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op =::real => _"} (mk_numeric x)) + @{cterm "0::real"}))) + | Rational_le x => eqT_elim(numeric_ge_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op <=::real => _"} + @{cterm "0::real"}) (mk_numeric x)))) + | Rational_lt x => eqT_elim(numeric_gt_conv(capply @{cterm Trueprop} + (capply (capply @{cterm "op <::real => _"} @{cterm "0::real"}) + (mk_numeric x)))) + | Square t => square_rule t + | Eqmul(t,p) => emul_rule t (translate p) + | Sum(p1,p2) => add_rule (translate p1) (translate p2) + | Product(p1,p2) => mul_rule (translate p1) (translate p2) + in fconv_rule (first_conv [numeric_ge_conv, numeric_gt_conv, numeric_eq_conv, all_conv]) + (translate proof) + end + + val init_conv = presimp_conv then_conv + nnf_conv then_conv skolemize_conv then_conv prenex_conv then_conv + weak_dnf_conv + + val concl = dest_arg o cprop_of + fun is_binop opr ct = (dest_fun2 ct aconvc opr handle CTERM _ => false) + val is_req = is_binop @{cterm "op =:: real => _"} + val is_ge = is_binop @{cterm "op <=:: real => _"} + val is_gt = is_binop @{cterm "op <:: real => _"} + val is_conj = is_binop @{cterm "op &"} + val is_disj = is_binop @{cterm "op |"} + fun conj_pair th = (th RS @{thm conjunct1}, th RS @{thm conjunct2}) + fun disj_cases th th1 th2 = + let val (p,q) = dest_binop (concl th) + val c = concl th1 + val _ = if c aconvc (concl th2) then () else error "disj_cases : conclusions not alpha convertible" + in implies_elim (implies_elim (implies_elim (instantiate' [] (map SOME [p,q,c]) @{thm disjE}) th) (implies_intr (capply @{cterm Trueprop} p) th1)) (implies_intr (capply @{cterm Trueprop} q) th2) + end + fun overall dun ths = case ths of + [] => + let + val (eq,ne) = List.partition (is_req o concl) dun + val (le,nl) = List.partition (is_ge o concl) ne + val lt = filter (is_gt o concl) nl + in prover hol_of_positivstellensatz (eq,le,lt) end + | th::oths => + let + val ct = concl th + in + if is_conj ct then + let + val (th1,th2) = conj_pair th in + overall dun (th1::th2::oths) end + else if is_disj ct then + let + val th1 = overall dun (assume (capply @{cterm Trueprop} (dest_arg1 ct))::oths) + val th2 = overall dun (assume (capply @{cterm Trueprop} (dest_arg ct))::oths) + in disj_cases th th1 th2 end + else overall (th::dun) oths + end + fun dest_binary b ct = if is_binop b ct then dest_binop ct + else raise CTERM ("dest_binary",[b,ct]) + val dest_eq = dest_binary @{cterm "op = :: real => _"} + val neq_th = nth pth 5 + fun real_not_eq_conv ct = + let + val (l,r) = dest_eq (dest_arg ct) + val th = instantiate ([],[(@{cpat "?x::real"},l),(@{cpat "?y::real"},r)]) neq_th + val th_p = poly_conv(dest_arg(dest_arg1(rhs_of th))) + val th_x = Drule.arg_cong_rule @{cterm "uminus :: real => _"} th_p + val th_n = fconv_rule (arg_conv poly_neg_conv) th_x + val th' = Drule.binop_cong_rule @{cterm "op |"} + (Drule.arg_cong_rule (capply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_p) + (Drule.arg_cong_rule (capply @{cterm "op <::real=>_"} @{cterm "0::real"}) th_n) + in transitive th th' + end + fun equal_implies_1_rule PQ = + let + val P = lhs_of PQ + in implies_intr P (equal_elim PQ (assume P)) + end + (* FIXME!!! Copied from groebner.ml *) + val strip_exists = + let fun h (acc, t) = + case (term_of t) of + Const("Ex",_)$Abs(x,T,p) => h (dest_abs NONE (dest_arg t) |>> (fn v => v::acc)) + | _ => (acc,t) + in fn t => h ([],t) + end + fun name_of x = case term_of x of + Free(s,_) => s + | Var ((s,_),_) => s + | _ => "x" + + fun mk_forall x th = Drule.arg_cong_rule (instantiate_cterm' [SOME (ctyp_of_term x)] [] @{cpat "All :: (?'a => bool) => _" }) (abstract_rule (name_of x) x th) + + val specl = fold_rev (fn x => fn th => instantiate' [] [SOME x] (th RS spec)); + + fun ext T = Drule.cterm_rule (instantiate' [SOME T] []) @{cpat Ex} + fun mk_ex v t = Thm.capply (ext (ctyp_of_term v)) (Thm.cabs v t) + + fun choose v th th' = case concl_of th of + @{term Trueprop} $ (Const("Ex",_)$_) => + let + val p = (funpow 2 Thm.dest_arg o cprop_of) th + val T = (hd o Thm.dest_ctyp o ctyp_of_term) p + val th0 = fconv_rule (Thm.beta_conversion true) + (instantiate' [SOME T] [SOME p, (SOME o Thm.dest_arg o cprop_of) th'] exE) + val pv = (Thm.rhs_of o Thm.beta_conversion true) + (Thm.capply @{cterm Trueprop} (Thm.capply p v)) + val th1 = forall_intr v (implies_intr pv th') + in implies_elim (implies_elim th0 th) th1 end + | _ => raise THM ("choose",0,[th, th']) + + fun simple_choose v th = + choose v (assume ((Thm.capply @{cterm Trueprop} o mk_ex v) ((Thm.dest_arg o hd o #hyps o Thm.crep_thm) th))) th + + val strip_forall = + let fun h (acc, t) = + case (term_of t) of + Const("All",_)$Abs(x,T,p) => h (dest_abs NONE (dest_arg t) |>> (fn v => v::acc)) + | _ => (acc,t) + in fn t => h ([],t) + end + + fun f ct = + let + val nnf_norm_conv' = + nnf_conv then_conv + literals_conv [@{term "op &"}, @{term "op |"}] [] + (cache_conv + (first_conv [real_lt_conv, real_le_conv, + real_eq_conv, real_not_lt_conv, + real_not_le_conv, real_not_eq_conv, all_conv])) + fun absremover ct = (literals_conv [@{term "op &"}, @{term "op |"}] [] + (try_conv (absconv1 then_conv binop_conv (arg_conv poly_conv))) then_conv + try_conv (absconv2 then_conv nnf_norm_conv' then_conv binop_conv absremover)) ct + val nct = capply @{cterm Trueprop} (capply @{cterm "Not"} ct) + val th0 = (init_conv then_conv arg_conv nnf_norm_conv') nct + val tm0 = dest_arg (rhs_of th0) + val th = if tm0 aconvc @{cterm False} then equal_implies_1_rule th0 else + let + val (evs,bod) = strip_exists tm0 + val (avs,ibod) = strip_forall bod + val th1 = Drule.arg_cong_rule @{cterm Trueprop} (fold mk_forall avs (absremover ibod)) + val th2 = overall [] [specl avs (assume (rhs_of th1))] + val th3 = fold simple_choose evs (prove_hyp (equal_elim th1 (assume (capply @{cterm Trueprop} bod))) th2) + in Drule.implies_intr_hyps (prove_hyp (equal_elim th0 (assume nct)) th3) + end + in implies_elim (instantiate' [] [SOME ct] pth_final) th + end +in f +end; + +(* A linear arithmetic prover *) +local + val linear_add = Ctermfunc.combine (curry op +/) (fn z => z =/ Rat.zero) + fun linear_cmul c = Ctermfunc.mapf (fn x => c */ x) + val one_tm = @{cterm "1::real"} + fun contradictory p (e,_) = ((Ctermfunc.is_undefined e) andalso not(p Rat.zero)) orelse + ((gen_eq_set (op aconvc) (Ctermfunc.dom e, [one_tm])) andalso not(p(Ctermfunc.apply e one_tm))) + + fun linear_ineqs vars (les,lts) = + case find_first (contradictory (fn x => x >/ Rat.zero)) lts of + SOME r => r + | NONE => + (case find_first (contradictory (fn x => x >/ Rat.zero)) les of + SOME r => r + | NONE => + if null vars then error "linear_ineqs: no contradiction" else + let + val ineqs = les @ lts + fun blowup v = + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) ineqs) + + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) ineqs) * + length(filter (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero int_ord (i,j)) + (map (fn v => (v,blowup v)) vars))) + fun addup (e1,p1) (e2,p2) acc = + let + val c1 = Ctermfunc.tryapplyd e1 v Rat.zero + val c2 = Ctermfunc.tryapplyd e2 v Rat.zero + in if c1 */ c2 >=/ Rat.zero then acc else + let + val e1' = linear_cmul (Rat.abs c2) e1 + val e2' = linear_cmul (Rat.abs c1) e2 + val p1' = Product(Rational_lt(Rat.abs c2),p1) + val p2' = Product(Rational_lt(Rat.abs c1),p2) + in (linear_add e1' e2',Sum(p1',p2'))::acc + end + end + val (les0,les1) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) les + val (lts0,lts1) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero =/ Rat.zero) lts + val (lesp,lesn) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) les1 + val (ltsp,ltsn) = + List.partition (fn (e,_) => Ctermfunc.tryapplyd e v Rat.zero >/ Rat.zero) lts1 + val les' = fold_rev (fn ep1 => fold_rev (addup ep1) lesp) lesn les0 + val lts' = fold_rev (fn ep1 => fold_rev (addup ep1) (lesp@ltsp)) ltsn + (fold_rev (fn ep1 => fold_rev (addup ep1) (lesn@ltsn)) ltsp lts0) + in linear_ineqs (remove (op aconvc) v vars) (les',lts') + end) + + fun linear_eqs(eqs,les,lts) = + case find_first (contradictory (fn x => x =/ Rat.zero)) eqs of + SOME r => r + | NONE => (case eqs of + [] => + let val vars = remove (op aconvc) one_tm + (fold_rev (curry (gen_union (op aconvc)) o Ctermfunc.dom o fst) (les@lts) []) + in linear_ineqs vars (les,lts) end + | (e,p)::es => + if Ctermfunc.is_undefined e then linear_eqs (es,les,lts) else + let + val (x,c) = Ctermfunc.choose (Ctermfunc.undefine one_tm e) + fun xform (inp as (t,q)) = + let val d = Ctermfunc.tryapplyd t x Rat.zero in + if d =/ Rat.zero then inp else + let + val k = (Rat.neg d) */ Rat.abs c // c + val e' = linear_cmul k e + val t' = linear_cmul (Rat.abs c) t + val p' = Eqmul(cterm_of_rat k,p) + val q' = Product(Rational_lt(Rat.abs c),q) + in (linear_add e' t',Sum(p',q')) + end + end + in linear_eqs(map xform es,map xform les,map xform lts) + end) + + fun linear_prover (eq,le,lt) = + let + val eqs = map2 (fn p => fn n => (p,Axiom_eq n)) eq (0 upto (length eq - 1)) + val les = map2 (fn p => fn n => (p,Axiom_le n)) le (0 upto (length le - 1)) + val lts = map2 (fn p => fn n => (p,Axiom_lt n)) lt (0 upto (length lt - 1)) + in linear_eqs(eqs,les,lts) + end + + fun lin_of_hol ct = + if ct aconvc @{cterm "0::real"} then Ctermfunc.undefined + else if not (is_comb ct) then Ctermfunc.onefunc (ct, Rat.one) + else if is_ratconst ct then Ctermfunc.onefunc (one_tm, dest_ratconst ct) + else + let val (lop,r) = Thm.dest_comb ct + in if not (is_comb lop) then Ctermfunc.onefunc (ct, Rat.one) + else + let val (opr,l) = Thm.dest_comb lop + in if opr aconvc @{cterm "op + :: real =>_"} + then linear_add (lin_of_hol l) (lin_of_hol r) + else if opr aconvc @{cterm "op * :: real =>_"} + andalso is_ratconst l then Ctermfunc.onefunc (r, dest_ratconst l) + else Ctermfunc.onefunc (ct, Rat.one) + end + end + + fun is_alien ct = case term_of ct of + Const(@{const_name "real"}, _)$ n => + if can HOLogic.dest_number n then false else true + | _ => false + open Thm +in +fun real_linear_prover translator (eq,le,lt) = + let + val lhs = lin_of_hol o dest_arg1 o dest_arg o cprop_of + val rhs = lin_of_hol o dest_arg o dest_arg o cprop_of + val eq_pols = map lhs eq + val le_pols = map rhs le + val lt_pols = map rhs lt + val aliens = filter is_alien + (fold_rev (curry (gen_union (op aconvc)) o Ctermfunc.dom) + (eq_pols @ le_pols @ lt_pols) []) + val le_pols' = le_pols @ map (fn v => Ctermfunc.onefunc (v,Rat.one)) aliens + val (_,proof) = linear_prover (eq_pols,le_pols',lt_pols) + val le' = le @ map (fn a => instantiate' [] [SOME (dest_arg a)] @{thm real_of_nat_ge_zero}) aliens + in (translator (eq,le',lt) proof) : thm + end +end; + +(* A less general generic arithmetic prover dealing with abs,max and min*) + +local + val absmaxmin_elim_ss1 = HOL_basic_ss addsimps real_abs_thms1 + fun absmaxmin_elim_conv1 ctxt = + Simplifier.rewrite (Simplifier.context ctxt absmaxmin_elim_ss1) + + val absmaxmin_elim_conv2 = + let + val pth_abs = instantiate' [SOME @{ctyp real}] [] abs_split' + val pth_max = instantiate' [SOME @{ctyp real}] [] max_split + val pth_min = instantiate' [SOME @{ctyp real}] [] min_split + val abs_tm = @{cterm "abs :: real => _"} + val p_tm = @{cpat "?P :: real => bool"} + val x_tm = @{cpat "?x :: real"} + val y_tm = @{cpat "?y::real"} + val is_max = is_binop @{cterm "max :: real => _"} + val is_min = is_binop @{cterm "min :: real => _"} + fun is_abs t = is_comb t andalso dest_fun t aconvc abs_tm + fun eliminate_construct p c tm = + let + val t = find_cterm p tm + val th0 = (symmetric o beta_conversion false) (capply (cabs t tm) t) + val (p,ax) = (dest_comb o rhs_of) th0 + in fconv_rule(arg_conv(binop_conv (arg_conv (beta_conversion false)))) + (transitive th0 (c p ax)) + end + + val elim_abs = eliminate_construct is_abs + (fn p => fn ax => + instantiate ([], [(p_tm,p), (x_tm, dest_arg ax)]) pth_abs) + val elim_max = eliminate_construct is_max + (fn p => fn ax => + let val (ax,y) = dest_comb ax + in instantiate ([], [(p_tm,p), (x_tm, dest_arg ax), (y_tm,y)]) + pth_max end) + val elim_min = eliminate_construct is_min + (fn p => fn ax => + let val (ax,y) = dest_comb ax + in instantiate ([], [(p_tm,p), (x_tm, dest_arg ax), (y_tm,y)]) + pth_min end) + in first_conv [elim_abs, elim_max, elim_min, all_conv] + end; +in fun gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul,prover) = + gen_gen_real_arith ctxt (mkconst,eq,ge,gt,norm,neg,add,mul, + absmaxmin_elim_conv1 ctxt,absmaxmin_elim_conv2,prover) +end; + +(* An instance for reals*) + +fun gen_prover_real_arith ctxt prover = + let + fun simple_cterm_ord t u = TermOrd.term_ord (term_of t, term_of u) = LESS + val {add,mul,neg,pow,sub,main} = + Normalizer.semiring_normalizers_ord_wrapper ctxt + (valOf (NormalizerData.match ctxt @{cterm "(0::real) + 1"})) + simple_cterm_ord +in gen_real_arith ctxt + (cterm_of_rat, field_comp_conv, field_comp_conv,field_comp_conv, + main,neg,add,mul, prover) +end; + +fun real_arith ctxt = gen_prover_real_arith ctxt real_linear_prover; +end