# HG changeset patch # User wenzelm # Date 1314980265 -7200 # Node ID fe03653315667519fd9f54b81451a6e81a307e53 # Parent d80fe56788a51d81ff428c5833a697a62d9a5a43 tuned proofs; diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/AbelCoset.thy --- a/src/HOL/Algebra/AbelCoset.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/AbelCoset.thy Fri Sep 02 18:17:45 2011 +0200 @@ -233,10 +233,10 @@ shows "abelian_subgroup H G" proof - interpret normal "H" "\carrier = carrier G, mult = add G, one = zero G\" - by (rule a_normal) + by (rule a_normal) show "abelian_subgroup H G" - proof qed (simp add: a_comm) + by default (simp add: a_comm) qed lemma abelian_subgroupI2: diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/Divisibility.thy --- a/src/HOL/Algebra/Divisibility.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/Divisibility.thy Fri Sep 02 18:17:45 2011 +0200 @@ -25,14 +25,14 @@ and r_cancel: "\a b c. \a \ c = b \ c; a \ carrier G; b \ carrier G; c \ carrier G\ \ a = b" shows "monoid_cancel G" - proof qed fact+ + by default fact+ lemma (in monoid_cancel) is_monoid_cancel: "monoid_cancel G" .. sublocale group \ monoid_cancel - proof qed simp+ + by default simp_all locale comm_monoid_cancel = monoid_cancel + comm_monoid @@ -3655,7 +3655,7 @@ done sublocale factorial_monoid \ primeness_condition_monoid - proof qed (rule irreducible_is_prime) + by default (rule irreducible_is_prime) lemma (in factorial_monoid) primeness_condition: @@ -3664,10 +3664,10 @@ lemma (in factorial_monoid) gcd_condition [simp]: shows "gcd_condition_monoid G" - proof qed (rule gcdof_exists) + by default (rule gcdof_exists) sublocale factorial_monoid \ gcd_condition_monoid - proof qed (rule gcdof_exists) + by default (rule gcdof_exists) lemma (in factorial_monoid) division_weak_lattice [simp]: shows "weak_lattice (division_rel G)" diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/Group.thy --- a/src/HOL/Algebra/Group.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/Group.thy Fri Sep 02 18:17:45 2011 +0200 @@ -286,7 +286,7 @@ qed then have carrier_subset_Units: "carrier G <= Units G" by (unfold Units_def) fast - show ?thesis proof qed (auto simp: r_one m_assoc carrier_subset_Units) + show ?thesis by default (auto simp: r_one m_assoc carrier_subset_Units) qed lemma (in monoid) group_l_invI: @@ -694,7 +694,7 @@ assumes m_comm: "!!x y. [| x \ carrier G; y \ carrier G |] ==> x \ y = y \ x" shows "comm_group G" - proof qed (simp_all add: m_comm) + by default (simp_all add: m_comm) lemma comm_groupI: fixes G (structure) @@ -722,7 +722,7 @@ theorem (in group) subgroups_partial_order: "partial_order (| carrier = {H. subgroup H G}, eq = op =, le = op \ |)" - proof qed simp_all + by default simp_all lemma (in group) subgroup_self: "subgroup (carrier G) G" diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/IntRing.thy --- a/src/HOL/Algebra/IntRing.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/IntRing.thy Fri Sep 02 18:17:45 2011 +0200 @@ -62,7 +62,7 @@ and "pow \ x n = x^n" proof - -- "Specification" - show "monoid \" proof qed auto + show "monoid \" by default auto then interpret int: monoid \ . -- "Carrier" @@ -79,7 +79,7 @@ where "finprod \ f A = (if finite A then setprod f A else undefined)" proof - -- "Specification" - show "comm_monoid \" proof qed auto + show "comm_monoid \" by default auto then interpret int: comm_monoid \ . -- "Operations" @@ -105,7 +105,7 @@ and int_finsum_eq: "finsum \ f A = (if finite A then setsum f A else undefined)" proof - -- "Specification" - show "abelian_monoid \" proof qed auto + show "abelian_monoid \" by default auto then interpret int: abelian_monoid \ . -- "Carrier" @@ -189,7 +189,7 @@ and "lless (| carrier = UNIV::int set, eq = op =, le = op \ |) x y = (x < y)" proof - show "partial_order (| carrier = UNIV::int set, eq = op =, le = op \ |)" - proof qed simp_all + by default simp_all show "carrier (| carrier = UNIV::int set, eq = op =, le = op \ |) = UNIV" by simp show "le (| carrier = UNIV::int set, eq = op =, le = op \ |) x y = (x \ y)" @@ -226,7 +226,7 @@ interpretation int (* [unfolded UNIV] *) : total_order "(| carrier = UNIV::int set, eq = op =, le = op \ |)" - proof qed clarsimp + by default clarsimp subsection {* Generated Ideals of @{text "\"} *} diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/Lattice.thy --- a/src/HOL/Algebra/Lattice.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/Lattice.thy Fri Sep 02 18:17:45 2011 +0200 @@ -921,7 +921,7 @@ lemma (in weak_partial_order) weak_total_orderI: assumes total: "!!x y. [| x \ carrier L; y \ carrier L |] ==> x \ y | y \ x" shows "weak_total_order L" - proof qed (rule total) + by default (rule total) text {* Total orders are lattices. *} @@ -985,7 +985,7 @@ and inf_exists: "!!A. [| A \ carrier L |] ==> EX i. greatest L i (Lower L A)" shows "weak_complete_lattice L" - proof qed (auto intro: sup_exists inf_exists) + by default (auto intro: sup_exists inf_exists) definition top :: "_ => 'a" ("\\") @@ -1133,14 +1133,14 @@ "[| x \ carrier L; y \ carrier L |] ==> EX s. least L s (Upper L {x, y})" sublocale upper_semilattice < weak: weak_upper_semilattice - proof qed (rule sup_of_two_exists) + by default (rule sup_of_two_exists) locale lower_semilattice = partial_order + assumes inf_of_two_exists: "[| x \ carrier L; y \ carrier L |] ==> EX s. greatest L s (Lower L {x, y})" sublocale lower_semilattice < weak: weak_lower_semilattice - proof qed (rule inf_of_two_exists) + by default (rule inf_of_two_exists) locale lattice = upper_semilattice + lower_semilattice @@ -1191,19 +1191,19 @@ assumes total_order_total: "[| x \ carrier L; y \ carrier L |] ==> x \ y | y \ x" sublocale total_order < weak: weak_total_order - proof qed (rule total_order_total) + by default (rule total_order_total) text {* Introduction rule: the usual definition of total order *} lemma (in partial_order) total_orderI: assumes total: "!!x y. [| x \ carrier L; y \ carrier L |] ==> x \ y | y \ x" shows "total_order L" - proof qed (rule total) + by default (rule total) text {* Total orders are lattices. *} sublocale total_order < weak: lattice - proof qed (auto intro: sup_of_two_exists inf_of_two_exists) + by default (auto intro: sup_of_two_exists inf_of_two_exists) text {* Complete lattices *} @@ -1215,7 +1215,7 @@ "[| A \ carrier L |] ==> EX i. greatest L i (Lower L A)" sublocale complete_lattice < weak: weak_complete_lattice - proof qed (auto intro: sup_exists inf_exists) + by default (auto intro: sup_exists inf_exists) text {* Introduction rule: the usual definition of complete lattice *} @@ -1225,7 +1225,7 @@ and inf_exists: "!!A. [| A \ carrier L |] ==> EX i. greatest L i (Lower L A)" shows "complete_lattice L" - proof qed (auto intro: sup_exists inf_exists) + by default (auto intro: sup_exists inf_exists) theorem (in partial_order) complete_lattice_criterion1: assumes top_exists: "EX g. greatest L g (carrier L)" diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/RingHom.thy --- a/src/HOL/Algebra/RingHom.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/RingHom.thy Fri Sep 02 18:17:45 2011 +0200 @@ -17,7 +17,7 @@ and hom_one [simp] = ring_hom_one [OF homh] sublocale ring_hom_cring \ ring: ring_hom_ring - proof qed (rule homh) + by default (rule homh) sublocale ring_hom_ring \ abelian_group: abelian_group_hom R S apply (rule abelian_group_homI) diff -r d80fe56788a5 -r fe0365331566 src/HOL/Algebra/UnivPoly.thy --- a/src/HOL/Algebra/UnivPoly.thy Fri Sep 02 17:58:32 2011 +0200 +++ b/src/HOL/Algebra/UnivPoly.thy Fri Sep 02 18:17:45 2011 +0200 @@ -1764,7 +1764,7 @@ and deg_r_0: "deg R r = 0" shows "r = monom P (eval R R id a f) 0" proof - - interpret UP_pre_univ_prop R R id P proof qed simp + interpret UP_pre_univ_prop R R id P by default simp have eval_ring_hom: "eval R R id a \ ring_hom P R" using eval_ring_hom [OF a] by simp have "eval R R id a f = eval R R id a ?gq \\<^bsub>R\<^esub> eval R R id a r"