# HG changeset patch # User wenzelm # Date 925833836 -7200 # Node ID ff2c3ffd38ee6d9f6f2b684f33295e63d2c49b35 # Parent d0c6bb2577b15092ba0583bf8b70e24495ebc0bd used to be part of 'logics' manual; diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/HOL-eg.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/HOL-eg.txt Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,151 @@ +(**** HOL examples -- process using Doc/tout HOL-eg.txt ****) + +Pretty.setmargin 72; (*existing macros just allow this margin*) +print_depth 0; + + +(*** Conjunction rules ***) + +val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q"; +by (resolve_tac [and_def RS ssubst] 1); +by (resolve_tac [allI] 1); +by (resolve_tac [impI] 1); +by (eresolve_tac [mp RS mp] 1); +by (REPEAT (resolve_tac prems 1)); +val conjI = result(); + +val prems = goal HOL_Rule.thy "[| P & Q |] ==> P"; +prths (prems RL [and_def RS subst]); +prths (prems RL [and_def RS subst] RL [spec] RL [mp]); +by (resolve_tac it 1); +by (REPEAT (ares_tac [impI] 1)); +val conjunct1 = result(); + + +(*** Cantor's Theorem: There is no surjection from a set to its powerset. ***) + +goal Set.thy "~ ?S : range(f :: 'a=>'a set)"; +by (resolve_tac [notI] 1); +by (eresolve_tac [rangeE] 1); +by (eresolve_tac [equalityCE] 1); +by (dresolve_tac [CollectD] 1); +by (contr_tac 1); +by (swap_res_tac [CollectI] 1); +by (assume_tac 1); + +choplev 0; +by (best_tac (set_cs addSEs [equalityCE]) 1); + + +goal Set.thy "! f:: 'a=>'a set. ! x. ~ f(x) = ?S(f)"; +by (REPEAT (resolve_tac [allI,notI] 1)); +by (eresolve_tac [equalityCE] 1); +by (dresolve_tac [CollectD] 1); +by (contr_tac 1); +by (swap_res_tac [CollectI] 1); +by (assume_tac 1); + +choplev 0; +by (best_tac (set_cs addSEs [equalityCE]) 1); + + +goal Set.thy "~ (? f:: 'a=>'a set. ! S. ? a. f(a) = S)"; +by (best_tac (set_cs addSEs [equalityCE]) 1); + + + + +> val prems = goal HOL_Rule.thy "[| P; Q |] ==> P&Q"; +Level 0 +P & Q + 1. P & Q +> by (resolve_tac [and_def RS ssubst] 1); +Level 1 +P & Q + 1. ! R. (P --> Q --> R) --> R +> by (resolve_tac [allI] 1); +Level 2 +P & Q + 1. !!R. (P --> Q --> R) --> R +> by (resolve_tac [impI] 1); +Level 3 +P & Q + 1. !!R. P --> Q --> R ==> R +> by (eresolve_tac [mp RS mp] 1); +Level 4 +P & Q + 1. !!R. P + 2. !!R. Q +> by (REPEAT (resolve_tac prems 1)); +Level 5 +P & Q +No subgoals! + + + +> val prems = goal HOL_Rule.thy "[| P & Q |] ==> P"; +Level 0 +P + 1. P +> prths (prems RL [and_def RS subst]); +! R. (P --> Q --> R) --> R [P & Q] +P & Q [P & Q] + +> prths (prems RL [and_def RS subst] RL [spec] RL [mp]); +P --> Q --> ?Q ==> ?Q [P & Q] + +> by (resolve_tac it 1); +Level 1 +P + 1. P --> Q --> P +> by (REPEAT (ares_tac [impI] 1)); +Level 2 +P +No subgoals! + + + + +> goal Set.thy "~ ?S : range(f :: 'a=>'a set)"; +Level 0 +~?S : range(f) + 1. ~?S : range(f) +> by (resolve_tac [notI] 1); +Level 1 +~?S : range(f) + 1. ?S : range(f) ==> False +> by (eresolve_tac [rangeE] 1); +Level 2 +~?S : range(f) + 1. !!x. ?S = f(x) ==> False +> by (eresolve_tac [equalityCE] 1); +Level 3 +~?S : range(f) + 1. !!x. [| ?c3(x) : ?S; ?c3(x) : f(x) |] ==> False + 2. !!x. [| ~?c3(x) : ?S; ~?c3(x) : f(x) |] ==> False +> by (dresolve_tac [CollectD] 1); +Level 4 +~{x. ?P7(x)} : range(f) + 1. !!x. [| ?c3(x) : f(x); ?P7(?c3(x)) |] ==> False + 2. !!x. [| ~?c3(x) : {x. ?P7(x)}; ~?c3(x) : f(x) |] ==> False +> by (contr_tac 1); +Level 5 +~{x. ~x : f(x)} : range(f) + 1. !!x. [| ~x : {x. ~x : f(x)}; ~x : f(x) |] ==> False +> by (swap_res_tac [CollectI] 1); +Level 6 +~{x. ~x : f(x)} : range(f) + 1. !!x. [| ~x : f(x); ~False |] ==> ~x : f(x) +> by (assume_tac 1); +Level 7 +~{x. ~x : f(x)} : range(f) +No subgoals! + +> choplev 0; +Level 0 +~?S : range(f) + 1. ~?S : range(f) +> by (best_tac (set_cs addSEs [equalityCE]) 1); +Level 1 +~{x. ~x : f(x)} : range(f) +No subgoals! diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/HOL-rules.txt --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/HOL-rules.txt Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,403 @@ +ruleshell.ML lemmas.ML set.ML fun.ML subset.ML equalities.ML prod.ML sum.ML wf.ML mono.ML fixedpt.ML nat.ML list.ML +---------------------------------------------------------------- +ruleshell.ML + +\idx{refl} t = t::'a +\idx{subst} [| s = t; P(s) |] ==> P(t::'a) +\idx{abs},!!x::'a. f(x)::'b = g(x)) ==> (%x.f(x)) = (%x.g(x))) +\idx{disch} (P ==> Q) ==> P-->Q +\idx{mp} [| P-->Q; P |] ==> Q + +\idx{True_def} True = ((%x.x)=(%x.x)) +\idx{All_def} All = (%P. P = (%x.True)) +\idx{Ex_def} Ex = (%P. P(Eps(P))) +\idx{False_def} False = (!P.P) +\idx{not_def} not = (%P. P-->False) +\idx{and_def} op & = (%P Q. !R. (P-->Q-->R) --> R) +\idx{or_def} op | = (%P Q. !R. (P-->R) --> (Q-->R) --> R) +\idx{Ex1_def} Ex1 == (%P. ? x. P(x) & (! y. P(y) --> y=x)) + +\idx{iff} (P-->Q) --> (Q-->P) --> (P=Q) +\idx{True_or_False} (P=True) | (P=False) +\idx{select} P(x::'a) --> P(Eps(P)) + +\idx{Inv_def} Inv = (%(f::'a=>'b) y. @x. f(x)=y) +\idx{o_def} op o = (%(f::'b=>'c) g (x::'a). f(g(x))) +\idx{Cond_def} Cond = (%P x y.@z::'a. (P=True --> z=x) & (P=False --> z=y)) + +---------------------------------------------------------------- +lemmas.ML + +\idx{sym} s=t ==> t=s +\idx{trans} [| r=s; s=t |] ==> r=t +\idx{box_equals} + [| a=b; a=c; b=d |] ==> c=d +\idx{ap_term} s=t ==> f(s)=f(t) +\idx{ap_thm} s::'a=>'b = t ==> s(x)=t(x) +\idx{cong} + [| f = g; x::'a = y |] ==> f(x) = g(y) +\idx{iffI} + [| P ==> Q; Q ==> P |] ==> P=Q +\idx{iffD1} [| P=Q; Q |] ==> P +\idx{iffE} + [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R +\idx{eqTrueI} P ==> P=True +\idx{eqTrueE} P=True ==> P +\idx{allI} (!!x::'a. P(x)) ==> !x. P(x) +\idx{spec} !x::'a.P(x) ==> P(x) +\idx{allE} [| !x.P(x); P(x) ==> R |] ==> R +\idx{all_dupE} + [| ! x.P(x); [| P(x); ! x.P(x) |] ==> R + |] ==> R +\idx{FalseE} False ==> P +\idx{False_neq_True} False=True ==> P +\idx{notI} (P ==> False) ==> ~P +\idx{notE} [| ~P; P |] ==> R +\idx{impE} [| P-->Q; P; Q ==> R |] ==> R +\idx{rev_mp} [| P; P --> Q |] ==> Q +\idx{contrapos} [| ~Q; P==>Q |] ==> ~P +\idx{exI} P(x) ==> ? x::'a.P(x) +\idx{exE} [| ? x::'a.P(x); !!x. P(x) ==> Q |] ==> Q + +\idx{conjI} [| P; Q |] ==> P&Q +\idx{conjunct1} [| P & Q |] ==> P +\idx{conjunct2} [| P & Q |] ==> Q +\idx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R +\idx{disjI1} P ==> P|Q +\idx{disjI2} Q ==> P|Q +\idx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R +\idx{ccontr} (~P ==> False) ==> P +\idx{classical} (~P ==> P) ==> P +\idx{notnotD} ~~P ==> P +\idx{ex1I} + [| P(a); !!x. P(x) ==> x=a |] ==> ?! x. P(x) +\idx{ex1E} + [| ?! x.P(x); !!x. [| P(x); ! y. P(y) --> y=x |] ==> R |] ==> R +\idx{select_equality} + [| P(a); !!x. P(x) ==> x=a |] ==> (@x.P(x)) = a +\idx{disjCI} (~Q ==> P) ==> P|Q +\idx{excluded_middle} ~P | P +\idx{impCE} [| P-->Q; ~P ==> R; Q ==> R |] ==> R +\idx{iffCE} + [| P=Q; [| P; Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R +\idx{exCI} (! x. ~P(x) ==> P(a)) ==> ? x.P(x) +\idx{swap} ~P ==> (~Q ==> P) ==> Q + +---------------------------------------------------------------- +simpdata.ML + +\idx{if_True} Cond(True,x,y) = x +\idx{if_False} Cond(False,x,y) = y +\idx{if_P} P ==> Cond(P,x,y) = x +\idx{if_not_P} ~P ==> Cond(P,x,y) = y +\idx{expand_if} + P(Cond(Q,x,y)) = ((Q --> P(x)) & (~Q --> P(y))) + +---------------------------------------------------------------- +\idx{set.ML} + +\idx{CollectI} [| P(a) |] ==> a : \{x.P(x)\} +\idx{CollectD} [| a : \{x.P(x)\} |] ==> P(a) +\idx{set_ext} [| !!x. (x:A) = (x:B) |] ==> A = B + +\idx{Ball_def} Ball(A,P) == ! x. x:A --> P(x) +\idx{Bex_def} Bex(A,P) == ? x. x:A & P(x) +\idx{subset_def} A <= B == ! x:A. x:B +\idx{Un_def} A Un B == \{x.x:A | x:B\} +\idx{Int_def} A Int B == \{x.x:A & x:B\} +\idx{Compl_def} Compl(A) == \{x. ~x:A\} +\idx{Inter_def} Inter(S) == \{x. ! A:S. x:A\} +\idx{Union_def} Union(S) == \{x. ? A:S. x:A\} +\idx{INTER_def} INTER(A,B) == \{y. ! x:A. y: B(x)\} +\idx{UNION_def} UNION(A,B) == \{y. ? x:A. y: B(x)\} +\idx{mono_def} mono(f) == (!A B. A <= B --> f(A) <= f(B)) +\idx{image_def} f``A == \{y. ? x:A. y=f(x)\} +\idx{singleton_def} \{a\} == \{x.x=a\} +\idx{range_def} range(f) == \{y. ? x. y=f(x)\} +\idx{One_One_def} One_One(f) == ! x y. f(x)=f(y) --> x=y +\idx{One_One_on_def} One_One_on(f,A) == !x y. x:A --> y:A --> f(x)=f(y) --> x=y +\idx{Onto_def} Onto(f) == ! y. ? x. y=f(x) + + +\idx{Collect_cong} [| !!x. P(x)=Q(x) |] ==> \{x. P(x)\} = \{x. Q(x)\} + +\idx{ballI} [| !!x. x:A ==> P(x) |] ==> ! x:A. P(x) +\idx{bspec} [| ! x:A. P(x); x:A |] ==> P(x) +\idx{ballE} [| ! x:A. P(x); P(x) ==> Q; ~ x:A ==> Q |] ==> Q + +\idx{bexI} [| P(x); x:A |] ==> ? x:A. P(x) +\idx{bexCI} [| ! x:A. ~P(x) ==> P(a); a:A |] ==> ? x:A.P(x) +\idx{bexE} [| ? x:A. P(x); !!x. [| x:A; P(x) |] ==> Q |] ==> Q + +\idx{ball_cong} + [| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==> + (! x:A. P(x)) = (! x:A'. P'(x)) + +\idx{bex_cong} + [| A=A'; !!x. x:A' ==> P(x) = P'(x) |] ==> + (? x:A. P(x)) = (? x:A'. P'(x)) + +\idx{subsetI} (!!x.x:A ==> x:B) ==> A <= B +\idx{subsetD} [| A <= B; c:A |] ==> c:B +\idx{subsetCE} [| A <= B; ~(c:A) ==> P; c:B ==> P |] ==> P + +\idx{subset_refl} A <= A +\idx{subset_antisym} [| A <= B; B <= A |] ==> A = B +\idx{subset_trans} [| A<=B; B<=C |] ==> A<=C + +\idx{equalityD1} A = B ==> A<=B +\idx{equalityD2} A = B ==> B<=A +\idx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P + +\idx{singletonI} a : \{a\} +\idx{singletonD} b : \{a\} ==> b=a + +\idx{imageI} [| x:A |] ==> f(x) : f``A +\idx{imageE} [| b : f``A; !!x.[| b=f(x); x:A |] ==> P |] ==> P + +\idx{rangeI} f(x) : range(f) +\idx{rangeE} [| b : range(f); !!x.[| b=f(x) |] ==> P |] ==> P + +\idx{UnionI} [| X:C; A:X |] ==> A : Union(C) +\idx{UnionE} [| A : Union(C); !!X.[| A:X; X:C |] ==> R |] ==> R + +\idx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter(C) +\idx{InterD} [| A : Inter(C); X:C |] ==> A:X +\idx{InterE} [| A : Inter(C); A:X ==> R; ~ X:C ==> R |] ==> R + +\idx{UN_I} [| a:A; b: B(a) |] ==> b: (UN x:A. B(x)) +\idx{UN_E} [| b : (UN x:A. B(x)); !!x.[| x:A; b: B(x) |] ==> R |] ==> R + +\idx{INT_I} (!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x)) +\idx{INT_D} [| b : (INT x:A. B(x)); a:A |] ==> b: B(a) +\idx{INT_E} [| b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R |] ==> R + +\idx{UnI1} c:A ==> c : A Un B +\idx{UnI2} c:B ==> c : A Un B +\idx{UnCI} (~c:B ==> c:A) ==> c : A Un B +\idx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P + +\idx{IntI} [| c:A; c:B |] ==> c : A Int B +\idx{IntD1} c : A Int B ==> c:A +\idx{IntD2} c : A Int B ==> c:B +\idx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P + +\idx{ComplI} [| c:A ==> False |] ==> c : Compl(A) +\idx{ComplD} [| c : Compl(A) |] ==> ~c:A + +\idx{monoI} [| !!A B. A <= B ==> f(A) <= f(B) |] ==> mono(f) +\idx{monoD} [| mono(f); A <= B |] ==> f(A) <= f(B) + + +---------------------------------------------------------------- +\idx{fun.ML} + +\idx{One_OneI} [| !! x y. f(x) = f(y) ==> x=y |] ==> One_One(f) +\idx{One_One_inverseI} (!!x. g(f(x)) = x) ==> One_One(f) +\idx{One_OneD} [| One_One(f); f(x) = f(y) |] ==> x=y + +\idx{Inv_f_f} One_One(f) ==> Inv(f,f(x)) = x +\idx{f_Inv_f} y : range(f) ==> f(Inv(f,y)) = y + +\idx{Inv_injective} + [| Inv(f,x)=Inv(f,y); x: range(f); y: range(f) |] ==> x=y + +\idx{One_One_onI} + (!! x y. [| f(x) = f(y); x:A; y:A |] ==> x=y) ==> One_One_on(f,A) + +\idx{One_One_on_inverseI} + (!!x. x:A ==> g(f(x)) = x) ==> One_One_on(f,A) + +\idx{One_One_onD} + [| One_One_on(f,A); f(x)=f(y); x:A; y:A |] ==> x=y + +\idx{One_One_on_contraD} + [| One_One_on(f,A); ~x=y; x:A; y:A |] ==> ~ f(x)=f(y) + + +---------------------------------------------------------------- +\idx{subset.ML} + +\idx{Union_upper} B:A ==> B <= Union(A) +\idx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union(A) <= C + +\idx{Inter_lower} B:A ==> Inter(A) <= B +\idx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter(A) + +\idx{Un_upper1} A <= A Un B +\idx{Un_upper2} B <= A Un B +\idx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C + +\idx{Int_lower1} A Int B <= A +\idx{Int_lower2} A Int B <= B +\idx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B + + +---------------------------------------------------------------- +\idx{equalities.ML} + +\idx{Int_absorb} A Int A = A +\idx{Int_commute} A Int B = B Int A +\idx{Int_assoc} (A Int B) Int C = A Int (B Int C) +\idx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C) + +\idx{Un_absorb} A Un A = A +\idx{Un_commute} A Un B = B Un A +\idx{Un_assoc} (A Un B) Un C = A Un (B Un C) +\idx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C) + +\idx{Compl_disjoint} A Int Compl(A) = \{x.False\} +\idx{Compl_partition A Un Compl(A) = \{x.True\} +\idx{double_complement} Compl(Compl(A)) = A + + +\idx{Compl_Un} Compl(A Un B) = Compl(A) Int Compl(B) +\idx{Compl_Int} Compl(A Int B) = Compl(A) Un Compl(B) + +\idx{Union_Un_distrib} Union(A Un B) = Union(A) Un Union(B) +\idx{Int_Union_image} A Int Union(B) = (UN C:B. A Int C) +\idx{Un_Union_image} (UN x:C. A(x) Un B(x)) = Union(A``C) Un Union(B``C) + +\idx{Inter_Un_distrib} Inter(A Un B) = Inter(A) Int Inter(B) +\idx{Un_Inter_image} A Un Inter(B) = (INT C:B. A Un C) +\idx{Int_Inter_image} (INT x:C. A(x) Int B(x)) = Inter(A``C) Int Inter(B``C) + + +---------------------------------------------------------------- +prod.ML + + mixfix = [ Delimfix((1<_,/_>), ['a,'b] => ('a,'b)prod, Pair), + TInfixl(*, prod, 20) ], +thy = extend_theory Set.thy Prod + [([prod],([[term],[term]],term))], + ([fst], 'a * 'b => 'a), + ([snd], 'a * 'b => 'b), + ([split], ['a * 'b, ['a,'b]=>'c] => 'c)], +\idx{fst_def} fst(p) == @a. ? b. p = ), +\idx{snd_def} snd(p) == @b. ? a. p = ), +\idx{split_def} split(p,c) == c(fst(p),snd(p))) + +\idx{Pair_inject} [| = ; [| a=a'; b=b' |] ==> R |] ==> R + +\idx{fst_conv} fst() = a +\idx{snd_conv} snd() = b +\idx{split_conv} split(, c) = c(a,b) + +\idx{surjective_pairing} p = + +---------------------------------------------------------------- +sum.ML + + mixfix = [TInfixl(+, sum, 10)], +thy = extend_theory Prod.thy sum + [([sum], ([[term],[term]],term))], + [Inl], 'a => 'a+'b), + [Inr], 'b => 'a+'b), + [when], ['a+'b, 'a=>'c, 'b=>'c] =>'c)], +\idx{when_def} when == (%p f g. @z. (!x. p=Inl(x) --> z=f(x)) + & (!y. p=Inr(y) --> z=g(y)))) + +\idx{Inl_not_Inr} ~ (Inl(a) = Inr(b)) + +\idx{One_One_Inl} One_One(Inl) + +\idx{One_One_Inr} One_One(Inr) + +\idx{when_Inl_conv} when(Inl(x), f, g) = f(x) + +\idx{when_Inr_conv} when(Inr(x), f, g) = g(x) + +\idx{sumE} + [| !!x::'a. P(Inl(x)); !!y::'b. P(Inr(y)) + |] ==> P(s) + +\idx{surjective_sum} when(s, %x::'a. f(Inl(x)), %y::'b. f(Inr(y))) = f(s) + + +???????????????????????????????????????????????????????????????? +trancl? + +---------------------------------------------------------------- +nat.ML + + Sext\{mixfix=[Delimfix(0, nat, 0), + Infixl(<,[nat,nat] => bool,50)], +thy = extend_theory Trancl.thy Nat +[nat], ([],term)) +[nat_case], [nat, 'a, nat=>'a] =>'a), +[pred_nat],nat*nat) set), +[nat_rec], [nat, 'a, [nat, 'a]=>'a] => 'a) + +\idx{nat_case_def} nat_case == (%n a f. @z. (n=0 --> z=a) + & (!x. n=Suc(x) --> z=f(x)))), +\idx{pred_nat_def} pred_nat == \{p. ? n. p = \} ), +\idx{less_def} m:trancl(pred_nat)), +\idx{nat_rec_def} + nat_rec(n,c,d) == wfrec(trancl(pred_nat), + %rec l. nat_case(l, c, %m. d(m,rec(m))), + n) ) + +\idx{nat_induct} [| P(0); !!k. [| P(k) |] ==> P(Suc(k)) |] ==> P(n) + + +\idx{Suc_not_Zero} ~ (Suc(m) = 0) +\idx{One_One_Suc} One_One(Suc) +\idx{n_not_Suc_n} ~(n=Suc(n)) + +\idx{nat_case_0_conv} nat_case(0, a, f) = a + +\idx{nat_case_Suc_conv} nat_case(Suc(k), a, f) = f(k) + +\idx{pred_natI} : pred_nat +\idx{pred_natE} + [| p : pred_nat; !!x n. [| p = |] ==> R + |] ==> R + +\idx{wf_pred_nat} wf(pred_nat) + +\idx{nat_rec_0_conv} nat_rec(0,c,h) = c + +\idx{nat_rec_Suc_conv} nat_rec(Suc(n), c, h) = h(n, nat_rec(n,c,h)) + + +(*** Basic properties of less than ***) +\idx{less_trans} [| i i ~m P(m) |] ==> P(n) |] ==> P(n) + +\idx{less_linear} m 'a list), + ([list_rec], ['a list, 'b, ['a ,'a list, 'b]=>'b] => 'b), + ([list_all], ('a => bool) => ('a list => bool)), + ([map], ('a=>'b) => ('a list => 'b list)) + +\idx{map_def} map(f,xs) == list_rec(xs, Nil, %x l r. Cons(f(x), r)) ) + +\idx{list_induct} + [| P(Nil); + !!x xs. [| P(xs) |] ==> P(Cons(x,xs)) |] ==> P(l) + +\idx{Cons_not_Nil} ~ Cons(x,xs) = Nil +\idx{Cons_Cons_eq} (Cons(x,xs)=Cons(y,ys)) = (x=y & xs=ys) + +\idx{list_rec_Nil_conv} list_rec(Nil,c,h) = c +\idx{list_rec_Cons_conv} list_rec(Cons(a,l), c, h) = + h(a, l, list_rec(l,c,h)) + +\idx{map_Nil_conv} map(f,Nil) = Nil +\idx{map_Cons_conv} map(f, Cons(x,xs)) = Cons(f(x), map(f,xs)) + diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/HOL.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/HOL.tex Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,2981 @@ +%% $Id$ +\chapter{Higher-Order Logic} +\index{higher-order logic|(} +\index{HOL system@{\sc hol} system} + +The theory~\thydx{HOL} implements higher-order logic. It is based on +Gordon's~{\sc hol} system~\cite{mgordon-hol}, which itself is based on +Church's original paper~\cite{church40}. Andrews's +book~\cite{andrews86} is a full description of the original +Church-style higher-order logic. Experience with the {\sc hol} system +has demonstrated that higher-order logic is widely applicable in many +areas of mathematics and computer science, not just hardware +verification, {\sc hol}'s original \textit{raison d'\^etre\/}. It is +weaker than {\ZF} set theory but for most applications this does not +matter. If you prefer {\ML} to Lisp, you will probably prefer \HOL\ +to~{\ZF}. + +The syntax of \HOL\footnote{Earlier versions of Isabelle's \HOL\ used a +different syntax. Ancient releases of Isabelle included still another version +of~\HOL, with explicit type inference rules~\cite{paulson-COLOG}. This +version no longer exists, but \thydx{ZF} supports a similar style of +reasoning.} follows $\lambda$-calculus and functional programming. Function +application is curried. To apply the function~$f$ of type +$\tau@1\To\tau@2\To\tau@3$ to the arguments~$a$ and~$b$ in \HOL, you simply +write $f\,a\,b$. There is no `apply' operator as in \thydx{ZF}. Note that +$f(a,b)$ means ``$f$ applied to the pair $(a,b)$'' in \HOL. We write ordered +pairs as $(a,b)$, not $\langle a,b\rangle$ as in {\ZF}. + +\HOL\ has a distinct feel, compared with {\ZF} and {\CTT}. It +identifies object-level types with meta-level types, taking advantage of +Isabelle's built-in type-checker. It identifies object-level functions +with meta-level functions, so it uses Isabelle's operations for abstraction +and application. + +These identifications allow Isabelle to support \HOL\ particularly +nicely, but they also mean that \HOL\ requires more sophistication +from the user --- in particular, an understanding of Isabelle's type +system. Beginners should work with \texttt{show_types} (or even +\texttt{show_sorts}) set to \texttt{true}. +% Gain experience by +%working in first-order logic before attempting to use higher-order logic. +%This chapter assumes familiarity with~{\FOL{}}. + + +\begin{figure} +\begin{constants} + \it name &\it meta-type & \it description \\ + \cdx{Trueprop}& $bool\To prop$ & coercion to $prop$\\ + \cdx{Not} & $bool\To bool$ & negation ($\neg$) \\ + \cdx{True} & $bool$ & tautology ($\top$) \\ + \cdx{False} & $bool$ & absurdity ($\bot$) \\ + \cdx{If} & $[bool,\alpha,\alpha]\To\alpha$ & conditional \\ + \cdx{Let} & $[\alpha,\alpha\To\beta]\To\beta$ & let binder +\end{constants} +\subcaption{Constants} + +\begin{constants} +\index{"@@{\tt\at} symbol} +\index{*"! symbol}\index{*"? symbol} +\index{*"?"! symbol}\index{*"E"X"! symbol} + \it symbol &\it name &\it meta-type & \it description \\ + \tt\at & \cdx{Eps} & $(\alpha\To bool)\To\alpha$ & + Hilbert description ($\varepsilon$) \\ + {\tt!~} or \sdx{ALL} & \cdx{All} & $(\alpha\To bool)\To bool$ & + universal quantifier ($\forall$) \\ + {\tt?~} or \sdx{EX} & \cdx{Ex} & $(\alpha\To bool)\To bool$ & + existential quantifier ($\exists$) \\ + {\tt?!} or \texttt{EX!} & \cdx{Ex1} & $(\alpha\To bool)\To bool$ & + unique existence ($\exists!$)\\ + \texttt{LEAST} & \cdx{Least} & $(\alpha::ord \To bool)\To\alpha$ & + least element +\end{constants} +\subcaption{Binders} + +\begin{constants} +\index{*"= symbol} +\index{&@{\tt\&} symbol} +\index{*"| symbol} +\index{*"-"-"> symbol} + \it symbol & \it meta-type & \it priority & \it description \\ + \sdx{o} & $[\beta\To\gamma,\alpha\To\beta]\To (\alpha\To\gamma)$ & + Left 55 & composition ($\circ$) \\ + \tt = & $[\alpha,\alpha]\To bool$ & Left 50 & equality ($=$) \\ + \tt < & $[\alpha::ord,\alpha]\To bool$ & Left 50 & less than ($<$) \\ + \tt <= & $[\alpha::ord,\alpha]\To bool$ & Left 50 & + less than or equals ($\leq$)\\ + \tt \& & $[bool,bool]\To bool$ & Right 35 & conjunction ($\conj$) \\ + \tt | & $[bool,bool]\To bool$ & Right 30 & disjunction ($\disj$) \\ + \tt --> & $[bool,bool]\To bool$ & Right 25 & implication ($\imp$) +\end{constants} +\subcaption{Infixes} +\caption{Syntax of \texttt{HOL}} \label{hol-constants} +\end{figure} + + +\begin{figure} +\index{*let symbol} +\index{*in symbol} +\dquotes +\[\begin{array}{rclcl} + term & = & \hbox{expression of class~$term$} \\ + & | & "\at~" id " . " formula \\ + & | & + \multicolumn{3}{l}{"let"~id~"="~term";"\dots";"~id~"="~term~"in"~term} \\ + & | & + \multicolumn{3}{l}{"if"~formula~"then"~term~"else"~term} \\ + & | & "LEAST"~ id " . " formula \\[2ex] + formula & = & \hbox{expression of type~$bool$} \\ + & | & term " = " term \\ + & | & term " \ttilde= " term \\ + & | & term " < " term \\ + & | & term " <= " term \\ + & | & "\ttilde\ " formula \\ + & | & formula " \& " formula \\ + & | & formula " | " formula \\ + & | & formula " --> " formula \\ + & | & "!~~~" id~id^* " . " formula + & | & "ALL~" id~id^* " . " formula \\ + & | & "?~~~" id~id^* " . " formula + & | & "EX~~" id~id^* " . " formula \\ + & | & "?!~~" id~id^* " . " formula + & | & "EX!~" id~id^* " . " formula + \end{array} +\] +\caption{Full grammar for \HOL} \label{hol-grammar} +\end{figure} + + +\section{Syntax} + +Figure~\ref{hol-constants} lists the constants (including infixes and +binders), while Fig.\ts\ref{hol-grammar} presents the grammar of +higher-order logic. Note that $a$\verb|~=|$b$ is translated to +$\neg(a=b)$. + +\begin{warn} + \HOL\ has no if-and-only-if connective; logical equivalence is expressed + using equality. But equality has a high priority, as befitting a + relation, while if-and-only-if typically has the lowest priority. Thus, + $\neg\neg P=P$ abbreviates $\neg\neg (P=P)$ and not $(\neg\neg P)=P$. + When using $=$ to mean logical equivalence, enclose both operands in + parentheses. +\end{warn} + +\subsection{Types and classes} +The universal type class of higher-order terms is called~\cldx{term}. +By default, explicit type variables have class \cldx{term}. In +particular the equality symbol and quantifiers are polymorphic over +class \texttt{term}. + +The type of formulae, \tydx{bool}, belongs to class \cldx{term}; thus, +formulae are terms. The built-in type~\tydx{fun}, which constructs +function types, is overloaded with arity {\tt(term,\thinspace + term)\thinspace term}. Thus, $\sigma\To\tau$ belongs to class~{\tt + term} if $\sigma$ and~$\tau$ do, allowing quantification over +functions. + +\HOL\ offers various methods for introducing new types. +See~\S\ref{sec:HOL:Types} and~\S\ref{sec:HOL:datatype}. + +Theory \thydx{Ord} defines the syntactic class \cldx{ord} of order +signatures; the relations $<$ and $\leq$ are polymorphic over this +class, as are the functions \cdx{mono}, \cdx{min} and \cdx{max}, and +the \cdx{LEAST} operator. \thydx{Ord} also defines a subclass +\cldx{order} of \cldx{ord} which axiomatizes partially ordered types +(w.r.t.\ $\le$). + +Three other syntactic type classes --- \cldx{plus}, \cldx{minus} and +\cldx{times} --- permit overloading of the operators {\tt+},\index{*"+ + symbol} {\tt-}\index{*"- symbol} and {\tt*}.\index{*"* symbol} In +particular, {\tt-} is instantiated for set difference and subtraction +on natural numbers. + +If you state a goal containing overloaded functions, you may need to include +type constraints. Type inference may otherwise make the goal more +polymorphic than you intended, with confusing results. For example, the +variables $i$, $j$ and $k$ in the goal $i \le j \Imp i \le j+k$ have type +$\alpha::\{ord,plus\}$, although you may have expected them to have some +numeric type, e.g. $nat$. Instead you should have stated the goal as +$(i::nat) \le j \Imp i \le j+k$, which causes all three variables to have +type $nat$. + +\begin{warn} + If resolution fails for no obvious reason, try setting + \ttindex{show_types} to \texttt{true}, causing Isabelle to display + types of terms. Possibly set \ttindex{show_sorts} to \texttt{true} as + well, causing Isabelle to display type classes and sorts. + + \index{unification!incompleteness of} + Where function types are involved, Isabelle's unification code does not + guarantee to find instantiations for type variables automatically. Be + prepared to use \ttindex{res_inst_tac} instead of \texttt{resolve_tac}, + possibly instantiating type variables. Setting + \ttindex{Unify.trace_types} to \texttt{true} causes Isabelle to report + omitted search paths during unification.\index{tracing!of unification} +\end{warn} + + +\subsection{Binders} + +Hilbert's {\bf description} operator~$\varepsilon x. P[x]$ stands for +some~$x$ satisfying~$P$, if such exists. Since all terms in \HOL\ +denote something, a description is always meaningful, but we do not +know its value unless $P$ defines it uniquely. We may write +descriptions as \cdx{Eps}($\lambda x. P[x]$) or use the syntax +\hbox{\tt \at $x$.\ $P[x]$}. + +Existential quantification is defined by +\[ \exists x. P~x \;\equiv\; P(\varepsilon x. P~x). \] +The unique existence quantifier, $\exists!x. P$, is defined in terms +of~$\exists$ and~$\forall$. An Isabelle binder, it admits nested +quantifications. For instance, $\exists!x\,y. P\,x\,y$ abbreviates +$\exists!x. \exists!y. P\,x\,y$; note that this does not mean that there +exists a unique pair $(x,y)$ satisfying~$P\,x\,y$. + +\index{*"! symbol}\index{*"? symbol}\index{HOL system@{\sc hol} system} +Quantifiers have two notations. As in Gordon's {\sc hol} system, \HOL\ +uses~{\tt!}\ and~{\tt?}\ to stand for $\forall$ and $\exists$. The +existential quantifier must be followed by a space; thus {\tt?x} is an +unknown, while \verb'? x. f x=y' is a quantification. Isabelle's usual +notation for quantifiers, \sdx{ALL} and \sdx{EX}, is also +available. Both notations are accepted for input. The {\ML} reference +\ttindexbold{HOL_quantifiers} governs the output notation. If set to {\tt +true}, then~{\tt!}\ and~{\tt?}\ are displayed; this is the default. If set +to \texttt{false}, then~\texttt{ALL} and~\texttt{EX} are displayed. + +If $\tau$ is a type of class \cldx{ord}, $P$ a formula and $x$ a +variable of type $\tau$, then the term \cdx{LEAST}~$x. P[x]$ is defined +to be the least (w.r.t.\ $\le$) $x$ such that $P~x$ holds (see +Fig.~\ref{hol-defs}). The definition uses Hilbert's $\varepsilon$ +choice operator, so \texttt{Least} is always meaningful, but may yield +nothing useful in case there is not a unique least element satisfying +$P$.\footnote{Class $ord$ does not require much of its instances, so + $\le$ need not be a well-ordering, not even an order at all!} + +\medskip All these binders have priority 10. + +\begin{warn} +The low priority of binders means that they need to be enclosed in +parenthesis when they occur in the context of other operations. For example, +instead of $P \land \forall x. Q$ you need to write $P \land (\forall x. Q)$. +\end{warn} + + +\subsection{The \sdx{let} and \sdx{case} constructions} +Local abbreviations can be introduced by a \texttt{let} construct whose +syntax appears in Fig.\ts\ref{hol-grammar}. Internally it is translated into +the constant~\cdx{Let}. It can be expanded by rewriting with its +definition, \tdx{Let_def}. + +\HOL\ also defines the basic syntax +\[\dquotes"case"~e~"of"~c@1~"=>"~e@1~"|" \dots "|"~c@n~"=>"~e@n\] +as a uniform means of expressing \texttt{case} constructs. Therefore \texttt{case} +and \sdx{of} are reserved words. Initially, this is mere syntax and has no +logical meaning. By declaring translations, you can cause instances of the +\texttt{case} construct to denote applications of particular case operators. +This is what happens automatically for each \texttt{datatype} definition +(see~\S\ref{sec:HOL:datatype}). + +\begin{warn} +Both \texttt{if} and \texttt{case} constructs have as low a priority as +quantifiers, which requires additional enclosing parentheses in the context +of most other operations. For example, instead of $f~x = {\tt if\dots +then\dots else}\dots$ you need to write $f~x = ({\tt if\dots then\dots +else\dots})$. +\end{warn} + +\section{Rules of inference} + +\begin{figure} +\begin{ttbox}\makeatother +\tdx{refl} t = (t::'a) +\tdx{subst} [| s = t; P s |] ==> P (t::'a) +\tdx{ext} (!!x::'a. (f x :: 'b) = g x) ==> (\%x. f x) = (\%x. g x) +\tdx{impI} (P ==> Q) ==> P-->Q +\tdx{mp} [| P-->Q; P |] ==> Q +\tdx{iff} (P-->Q) --> (Q-->P) --> (P=Q) +\tdx{selectI} P(x::'a) ==> P(@x. P x) +\tdx{True_or_False} (P=True) | (P=False) +\end{ttbox} +\caption{The \texttt{HOL} rules} \label{hol-rules} +\end{figure} + +Figure~\ref{hol-rules} shows the primitive inference rules of~\HOL{}, +with their~{\ML} names. Some of the rules deserve additional +comments: +\begin{ttdescription} +\item[\tdx{ext}] expresses extensionality of functions. +\item[\tdx{iff}] asserts that logically equivalent formulae are + equal. +\item[\tdx{selectI}] gives the defining property of the Hilbert + $\varepsilon$-operator. It is a form of the Axiom of Choice. The derived rule + \tdx{select_equality} (see below) is often easier to use. +\item[\tdx{True_or_False}] makes the logic classical.\footnote{In + fact, the $\varepsilon$-operator already makes the logic classical, as + shown by Diaconescu; see Paulson~\cite{paulson-COLOG} for details.} +\end{ttdescription} + + +\begin{figure}\hfuzz=4pt%suppress "Overfull \hbox" message +\begin{ttbox}\makeatother +\tdx{True_def} True == ((\%x::bool. x)=(\%x. x)) +\tdx{All_def} All == (\%P. P = (\%x. True)) +\tdx{Ex_def} Ex == (\%P. P(@x. P x)) +\tdx{False_def} False == (!P. P) +\tdx{not_def} not == (\%P. P-->False) +\tdx{and_def} op & == (\%P Q. !R. (P-->Q-->R) --> R) +\tdx{or_def} op | == (\%P Q. !R. (P-->R) --> (Q-->R) --> R) +\tdx{Ex1_def} Ex1 == (\%P. ? x. P x & (! y. P y --> y=x)) + +\tdx{o_def} op o == (\%(f::'b=>'c) g x::'a. f(g x)) +\tdx{if_def} If P x y == + (\%P x y. @z::'a.(P=True --> z=x) & (P=False --> z=y)) +\tdx{Let_def} Let s f == f s +\tdx{Least_def} Least P == @x. P(x) & (ALL y. P(y) --> x <= y)" +\end{ttbox} +\caption{The \texttt{HOL} definitions} \label{hol-defs} +\end{figure} + + +\HOL{} follows standard practice in higher-order logic: only a few +connectives are taken as primitive, with the remainder defined obscurely +(Fig.\ts\ref{hol-defs}). Gordon's {\sc hol} system expresses the +corresponding definitions \cite[page~270]{mgordon-hol} using +object-equality~({\tt=}), which is possible because equality in +higher-order logic may equate formulae and even functions over formulae. +But theory~\HOL{}, like all other Isabelle theories, uses +meta-equality~({\tt==}) for definitions. +\begin{warn} +The definitions above should never be expanded and are shown for completeness +only. Instead users should reason in terms of the derived rules shown below +or, better still, using high-level tactics +(see~\S\ref{sec:HOL:generic-packages}). +\end{warn} + +Some of the rules mention type variables; for example, \texttt{refl} +mentions the type variable~{\tt'a}. This allows you to instantiate +type variables explicitly by calling \texttt{res_inst_tac}. + + +\begin{figure} +\begin{ttbox} +\tdx{sym} s=t ==> t=s +\tdx{trans} [| r=s; s=t |] ==> r=t +\tdx{ssubst} [| t=s; P s |] ==> P t +\tdx{box_equals} [| a=b; a=c; b=d |] ==> c=d +\tdx{arg_cong} x = y ==> f x = f y +\tdx{fun_cong} f = g ==> f x = g x +\tdx{cong} [| f = g; x = y |] ==> f x = g y +\tdx{not_sym} t ~= s ==> s ~= t +\subcaption{Equality} + +\tdx{TrueI} True +\tdx{FalseE} False ==> P + +\tdx{conjI} [| P; Q |] ==> P&Q +\tdx{conjunct1} [| P&Q |] ==> P +\tdx{conjunct2} [| P&Q |] ==> Q +\tdx{conjE} [| P&Q; [| P; Q |] ==> R |] ==> R + +\tdx{disjI1} P ==> P|Q +\tdx{disjI2} Q ==> P|Q +\tdx{disjE} [| P | Q; P ==> R; Q ==> R |] ==> R + +\tdx{notI} (P ==> False) ==> ~ P +\tdx{notE} [| ~ P; P |] ==> R +\tdx{impE} [| P-->Q; P; Q ==> R |] ==> R +\subcaption{Propositional logic} + +\tdx{iffI} [| P ==> Q; Q ==> P |] ==> P=Q +\tdx{iffD1} [| P=Q; P |] ==> Q +\tdx{iffD2} [| P=Q; Q |] ==> P +\tdx{iffE} [| P=Q; [| P --> Q; Q --> P |] ==> R |] ==> R +% +%\tdx{eqTrueI} P ==> P=True +%\tdx{eqTrueE} P=True ==> P +\subcaption{Logical equivalence} + +\end{ttbox} +\caption{Derived rules for \HOL} \label{hol-lemmas1} +\end{figure} + + +\begin{figure} +\begin{ttbox}\makeatother +\tdx{allI} (!!x. P x) ==> !x. P x +\tdx{spec} !x. P x ==> P x +\tdx{allE} [| !x. P x; P x ==> R |] ==> R +\tdx{all_dupE} [| !x. P x; [| P x; !x. P x |] ==> R |] ==> R + +\tdx{exI} P x ==> ? x. P x +\tdx{exE} [| ? x. P x; !!x. P x ==> Q |] ==> Q + +\tdx{ex1I} [| P a; !!x. P x ==> x=a |] ==> ?! x. P x +\tdx{ex1E} [| ?! x. P x; !!x. [| P x; ! y. P y --> y=x |] ==> R + |] ==> R + +\tdx{select_equality} [| P a; !!x. P x ==> x=a |] ==> (@x. P x) = a +\subcaption{Quantifiers and descriptions} + +\tdx{ccontr} (~P ==> False) ==> P +\tdx{classical} (~P ==> P) ==> P +\tdx{excluded_middle} ~P | P + +\tdx{disjCI} (~Q ==> P) ==> P|Q +\tdx{exCI} (! x. ~ P x ==> P a) ==> ? x. P x +\tdx{impCE} [| P-->Q; ~ P ==> R; Q ==> R |] ==> R +\tdx{iffCE} [| P=Q; [| P;Q |] ==> R; [| ~P; ~Q |] ==> R |] ==> R +\tdx{notnotD} ~~P ==> P +\tdx{swap} ~P ==> (~Q ==> P) ==> Q +\subcaption{Classical logic} + +%\tdx{if_True} (if True then x else y) = x +%\tdx{if_False} (if False then x else y) = y +\tdx{if_P} P ==> (if P then x else y) = x +\tdx{if_not_P} ~ P ==> (if P then x else y) = y +\tdx{split_if} P(if Q then x else y) = ((Q --> P x) & (~Q --> P y)) +\subcaption{Conditionals} +\end{ttbox} +\caption{More derived rules} \label{hol-lemmas2} +\end{figure} + +Some derived rules are shown in Figures~\ref{hol-lemmas1} +and~\ref{hol-lemmas2}, with their {\ML} names. These include natural rules +for the logical connectives, as well as sequent-style elimination rules for +conjunctions, implications, and universal quantifiers. + +Note the equality rules: \tdx{ssubst} performs substitution in +backward proofs, while \tdx{box_equals} supports reasoning by +simplifying both sides of an equation. + +The following simple tactics are occasionally useful: +\begin{ttdescription} +\item[\ttindexbold{strip_tac} $i$] applies \texttt{allI} and \texttt{impI} + repeatedly to remove all outermost universal quantifiers and implications + from subgoal $i$. +\item[\ttindexbold{case_tac} {\tt"}$P${\tt"} $i$] performs case distinction + on $P$ for subgoal $i$: the latter is replaced by two identical subgoals + with the added assumptions $P$ and $\neg P$, respectively. +\end{ttdescription} + + +\begin{figure} +\begin{center} +\begin{tabular}{rrr} + \it name &\it meta-type & \it description \\ +\index{{}@\verb'{}' symbol} + \verb|{}| & $\alpha\,set$ & the empty set \\ + \cdx{insert} & $[\alpha,\alpha\,set]\To \alpha\,set$ + & insertion of element \\ + \cdx{Collect} & $(\alpha\To bool)\To\alpha\,set$ + & comprehension \\ + \cdx{Compl} & $\alpha\,set\To\alpha\,set$ + & complement \\ + \cdx{INTER} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ + & intersection over a set\\ + \cdx{UNION} & $[\alpha\,set,\alpha\To\beta\,set]\To\beta\,set$ + & union over a set\\ + \cdx{Inter} & $(\alpha\,set)set\To\alpha\,set$ + &set of sets intersection \\ + \cdx{Union} & $(\alpha\,set)set\To\alpha\,set$ + &set of sets union \\ + \cdx{Pow} & $\alpha\,set \To (\alpha\,set)set$ + & powerset \\[1ex] + \cdx{range} & $(\alpha\To\beta )\To\beta\,set$ + & range of a function \\[1ex] + \cdx{Ball}~~\cdx{Bex} & $[\alpha\,set,\alpha\To bool]\To bool$ + & bounded quantifiers +\end{tabular} +\end{center} +\subcaption{Constants} + +\begin{center} +\begin{tabular}{llrrr} + \it symbol &\it name &\it meta-type & \it priority & \it description \\ + \sdx{INT} & \cdx{INTER1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & + intersection over a type\\ + \sdx{UN} & \cdx{UNION1} & $(\alpha\To\beta\,set)\To\beta\,set$ & 10 & + union over a type +\end{tabular} +\end{center} +\subcaption{Binders} + +\begin{center} +\index{*"`"` symbol} +\index{*": symbol} +\index{*"<"= symbol} +\begin{tabular}{rrrr} + \it symbol & \it meta-type & \it priority & \it description \\ + \tt `` & $[\alpha\To\beta ,\alpha\,set]\To \beta\,set$ + & Left 90 & image \\ + \sdx{Int} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ + & Left 70 & intersection ($\int$) \\ + \sdx{Un} & $[\alpha\,set,\alpha\,set]\To\alpha\,set$ + & Left 65 & union ($\un$) \\ + \tt: & $[\alpha ,\alpha\,set]\To bool$ + & Left 50 & membership ($\in$) \\ + \tt <= & $[\alpha\,set,\alpha\,set]\To bool$ + & Left 50 & subset ($\subseteq$) +\end{tabular} +\end{center} +\subcaption{Infixes} +\caption{Syntax of the theory \texttt{Set}} \label{hol-set-syntax} +\end{figure} + + +\begin{figure} +\begin{center} \tt\frenchspacing +\index{*"! symbol} +\begin{tabular}{rrr} + \it external & \it internal & \it description \\ + $a$ \ttilde: $b$ & \ttilde($a$ : $b$) & \rm non-membership\\ + {\ttlbrace}$a@1$, $\ldots${\ttrbrace} & insert $a@1$ $\ldots$ {\ttlbrace}{\ttrbrace} & \rm finite set \\ + {\ttlbrace}$x$. $P[x]${\ttrbrace} & Collect($\lambda x. P[x]$) & + \rm comprehension \\ + \sdx{INT} $x$:$A$. $B[x]$ & INTER $A$ $\lambda x. B[x]$ & + \rm intersection \\ + \sdx{UN}{\tt\ } $x$:$A$. $B[x]$ & UNION $A$ $\lambda x. B[x]$ & + \rm union \\ + \tt ! $x$:$A$. $P[x]$ or \sdx{ALL} $x$:$A$. $P[x]$ & + Ball $A$ $\lambda x. P[x]$ & + \rm bounded $\forall$ \\ + \sdx{?} $x$:$A$. $P[x]$ or \sdx{EX}{\tt\ } $x$:$A$. $P[x]$ & + Bex $A$ $\lambda x. P[x]$ & \rm bounded $\exists$ +\end{tabular} +\end{center} +\subcaption{Translations} + +\dquotes +\[\begin{array}{rclcl} + term & = & \hbox{other terms\ldots} \\ + & | & "{\ttlbrace}{\ttrbrace}" \\ + & | & "{\ttlbrace} " term\; ("," term)^* " {\ttrbrace}" \\ + & | & "{\ttlbrace} " id " . " formula " {\ttrbrace}" \\ + & | & term " `` " term \\ + & | & term " Int " term \\ + & | & term " Un " term \\ + & | & "INT~~" id ":" term " . " term \\ + & | & "UN~~~" id ":" term " . " term \\ + & | & "INT~~" id~id^* " . " term \\ + & | & "UN~~~" id~id^* " . " term \\[2ex] + formula & = & \hbox{other formulae\ldots} \\ + & | & term " : " term \\ + & | & term " \ttilde: " term \\ + & | & term " <= " term \\ + & | & "!~" id ":" term " . " formula + & | & "ALL " id ":" term " . " formula \\ + & | & "?~" id ":" term " . " formula + & | & "EX~~" id ":" term " . " formula + \end{array} +\] +\subcaption{Full Grammar} +\caption{Syntax of the theory \texttt{Set} (continued)} \label{hol-set-syntax2} +\end{figure} + + +\section{A formulation of set theory} +Historically, higher-order logic gives a foundation for Russell and +Whitehead's theory of classes. Let us use modern terminology and call them +{\bf sets}, but note that these sets are distinct from those of {\ZF} set +theory, and behave more like {\ZF} classes. +\begin{itemize} +\item +Sets are given by predicates over some type~$\sigma$. Types serve to +define universes for sets, but type-checking is still significant. +\item +There is a universal set (for each type). Thus, sets have complements, and +may be defined by absolute comprehension. +\item +Although sets may contain other sets as elements, the containing set must +have a more complex type. +\end{itemize} +Finite unions and intersections have the same behaviour in \HOL\ as they +do in~{\ZF}. In \HOL\ the intersection of the empty set is well-defined, +denoting the universal set for the given type. + +\subsection{Syntax of set theory}\index{*set type} +\HOL's set theory is called \thydx{Set}. The type $\alpha\,set$ is +essentially the same as $\alpha\To bool$. The new type is defined for +clarity and to avoid complications involving function types in unification. +The isomorphisms between the two types are declared explicitly. They are +very natural: \texttt{Collect} maps $\alpha\To bool$ to $\alpha\,set$, while +\hbox{\tt op :} maps in the other direction (ignoring argument order). + +Figure~\ref{hol-set-syntax} lists the constants, infixes, and syntax +translations. Figure~\ref{hol-set-syntax2} presents the grammar of the new +constructs. Infix operators include union and intersection ($A\un B$ +and $A\int B$), the subset and membership relations, and the image +operator~{\tt``}\@. Note that $a$\verb|~:|$b$ is translated to +$\neg(a\in b)$. + +The $\{a@1,\ldots\}$ notation abbreviates finite sets constructed in +the obvious manner using~\texttt{insert} and~$\{\}$: +\begin{eqnarray*} + \{a, b, c\} & \equiv & + \texttt{insert} \, a \, ({\tt insert} \, b \, ({\tt insert} \, c \, \{\})) +\end{eqnarray*} + +The set \hbox{\tt{\ttlbrace}$x$.\ $P[x]${\ttrbrace}} consists of all $x$ (of suitable type) +that satisfy~$P[x]$, where $P[x]$ is a formula that may contain free +occurrences of~$x$. This syntax expands to \cdx{Collect}$(\lambda +x. P[x])$. It defines sets by absolute comprehension, which is impossible +in~{\ZF}; the type of~$x$ implicitly restricts the comprehension. + +The set theory defines two {\bf bounded quantifiers}: +\begin{eqnarray*} + \forall x\in A. P[x] &\hbox{abbreviates}& \forall x. x\in A\imp P[x] \\ + \exists x\in A. P[x] &\hbox{abbreviates}& \exists x. x\in A\conj P[x] +\end{eqnarray*} +The constants~\cdx{Ball} and~\cdx{Bex} are defined +accordingly. Instead of \texttt{Ball $A$ $P$} and \texttt{Bex $A$ $P$} we may +write\index{*"! symbol}\index{*"? symbol} +\index{*ALL symbol}\index{*EX symbol} +% +\hbox{\tt !~$x$:$A$.\ $P[x]$} and \hbox{\tt ?~$x$:$A$.\ $P[x]$}. Isabelle's +usual quantifier symbols, \sdx{ALL} and \sdx{EX}, are also accepted +for input. As with the primitive quantifiers, the {\ML} reference +\ttindex{HOL_quantifiers} specifies which notation to use for output. + +Unions and intersections over sets, namely $\bigcup@{x\in A}B[x]$ and +$\bigcap@{x\in A}B[x]$, are written +\sdx{UN}~\hbox{\tt$x$:$A$.\ $B[x]$} and +\sdx{INT}~\hbox{\tt$x$:$A$.\ $B[x]$}. + +Unions and intersections over types, namely $\bigcup@x B[x]$ and $\bigcap@x +B[x]$, are written \sdx{UN}~\hbox{\tt$x$.\ $B[x]$} and +\sdx{INT}~\hbox{\tt$x$.\ $B[x]$}. They are equivalent to the previous +union and intersection operators when $A$ is the universal set. + +The operators $\bigcup A$ and $\bigcap A$ act upon sets of sets. They are +not binders, but are equal to $\bigcup@{x\in A}x$ and $\bigcap@{x\in A}x$, +respectively. + + + +\begin{figure} \underscoreon +\begin{ttbox} +\tdx{mem_Collect_eq} (a : {\ttlbrace}x. P x{\ttrbrace}) = P a +\tdx{Collect_mem_eq} {\ttlbrace}x. x:A{\ttrbrace} = A + +\tdx{empty_def} {\ttlbrace}{\ttrbrace} == {\ttlbrace}x. False{\ttrbrace} +\tdx{insert_def} insert a B == {\ttlbrace}x. x=a{\ttrbrace} Un B +\tdx{Ball_def} Ball A P == ! x. x:A --> P x +\tdx{Bex_def} Bex A P == ? x. x:A & P x +\tdx{subset_def} A <= B == ! x:A. x:B +\tdx{Un_def} A Un B == {\ttlbrace}x. x:A | x:B{\ttrbrace} +\tdx{Int_def} A Int B == {\ttlbrace}x. x:A & x:B{\ttrbrace} +\tdx{set_diff_def} A - B == {\ttlbrace}x. x:A & x~:B{\ttrbrace} +\tdx{Compl_def} Compl A == {\ttlbrace}x. ~ x:A{\ttrbrace} +\tdx{INTER_def} INTER A B == {\ttlbrace}y. ! x:A. y: B x{\ttrbrace} +\tdx{UNION_def} UNION A B == {\ttlbrace}y. ? x:A. y: B x{\ttrbrace} +\tdx{INTER1_def} INTER1 B == INTER {\ttlbrace}x. True{\ttrbrace} B +\tdx{UNION1_def} UNION1 B == UNION {\ttlbrace}x. True{\ttrbrace} B +\tdx{Inter_def} Inter S == (INT x:S. x) +\tdx{Union_def} Union S == (UN x:S. x) +\tdx{Pow_def} Pow A == {\ttlbrace}B. B <= A{\ttrbrace} +\tdx{image_def} f``A == {\ttlbrace}y. ? x:A. y=f x{\ttrbrace} +\tdx{range_def} range f == {\ttlbrace}y. ? x. y=f x{\ttrbrace} +\end{ttbox} +\caption{Rules of the theory \texttt{Set}} \label{hol-set-rules} +\end{figure} + + +\begin{figure} \underscoreon +\begin{ttbox} +\tdx{CollectI} [| P a |] ==> a : {\ttlbrace}x. P x{\ttrbrace} +\tdx{CollectD} [| a : {\ttlbrace}x. P x{\ttrbrace} |] ==> P a +\tdx{CollectE} [| a : {\ttlbrace}x. P x{\ttrbrace}; P a ==> W |] ==> W + +\tdx{ballI} [| !!x. x:A ==> P x |] ==> ! x:A. P x +\tdx{bspec} [| ! x:A. P x; x:A |] ==> P x +\tdx{ballE} [| ! x:A. P x; P x ==> Q; ~ x:A ==> Q |] ==> Q + +\tdx{bexI} [| P x; x:A |] ==> ? x:A. P x +\tdx{bexCI} [| ! x:A. ~ P x ==> P a; a:A |] ==> ? x:A. P x +\tdx{bexE} [| ? x:A. P x; !!x. [| x:A; P x |] ==> Q |] ==> Q +\subcaption{Comprehension and Bounded quantifiers} + +\tdx{subsetI} (!!x. x:A ==> x:B) ==> A <= B +\tdx{subsetD} [| A <= B; c:A |] ==> c:B +\tdx{subsetCE} [| A <= B; ~ (c:A) ==> P; c:B ==> P |] ==> P + +\tdx{subset_refl} A <= A +\tdx{subset_trans} [| A<=B; B<=C |] ==> A<=C + +\tdx{equalityI} [| A <= B; B <= A |] ==> A = B +\tdx{equalityD1} A = B ==> A<=B +\tdx{equalityD2} A = B ==> B<=A +\tdx{equalityE} [| A = B; [| A<=B; B<=A |] ==> P |] ==> P + +\tdx{equalityCE} [| A = B; [| c:A; c:B |] ==> P; + [| ~ c:A; ~ c:B |] ==> P + |] ==> P +\subcaption{The subset and equality relations} +\end{ttbox} +\caption{Derived rules for set theory} \label{hol-set1} +\end{figure} + + +\begin{figure} \underscoreon +\begin{ttbox} +\tdx{emptyE} a : {\ttlbrace}{\ttrbrace} ==> P + +\tdx{insertI1} a : insert a B +\tdx{insertI2} a : B ==> a : insert b B +\tdx{insertE} [| a : insert b A; a=b ==> P; a:A ==> P |] ==> P + +\tdx{ComplI} [| c:A ==> False |] ==> c : Compl A +\tdx{ComplD} [| c : Compl A |] ==> ~ c:A + +\tdx{UnI1} c:A ==> c : A Un B +\tdx{UnI2} c:B ==> c : A Un B +\tdx{UnCI} (~c:B ==> c:A) ==> c : A Un B +\tdx{UnE} [| c : A Un B; c:A ==> P; c:B ==> P |] ==> P + +\tdx{IntI} [| c:A; c:B |] ==> c : A Int B +\tdx{IntD1} c : A Int B ==> c:A +\tdx{IntD2} c : A Int B ==> c:B +\tdx{IntE} [| c : A Int B; [| c:A; c:B |] ==> P |] ==> P + +\tdx{UN_I} [| a:A; b: B a |] ==> b: (UN x:A. B x) +\tdx{UN_E} [| b: (UN x:A. B x); !!x.[| x:A; b:B x |] ==> R |] ==> R + +\tdx{INT_I} (!!x. x:A ==> b: B x) ==> b : (INT x:A. B x) +\tdx{INT_D} [| b: (INT x:A. B x); a:A |] ==> b: B a +\tdx{INT_E} [| b: (INT x:A. B x); b: B a ==> R; ~ a:A ==> R |] ==> R + +\tdx{UnionI} [| X:C; A:X |] ==> A : Union C +\tdx{UnionE} [| A : Union C; !!X.[| A:X; X:C |] ==> R |] ==> R + +\tdx{InterI} [| !!X. X:C ==> A:X |] ==> A : Inter C +\tdx{InterD} [| A : Inter C; X:C |] ==> A:X +\tdx{InterE} [| A : Inter C; A:X ==> R; ~ X:C ==> R |] ==> R + +\tdx{PowI} A<=B ==> A: Pow B +\tdx{PowD} A: Pow B ==> A<=B + +\tdx{imageI} [| x:A |] ==> f x : f``A +\tdx{imageE} [| b : f``A; !!x.[| b=f x; x:A |] ==> P |] ==> P + +\tdx{rangeI} f x : range f +\tdx{rangeE} [| b : range f; !!x.[| b=f x |] ==> P |] ==> P +\end{ttbox} +\caption{Further derived rules for set theory} \label{hol-set2} +\end{figure} + + +\subsection{Axioms and rules of set theory} +Figure~\ref{hol-set-rules} presents the rules of theory \thydx{Set}. The +axioms \tdx{mem_Collect_eq} and \tdx{Collect_mem_eq} assert +that the functions \texttt{Collect} and \hbox{\tt op :} are isomorphisms. Of +course, \hbox{\tt op :} also serves as the membership relation. + +All the other axioms are definitions. They include the empty set, bounded +quantifiers, unions, intersections, complements and the subset relation. +They also include straightforward constructions on functions: image~({\tt``}) +and \texttt{range}. + +%The predicate \cdx{inj_on} is used for simulating type definitions. +%The statement ${\tt inj_on}~f~A$ asserts that $f$ is injective on the +%set~$A$, which specifies a subset of its domain type. In a type +%definition, $f$ is the abstraction function and $A$ is the set of valid +%representations; we should not expect $f$ to be injective outside of~$A$. + +%\begin{figure} \underscoreon +%\begin{ttbox} +%\tdx{Inv_f_f} inj f ==> Inv f (f x) = x +%\tdx{f_Inv_f} y : range f ==> f(Inv f y) = y +% +%\tdx{Inv_injective} +% [| Inv f x=Inv f y; x: range f; y: range f |] ==> x=y +% +% +%\tdx{monoI} [| !!A B. A <= B ==> f A <= f B |] ==> mono f +%\tdx{monoD} [| mono f; A <= B |] ==> f A <= f B +% +%\tdx{injI} [| !! x y. f x = f y ==> x=y |] ==> inj f +%\tdx{inj_inverseI} (!!x. g(f x) = x) ==> inj f +%\tdx{injD} [| inj f; f x = f y |] ==> x=y +% +%\tdx{inj_onI} (!!x y. [| f x=f y; x:A; y:A |] ==> x=y) ==> inj_on f A +%\tdx{inj_onD} [| inj_on f A; f x=f y; x:A; y:A |] ==> x=y +% +%\tdx{inj_on_inverseI} +% (!!x. x:A ==> g(f x) = x) ==> inj_on f A +%\tdx{inj_on_contraD} +% [| inj_on f A; x~=y; x:A; y:A |] ==> ~ f x=f y +%\end{ttbox} +%\caption{Derived rules involving functions} \label{hol-fun} +%\end{figure} + + +\begin{figure} \underscoreon +\begin{ttbox} +\tdx{Union_upper} B:A ==> B <= Union A +\tdx{Union_least} [| !!X. X:A ==> X<=C |] ==> Union A <= C + +\tdx{Inter_lower} B:A ==> Inter A <= B +\tdx{Inter_greatest} [| !!X. X:A ==> C<=X |] ==> C <= Inter A + +\tdx{Un_upper1} A <= A Un B +\tdx{Un_upper2} B <= A Un B +\tdx{Un_least} [| A<=C; B<=C |] ==> A Un B <= C + +\tdx{Int_lower1} A Int B <= A +\tdx{Int_lower2} A Int B <= B +\tdx{Int_greatest} [| C<=A; C<=B |] ==> C <= A Int B +\end{ttbox} +\caption{Derived rules involving subsets} \label{hol-subset} +\end{figure} + + +\begin{figure} \underscoreon \hfuzz=4pt%suppress "Overfull \hbox" message +\begin{ttbox} +\tdx{Int_absorb} A Int A = A +\tdx{Int_commute} A Int B = B Int A +\tdx{Int_assoc} (A Int B) Int C = A Int (B Int C) +\tdx{Int_Un_distrib} (A Un B) Int C = (A Int C) Un (B Int C) + +\tdx{Un_absorb} A Un A = A +\tdx{Un_commute} A Un B = B Un A +\tdx{Un_assoc} (A Un B) Un C = A Un (B Un C) +\tdx{Un_Int_distrib} (A Int B) Un C = (A Un C) Int (B Un C) + +\tdx{Compl_disjoint} A Int (Compl A) = {\ttlbrace}x. False{\ttrbrace} +\tdx{Compl_partition} A Un (Compl A) = {\ttlbrace}x. True{\ttrbrace} +\tdx{double_complement} Compl(Compl A) = A +\tdx{Compl_Un} Compl(A Un B) = (Compl A) Int (Compl B) +\tdx{Compl_Int} Compl(A Int B) = (Compl A) Un (Compl B) + +\tdx{Union_Un_distrib} Union(A Un B) = (Union A) Un (Union B) +\tdx{Int_Union} A Int (Union B) = (UN C:B. A Int C) +\tdx{Un_Union_image} (UN x:C.(A x) Un (B x)) = Union(A``C) Un Union(B``C) + +\tdx{Inter_Un_distrib} Inter(A Un B) = (Inter A) Int (Inter B) +\tdx{Un_Inter} A Un (Inter B) = (INT C:B. A Un C) +\tdx{Int_Inter_image} (INT x:C.(A x) Int (B x)) = Inter(A``C) Int Inter(B``C) +\end{ttbox} +\caption{Set equalities} \label{hol-equalities} +\end{figure} + + +Figures~\ref{hol-set1} and~\ref{hol-set2} present derived rules. Most are +obvious and resemble rules of Isabelle's {\ZF} set theory. Certain rules, +such as \tdx{subsetCE}, \tdx{bexCI} and \tdx{UnCI}, +are designed for classical reasoning; the rules \tdx{subsetD}, +\tdx{bexI}, \tdx{Un1} and~\tdx{Un2} are not +strictly necessary but yield more natural proofs. Similarly, +\tdx{equalityCE} supports classical reasoning about extensionality, +after the fashion of \tdx{iffCE}. See the file \texttt{HOL/Set.ML} for +proofs pertaining to set theory. + +Figure~\ref{hol-subset} presents lattice properties of the subset relation. +Unions form least upper bounds; non-empty intersections form greatest lower +bounds. Reasoning directly about subsets often yields clearer proofs than +reasoning about the membership relation. See the file \texttt{HOL/subset.ML}. + +Figure~\ref{hol-equalities} presents many common set equalities. They +include commutative, associative and distributive laws involving unions, +intersections and complements. For a complete listing see the file {\tt +HOL/equalities.ML}. + +\begin{warn} +\texttt{Blast_tac} proves many set-theoretic theorems automatically. +Hence you seldom need to refer to the theorems above. +\end{warn} + +\begin{figure} +\begin{center} +\begin{tabular}{rrr} + \it name &\it meta-type & \it description \\ + \cdx{inj}~~\cdx{surj}& $(\alpha\To\beta )\To bool$ + & injective/surjective \\ + \cdx{inj_on} & $[\alpha\To\beta ,\alpha\,set]\To bool$ + & injective over subset\\ + \cdx{inv} & $(\alpha\To\beta)\To(\beta\To\alpha)$ & inverse function +\end{tabular} +\end{center} + +\underscoreon +\begin{ttbox} +\tdx{inj_def} inj f == ! x y. f x=f y --> x=y +\tdx{surj_def} surj f == ! y. ? x. y=f x +\tdx{inj_on_def} inj_on f A == !x:A. !y:A. f x=f y --> x=y +\tdx{inv_def} inv f == (\%y. @x. f(x)=y) +\end{ttbox} +\caption{Theory \thydx{Fun}} \label{fig:HOL:Fun} +\end{figure} + +\subsection{Properties of functions}\nopagebreak +Figure~\ref{fig:HOL:Fun} presents a theory of simple properties of functions. +Note that ${\tt inv}~f$ uses Hilbert's $\varepsilon$ to yield an inverse +of~$f$. See the file \texttt{HOL/Fun.ML} for a complete listing of the derived +rules. Reasoning about function composition (the operator~\sdx{o}) and the +predicate~\cdx{surj} is done simply by expanding the definitions. + +There is also a large collection of monotonicity theorems for constructions +on sets in the file \texttt{HOL/mono.ML}. + +\section{Generic packages} +\label{sec:HOL:generic-packages} + +\HOL\ instantiates most of Isabelle's generic packages, making available the +simplifier and the classical reasoner. + +\subsection{Simplification and substitution} + +Simplification tactics tactics such as \texttt{Asm_simp_tac} and \texttt{Full_simp_tac} use the default simpset +(\texttt{simpset()}), which works for most purposes. A quite minimal +simplification set for higher-order logic is~\ttindexbold{HOL_ss}; +even more frugal is \ttindexbold{HOL_basic_ss}. Equality~($=$), which +also expresses logical equivalence, may be used for rewriting. See +the file \texttt{HOL/simpdata.ML} for a complete listing of the basic +simplification rules. + +See \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% +{Chaps.\ts\ref{substitution} and~\ref{simp-chap}} for details of substitution +and simplification. + +\begin{warn}\index{simplification!of conjunctions}% + Reducing $a=b\conj P(a)$ to $a=b\conj P(b)$ is sometimes advantageous. The + left part of a conjunction helps in simplifying the right part. This effect + is not available by default: it can be slow. It can be obtained by + including \ttindex{conj_cong} in a simpset, \verb$addcongs [conj_cong]$. +\end{warn} + +If the simplifier cannot use a certain rewrite rule --- either because +of nontermination or because its left-hand side is too flexible --- +then you might try \texttt{stac}: +\begin{ttdescription} +\item[\ttindexbold{stac} $thm$ $i,$] where $thm$ is of the form $lhs = rhs$, + replaces in subgoal $i$ instances of $lhs$ by corresponding instances of + $rhs$. In case of multiple instances of $lhs$ in subgoal $i$, backtracking + may be necessary to select the desired ones. + +If $thm$ is a conditional equality, the instantiated condition becomes an +additional (first) subgoal. +\end{ttdescription} + + \HOL{} provides the tactic \ttindex{hyp_subst_tac}, which substitutes + for an equality throughout a subgoal and its hypotheses. This tactic uses + \HOL's general substitution rule. + +\subsubsection{Case splitting} +\label{subsec:HOL:case:splitting} + +\HOL{} also provides convenient means for case splitting during +rewriting. Goals containing a subterm of the form \texttt{if}~$b$~{\tt +then\dots else\dots} often require a case distinction on $b$. This is +expressed by the theorem \tdx{split_if}: +$$ +\Var{P}(\mbox{\tt if}~\Var{b}~{\tt then}~\Var{x}~\mbox{\tt else}~\Var{y})~=~ +((\Var{b} \to \Var{P}(\Var{x})) \land (\neg \Var{b} \to \Var{P}(\Var{y}))) +\eqno{(*)} +$$ +For example, a simple instance of $(*)$ is +\[ +x \in (\mbox{\tt if}~x \in A~{\tt then}~A~\mbox{\tt else}~\{x\})~=~ +((x \in A \to x \in A) \land (x \notin A \to x \in \{x\})) +\] +Because $(*)$ is too general as a rewrite rule for the simplifier (the +left-hand side is not a higher-order pattern in the sense of +\iflabelundefined{chap:simplification}{the {\em Reference Manual\/}}% +{Chap.\ts\ref{chap:simplification}}), there is a special infix function +\ttindexbold{addsplits} of type \texttt{simpset * thm list -> simpset} +(analogous to \texttt{addsimps}) that adds rules such as $(*)$ to a +simpset, as in +\begin{ttbox} +by(simp_tac (simpset() addsplits [split_if]) 1); +\end{ttbox} +The effect is that after each round of simplification, one occurrence of +\texttt{if} is split acording to \texttt{split_if}, until all occurences of +\texttt{if} have been eliminated. + +It turns out that using \texttt{split_if} is almost always the right thing to +do. Hence \texttt{split_if} is already included in the default simpset. If +you want to delete it from a simpset, use \ttindexbold{delsplits}, which is +the inverse of \texttt{addsplits}: +\begin{ttbox} +by(simp_tac (simpset() delsplits [split_if]) 1); +\end{ttbox} + +In general, \texttt{addsplits} accepts rules of the form +\[ +\Var{P}(c~\Var{x@1}~\dots~\Var{x@n})~=~ rhs +\] +where $c$ is a constant and $rhs$ is arbitrary. Note that $(*)$ is of the +right form because internally the left-hand side is +$\Var{P}(\mathtt{If}~\Var{b}~\Var{x}~~\Var{y})$. Important further examples +are splitting rules for \texttt{case} expressions (see~\S\ref{subsec:list} +and~\S\ref{subsec:datatype:basics}). + +Analogous to \texttt{Addsimps} and \texttt{Delsimps}, there are also +imperative versions of \texttt{addsplits} and \texttt{delsplits} +\begin{ttbox} +\ttindexbold{Addsplits}: thm list -> unit +\ttindexbold{Delsplits}: thm list -> unit +\end{ttbox} +for adding splitting rules to, and deleting them from the current simpset. + +\subsection{Classical reasoning} + +\HOL\ derives classical introduction rules for $\disj$ and~$\exists$, as +well as classical elimination rules for~$\imp$ and~$\bimp$, and the swap +rule; recall Fig.\ts\ref{hol-lemmas2} above. + +The classical reasoner is installed. Tactics such as \texttt{Blast_tac} and {\tt +Best_tac} refer to the default claset (\texttt{claset()}), which works for most +purposes. Named clasets include \ttindexbold{prop_cs}, which includes the +propositional rules, and \ttindexbold{HOL_cs}, which also includes quantifier +rules. See the file \texttt{HOL/cladata.ML} for lists of the classical rules, +and \iflabelundefined{chap:classical}{the {\em Reference Manual\/}}% +{Chap.\ts\ref{chap:classical}} for more discussion of classical proof methods. + + +\section{Types}\label{sec:HOL:Types} +This section describes \HOL's basic predefined types ($\alpha \times +\beta$, $\alpha + \beta$, $nat$ and $\alpha \; list$) and ways for +introducing new types in general. The most important type +construction, the \texttt{datatype}, is treated separately in +\S\ref{sec:HOL:datatype}. + + +\subsection{Product and sum types}\index{*"* type}\index{*"+ type} +\label{subsec:prod-sum} + +\begin{figure}[htbp] +\begin{constants} + \it symbol & \it meta-type & & \it description \\ + \cdx{Pair} & $[\alpha,\beta]\To \alpha\times\beta$ + & & ordered pairs $(a,b)$ \\ + \cdx{fst} & $\alpha\times\beta \To \alpha$ & & first projection\\ + \cdx{snd} & $\alpha\times\beta \To \beta$ & & second projection\\ + \cdx{split} & $[[\alpha,\beta]\To\gamma, \alpha\times\beta] \To \gamma$ + & & generalized projection\\ + \cdx{Sigma} & + $[\alpha\,set, \alpha\To\beta\,set]\To(\alpha\times\beta)set$ & + & general sum of sets +\end{constants} +\begin{ttbox}\makeatletter +%\tdx{fst_def} fst p == @a. ? b. p = (a,b) +%\tdx{snd_def} snd p == @b. ? a. p = (a,b) +%\tdx{split_def} split c p == c (fst p) (snd p) +\tdx{Sigma_def} Sigma A B == UN x:A. UN y:B x. {\ttlbrace}(x,y){\ttrbrace} + +\tdx{Pair_eq} ((a,b) = (a',b')) = (a=a' & b=b') +\tdx{Pair_inject} [| (a, b) = (a',b'); [| a=a'; b=b' |] ==> R |] ==> R +\tdx{PairE} [| !!x y. p = (x,y) ==> Q |] ==> Q + +\tdx{fst_conv} fst (a,b) = a +\tdx{snd_conv} snd (a,b) = b +\tdx{surjective_pairing} p = (fst p,snd p) + +\tdx{split} split c (a,b) = c a b +\tdx{split_split} R(split c p) = (! x y. p = (x,y) --> R(c x y)) + +\tdx{SigmaI} [| a:A; b:B a |] ==> (a,b) : Sigma A B +\tdx{SigmaE} [| c:Sigma A B; !!x y.[| x:A; y:B x; c=(x,y) |] ==> P |] ==> P +\end{ttbox} +\caption{Type $\alpha\times\beta$}\label{hol-prod} +\end{figure} + +Theory \thydx{Prod} (Fig.\ts\ref{hol-prod}) defines the product type +$\alpha\times\beta$, with the ordered pair syntax $(a, b)$. General +tuples are simulated by pairs nested to the right: +\begin{center} +\begin{tabular}{c|c} +external & internal \\ +\hline +$\tau@1 \times \dots \times \tau@n$ & $\tau@1 \times (\dots (\tau@{n-1} \times \tau@n)\dots)$ \\ +\hline +$(t@1,\dots,t@n)$ & $(t@1,(\dots,(t@{n-1},t@n)\dots)$ \\ +\end{tabular} +\end{center} +In addition, it is possible to use tuples +as patterns in abstractions: +\begin{center} +{\tt\%($x$,$y$). $t$} \quad stands for\quad \texttt{split(\%$x$\thinspace$y$.\ $t$)} +\end{center} +Nested patterns are also supported. They are translated stepwise: +{\tt\%($x$,$y$,$z$). $t$} $\leadsto$ {\tt\%($x$,($y$,$z$)). $t$} $\leadsto$ +{\tt split(\%$x$.\%($y$,$z$). $t$)} $\leadsto$ \texttt{split(\%$x$. split(\%$y$ + $z$.\ $t$))}. The reverse translation is performed upon printing. +\begin{warn} + The translation between patterns and \texttt{split} is performed automatically + by the parser and printer. Thus the internal and external form of a term + may differ, which can affects proofs. For example the term {\tt + (\%(x,y).(y,x))(a,b)} requires the theorem \texttt{split} (which is in the + default simpset) to rewrite to {\tt(b,a)}. +\end{warn} +In addition to explicit $\lambda$-abstractions, patterns can be used in any +variable binding construct which is internally described by a +$\lambda$-abstraction. Some important examples are +\begin{description} +\item[Let:] \texttt{let {\it pattern} = $t$ in $u$} +\item[Quantifiers:] \texttt{!~{\it pattern}:$A$.~$P$} +\item[Choice:] {\underscoreon \tt @~{\it pattern}~.~$P$} +\item[Set operations:] \texttt{UN~{\it pattern}:$A$.~$B$} +\item[Sets:] \texttt{{\ttlbrace}~{\it pattern}~.~$P$~{\ttrbrace}} +\end{description} + +There is a simple tactic which supports reasoning about patterns: +\begin{ttdescription} +\item[\ttindexbold{split_all_tac} $i$] replaces in subgoal $i$ all + {\tt!!}-quantified variables of product type by individual variables for + each component. A simple example: +\begin{ttbox} +{\out 1. !!p. (\%(x,y,z). (x, y, z)) p = p} +by(split_all_tac 1); +{\out 1. !!x xa ya. (\%(x,y,z). (x, y, z)) (x, xa, ya) = (x, xa, ya)} +\end{ttbox} +\end{ttdescription} + +Theory \texttt{Prod} also introduces the degenerate product type \texttt{unit} +which contains only a single element named {\tt()} with the property +\begin{ttbox} +\tdx{unit_eq} u = () +\end{ttbox} +\bigskip + +Theory \thydx{Sum} (Fig.~\ref{hol-sum}) defines the sum type $\alpha+\beta$ +which associates to the right and has a lower priority than $*$: $\tau@1 + +\tau@2 + \tau@3*\tau@4$ means $\tau@1 + (\tau@2 + (\tau@3*\tau@4))$. + +The definition of products and sums in terms of existing types is not +shown. The constructions are fairly standard and can be found in the +respective theory files. + +\begin{figure} +\begin{constants} + \it symbol & \it meta-type & & \it description \\ + \cdx{Inl} & $\alpha \To \alpha+\beta$ & & first injection\\ + \cdx{Inr} & $\beta \To \alpha+\beta$ & & second injection\\ + \cdx{sum_case} & $[\alpha\To\gamma, \beta\To\gamma, \alpha+\beta] \To\gamma$ + & & conditional +\end{constants} +\begin{ttbox}\makeatletter +%\tdx{sum_case_def} sum_case == (\%f g p. @z. (!x. p=Inl x --> z=f x) & +% (!y. p=Inr y --> z=g y)) +% +\tdx{Inl_not_Inr} Inl a ~= Inr b + +\tdx{inj_Inl} inj Inl +\tdx{inj_Inr} inj Inr + +\tdx{sumE} [| !!x. P(Inl x); !!y. P(Inr y) |] ==> P s + +\tdx{sum_case_Inl} sum_case f g (Inl x) = f x +\tdx{sum_case_Inr} sum_case f g (Inr x) = g x + +\tdx{surjective_sum} sum_case (\%x. f(Inl x)) (\%y. f(Inr y)) s = f s +\tdx{split_sum_case} R(sum_case f g s) = ((! x. s = Inl(x) --> R(f(x))) & + (! y. s = Inr(y) --> R(g(y)))) +\end{ttbox} +\caption{Type $\alpha+\beta$}\label{hol-sum} +\end{figure} + +\begin{figure} +\index{*"< symbol} +\index{*"* symbol} +\index{*div symbol} +\index{*mod symbol} +\index{*"+ symbol} +\index{*"- symbol} +\begin{constants} + \it symbol & \it meta-type & \it priority & \it description \\ + \cdx{0} & $nat$ & & zero \\ + \cdx{Suc} & $nat \To nat$ & & successor function\\ +% \cdx{nat_case} & $[\alpha, nat\To\alpha, nat] \To\alpha$ & & conditional\\ +% \cdx{nat_rec} & $[nat, \alpha, [nat, \alpha]\To\alpha] \To \alpha$ +% & & primitive recursor\\ + \tt * & $[nat,nat]\To nat$ & Left 70 & multiplication \\ + \tt div & $[nat,nat]\To nat$ & Left 70 & division\\ + \tt mod & $[nat,nat]\To nat$ & Left 70 & modulus\\ + \tt + & $[nat,nat]\To nat$ & Left 65 & addition\\ + \tt - & $[nat,nat]\To nat$ & Left 65 & subtraction +\end{constants} +\subcaption{Constants and infixes} + +\begin{ttbox}\makeatother +\tdx{nat_induct} [| P 0; !!n. P n ==> P(Suc n) |] ==> P n + +\tdx{Suc_not_Zero} Suc m ~= 0 +\tdx{inj_Suc} inj Suc +\tdx{n_not_Suc_n} n~=Suc n +\subcaption{Basic properties} +\end{ttbox} +\caption{The type of natural numbers, \tydx{nat}} \label{hol-nat1} +\end{figure} + + +\begin{figure} +\begin{ttbox}\makeatother + 0+n = n + (Suc m)+n = Suc(m+n) + + m-0 = m + 0-n = n + Suc(m)-Suc(n) = m-n + + 0*n = 0 + Suc(m)*n = n + m*n + +\tdx{mod_less} m m mod n = m +\tdx{mod_geq} [| 0 m mod n = (m-n) mod n + +\tdx{div_less} m m div n = 0 +\tdx{div_geq} [| 0 m div n = Suc((m-n) div n) +\end{ttbox} +\caption{Recursion equations for the arithmetic operators} \label{hol-nat2} +\end{figure} + +\subsection{The type of natural numbers, \textit{nat}} +\index{nat@{\textit{nat}} type|(} + +The theory \thydx{NatDef} defines the natural numbers in a roundabout but +traditional way. The axiom of infinity postulates a type~\tydx{ind} of +individuals, which is non-empty and closed under an injective operation. The +natural numbers are inductively generated by choosing an arbitrary individual +for~0 and using the injective operation to take successors. This is a least +fixedpoint construction. For details see the file \texttt{NatDef.thy}. + +Type~\tydx{nat} is an instance of class~\cldx{ord}, which makes the +overloaded functions of this class (esp.\ \cdx{<} and \cdx{<=}, but also +\cdx{min}, \cdx{max} and \cdx{LEAST}) available on \tydx{nat}. Theory +\thydx{Nat} builds on \texttt{NatDef} and shows that {\tt<=} is a partial order, +so \tydx{nat} is also an instance of class \cldx{order}. + +Theory \thydx{Arith} develops arithmetic on the natural numbers. It defines +addition, multiplication and subtraction. Theory \thydx{Divides} defines +division, remainder and the ``divides'' relation. The numerous theorems +proved include commutative, associative, distributive, identity and +cancellation laws. See Figs.\ts\ref{hol-nat1} and~\ref{hol-nat2}. The +recursion equations for the operators \texttt{+}, \texttt{-} and \texttt{*} on +\texttt{nat} are part of the default simpset. + +Functions on \tydx{nat} can be defined by primitive or well-founded recursion; +see \S\ref{sec:HOL:recursive}. A simple example is addition. +Here, \texttt{op +} is the name of the infix operator~\texttt{+}, following +the standard convention. +\begin{ttbox} +\sdx{primrec} + "0 + n = n" + "Suc m + n = Suc (m + n)" +\end{ttbox} +There is also a \sdx{case}-construct +of the form +\begin{ttbox} +case \(e\) of 0 => \(a\) | Suc \(m\) => \(b\) +\end{ttbox} +Note that Isabelle insists on precisely this format; you may not even change +the order of the two cases. +Both \texttt{primrec} and \texttt{case} are realized by a recursion operator +\cdx{nat_rec}, the details of which can be found in theory \texttt{NatDef}. + +%The predecessor relation, \cdx{pred_nat}, is shown to be well-founded. +%Recursion along this relation resembles primitive recursion, but is +%stronger because we are in higher-order logic; using primitive recursion to +%define a higher-order function, we can easily Ackermann's function, which +%is not primitive recursive \cite[page~104]{thompson91}. +%The transitive closure of \cdx{pred_nat} is~$<$. Many functions on the +%natural numbers are most easily expressed using recursion along~$<$. + +Tactic {\tt\ttindex{induct_tac} "$n$" $i$} performs induction on variable~$n$ +in subgoal~$i$ using theorem \texttt{nat_induct}. There is also the derived +theorem \tdx{less_induct}: +\begin{ttbox} +[| !!n. [| ! m. m P m |] ==> P n |] ==> P n +\end{ttbox} + + +Reasoning about arithmetic inequalities can be tedious. Fortunately HOL +provides a decision procedure for quantifier-free linear arithmetic (i.e.\ +only addition and subtraction). The simplifier invokes a weak version of this +decision procedure automatically. If this is not sufficent, you can invoke +the full procedure \ttindex{arith_tac} explicitly. It copes with arbitrary +formulae involving {\tt=}, {\tt<}, {\tt<=}, {\tt+}, {\tt-}, {\tt Suc}, {\tt + min}, {\tt max} and numerical constants; other subterms are treated as +atomic; subformulae not involving type $nat$ are ignored; quantified +subformulae are ignored unless they are positive universal or negative +existential. Note that the running time is exponential in the number of +occurrences of {\tt min}, {\tt max}, and {\tt-} because they require case +distinctions. Note also that \texttt{arith_tac} is not complete: if +divisibility plays a role, it may fail to prove a valid formula, for example +$m+m \neq n+n+1$. Fortunately such examples are rare in practice. + +If \texttt{arith_tac} fails you, try to find relevant arithmetic results in +the library. The theory \texttt{NatDef} contains theorems about {\tt<} and +{\tt<=}, the theory \texttt{Arith} contains theorems about \texttt{+}, +\texttt{-} and \texttt{*}, and theory \texttt{Divides} contains theorems about +\texttt{div} and \texttt{mod}. Use the \texttt{find}-functions to locate them +(see the {\em Reference Manual\/}). + +\begin{figure} +\index{#@{\tt[]} symbol} +\index{#@{\tt\#} symbol} +\index{"@@{\tt\at} symbol} +\index{*"! symbol} +\begin{constants} + \it symbol & \it meta-type & \it priority & \it description \\ + \tt[] & $\alpha\,list$ & & empty list\\ + \tt \# & $[\alpha,\alpha\,list]\To \alpha\,list$ & Right 65 & + list constructor \\ + \cdx{null} & $\alpha\,list \To bool$ & & emptiness test\\ + \cdx{hd} & $\alpha\,list \To \alpha$ & & head \\ + \cdx{tl} & $\alpha\,list \To \alpha\,list$ & & tail \\ + \cdx{last} & $\alpha\,list \To \alpha$ & & last element \\ + \cdx{butlast} & $\alpha\,list \To \alpha\,list$ & & drop last element \\ + \tt\at & $[\alpha\,list,\alpha\,list]\To \alpha\,list$ & Left 65 & append \\ + \cdx{map} & $(\alpha\To\beta) \To (\alpha\,list \To \beta\,list)$ + & & apply to all\\ + \cdx{filter} & $(\alpha \To bool) \To (\alpha\,list \To \alpha\,list)$ + & & filter functional\\ + \cdx{set}& $\alpha\,list \To \alpha\,set$ & & elements\\ + \sdx{mem} & $\alpha \To \alpha\,list \To bool$ & Left 55 & membership\\ + \cdx{foldl} & $(\beta\To\alpha\To\beta) \To \beta \To \alpha\,list \To \beta$ & + & iteration \\ + \cdx{concat} & $(\alpha\,list)list\To \alpha\,list$ & & concatenation \\ + \cdx{rev} & $\alpha\,list \To \alpha\,list$ & & reverse \\ + \cdx{length} & $\alpha\,list \To nat$ & & length \\ + \tt! & $\alpha\,list \To nat \To \alpha$ & Left 100 & indexing \\ + \cdx{take}, \cdx{drop} & $nat \To \alpha\,list \To \alpha\,list$ && + take or drop a prefix \\ + \cdx{takeWhile},\\ + \cdx{dropWhile} & + $(\alpha \To bool) \To \alpha\,list \To \alpha\,list$ && + take or drop a prefix +\end{constants} +\subcaption{Constants and infixes} + +\begin{center} \tt\frenchspacing +\begin{tabular}{rrr} + \it external & \it internal & \it description \\{} + [$x@1$, $\dots$, $x@n$] & $x@1$ \# $\cdots$ \# $x@n$ \# [] & + \rm finite list \\{} + [$x$:$l$. $P$] & filter ($\lambda x{.}P$) $l$ & + \rm list comprehension +\end{tabular} +\end{center} +\subcaption{Translations} +\caption{The theory \thydx{List}} \label{hol-list} +\end{figure} + + +\begin{figure} +\begin{ttbox}\makeatother +null [] = True +null (x#xs) = False + +hd (x#xs) = x +tl (x#xs) = xs +tl [] = [] + +[] @ ys = ys +(x#xs) @ ys = x # xs @ ys + +map f [] = [] +map f (x#xs) = f x # map f xs + +filter P [] = [] +filter P (x#xs) = (if P x then x#filter P xs else filter P xs) + +set [] = \ttlbrace\ttrbrace +set (x#xs) = insert x (set xs) + +x mem [] = False +x mem (y#ys) = (if y=x then True else x mem ys) + +foldl f a [] = a +foldl f a (x#xs) = foldl f (f a x) xs + +concat([]) = [] +concat(x#xs) = x @ concat(xs) + +rev([]) = [] +rev(x#xs) = rev(xs) @ [x] + +length([]) = 0 +length(x#xs) = Suc(length(xs)) + +xs!0 = hd xs +xs!(Suc n) = (tl xs)!n + +take n [] = [] +take n (x#xs) = (case n of 0 => [] | Suc(m) => x # take m xs) + +drop n [] = [] +drop n (x#xs) = (case n of 0 => x#xs | Suc(m) => drop m xs) + +takeWhile P [] = [] +takeWhile P (x#xs) = (if P x then x#takeWhile P xs else []) + +dropWhile P [] = [] +dropWhile P (x#xs) = (if P x then dropWhile P xs else xs) +\end{ttbox} +\caption{Recursions equations for list processing functions} +\label{fig:HOL:list-simps} +\end{figure} +\index{nat@{\textit{nat}} type|)} + + +\subsection{The type constructor for lists, \textit{list}} +\label{subsec:list} +\index{list@{\textit{list}} type|(} + +Figure~\ref{hol-list} presents the theory \thydx{List}: the basic list +operations with their types and syntax. Type $\alpha \; list$ is +defined as a \texttt{datatype} with the constructors {\tt[]} and {\tt\#}. +As a result the generic structural induction and case analysis tactics +\texttt{induct\_tac} and \texttt{exhaust\_tac} also become available for +lists. A \sdx{case} construct of the form +\begin{center}\tt +case $e$ of [] => $a$ | \(x\)\#\(xs\) => b +\end{center} +is defined by translation. For details see~\S\ref{sec:HOL:datatype}. There +is also a case splitting rule \tdx{split_list_case} +\[ +\begin{array}{l} +P(\mathtt{case}~e~\mathtt{of}~\texttt{[] =>}~a ~\texttt{|}~ + x\texttt{\#}xs~\texttt{=>}~f~x~xs) ~= \\ +((e = \texttt{[]} \to P(a)) \land + (\forall x~ xs. e = x\texttt{\#}xs \to P(f~x~xs))) +\end{array} +\] +which can be fed to \ttindex{addsplits} just like +\texttt{split_if} (see~\S\ref{subsec:HOL:case:splitting}). + +\texttt{List} provides a basic library of list processing functions defined by +primitive recursion (see~\S\ref{sec:HOL:primrec}). The recursion equations +are shown in Fig.\ts\ref{fig:HOL:list-simps}. + +\index{list@{\textit{list}} type|)} + + +\subsection{Introducing new types} \label{sec:typedef} + +The \HOL-methodology dictates that all extensions to a theory should +be \textbf{definitional}. The type definition mechanism that +meets this criterion is \ttindex{typedef}. Note that \emph{type synonyms}, +which are inherited from {\Pure} and described elsewhere, are just +syntactic abbreviations that have no logical meaning. + +\begin{warn} + Types in \HOL\ must be non-empty; otherwise the quantifier rules would be + unsound, because $\exists x. x=x$ is a theorem \cite[\S7]{paulson-COLOG}. +\end{warn} +A \bfindex{type definition} identifies the new type with a subset of +an existing type. More precisely, the new type is defined by +exhibiting an existing type~$\tau$, a set~$A::\tau\,set$, and a +theorem of the form $x:A$. Thus~$A$ is a non-empty subset of~$\tau$, +and the new type denotes this subset. New functions are defined that +establish an isomorphism between the new type and the subset. If +type~$\tau$ involves type variables $\alpha@1$, \ldots, $\alpha@n$, +then the type definition creates a type constructor +$(\alpha@1,\ldots,\alpha@n)ty$ rather than a particular type. + +\begin{figure}[htbp] +\begin{rail} +typedef : 'typedef' ( () | '(' name ')') type '=' set witness; + +type : typevarlist name ( () | '(' infix ')' ); +set : string; +witness : () | '(' id ')'; +\end{rail} +\caption{Syntax of type definitions} +\label{fig:HOL:typedef} +\end{figure} + +The syntax for type definitions is shown in Fig.~\ref{fig:HOL:typedef}. For +the definition of `typevarlist' and `infix' see +\iflabelundefined{chap:classical} +{the appendix of the {\em Reference Manual\/}}% +{Appendix~\ref{app:TheorySyntax}}. The remaining nonterminals have the +following meaning: +\begin{description} +\item[\it type:] the new type constructor $(\alpha@1,\dots,\alpha@n)ty$ with + optional infix annotation. +\item[\it name:] an alphanumeric name $T$ for the type constructor + $ty$, in case $ty$ is a symbolic name. Defaults to $ty$. +\item[\it set:] the representing subset $A$. +\item[\it witness:] name of a theorem of the form $a:A$ proving + non-emptiness. It can be omitted in case Isabelle manages to prove + non-emptiness automatically. +\end{description} +If all context conditions are met (no duplicate type variables in +`typevarlist', no extra type variables in `set', and no free term variables +in `set'), the following components are added to the theory: +\begin{itemize} +\item a type $ty :: (term,\dots,term)term$ +\item constants +\begin{eqnarray*} +T &::& \tau\;set \\ +Rep_T &::& (\alpha@1,\dots,\alpha@n)ty \To \tau \\ +Abs_T &::& \tau \To (\alpha@1,\dots,\alpha@n)ty +\end{eqnarray*} +\item a definition and three axioms +\[ +\begin{array}{ll} +T{\tt_def} & T \equiv A \\ +{\tt Rep_}T & Rep_T\,x \in T \\ +{\tt Rep_}T{\tt_inverse} & Abs_T\,(Rep_T\,x) = x \\ +{\tt Abs_}T{\tt_inverse} & y \in T \Imp Rep_T\,(Abs_T\,y) = y +\end{array} +\] +stating that $(\alpha@1,\dots,\alpha@n)ty$ is isomorphic to $A$ by $Rep_T$ +and its inverse $Abs_T$. +\end{itemize} +Below are two simple examples of \HOL\ type definitions. Non-emptiness +is proved automatically here. +\begin{ttbox} +typedef unit = "{\ttlbrace}True{\ttrbrace}" + +typedef (prod) + ('a, 'b) "*" (infixr 20) + = "{\ttlbrace}f . EX (a::'a) (b::'b). f = (\%x y. x = a & y = b){\ttrbrace}" +\end{ttbox} + +Type definitions permit the introduction of abstract data types in a safe +way, namely by providing models based on already existing types. Given some +abstract axiomatic description $P$ of a type, this involves two steps: +\begin{enumerate} +\item Find an appropriate type $\tau$ and subset $A$ which has the desired + properties $P$, and make a type definition based on this representation. +\item Prove that $P$ holds for $ty$ by lifting $P$ from the representation. +\end{enumerate} +You can now forget about the representation and work solely in terms of the +abstract properties $P$. + +\begin{warn} +If you introduce a new type (constructor) $ty$ axiomatically, i.e.\ by +declaring the type and its operations and by stating the desired axioms, you +should make sure the type has a non-empty model. You must also have a clause +\par +\begin{ttbox} +arities \(ty\) :: (term,\thinspace\(\dots\),{\thinspace}term){\thinspace}term +\end{ttbox} +in your theory file to tell Isabelle that $ty$ is in class \texttt{term}, the +class of all \HOL\ types. +\end{warn} + + +\section{Records} + +At a first approximation, records are just a minor generalisation of tuples, +where components may be addressed by labels instead of just position (think of +{\ML}, for example). The version of records offered by Isabelle/HOL is +slightly more advanced, though, supporting \emph{extensible record schemes}. +This admits operations that are polymorphic with respect to record extension, +yielding ``object-oriented'' effects like (single) inheritance. See also +\cite{Naraschewski-Wenzel:1998:TPHOL} for more details on object-oriented +verification and record subtyping in HOL. + + +\subsection{Basics} + +Isabelle/HOL supports fixed and schematic records both at the level of terms +and types. The concrete syntax is as follows: + +\begin{center} +\begin{tabular}{l|l|l} + & record terms & record types \\ \hline + fixed & $\record{x = a\fs y = b}$ & $\record{x \ty A\fs y \ty B}$ \\ + schematic & $\record{x = a\fs y = b\fs \more = m}$ & + $\record{x \ty A\fs y \ty B\fs \more \ty M}$ \\ +\end{tabular} +\end{center} + +\noindent The \textsc{ascii} representation of $\record{x = a}$ is \texttt{(| x = a |)}. + +A fixed record $\record{x = a\fs y = b}$ has field $x$ of value $a$ and field +$y$ of value $b$. The corresponding type is $\record{x \ty A\fs y \ty B}$, +assuming that $a \ty A$ and $b \ty B$. + +A record scheme like $\record{x = a\fs y = b\fs \more = m}$ contains fields +$x$ and $y$ as before, but also possibly further fields as indicated by the +``$\more$'' notation (which is actually part of the syntax). The improper +field ``$\more$'' of a record scheme is called the \emph{more part}. +Logically it is just a free variable, which is occasionally referred to as +\emph{row variable} in the literature. The more part of a record scheme may +be instantiated by zero or more further components. For example, above scheme +might get instantiated to $\record{x = a\fs y = b\fs z = c\fs \more = m'}$, +where $m'$ refers to a different more part. Fixed records are special +instances of record schemes, where ``$\more$'' is properly terminated by the +$() :: unit$ element. Actually, $\record{x = a\fs y = b}$ is just an +abbreviation for $\record{x = a\fs y = b\fs \more = ()}$. + +\medskip + +There are two key features that make extensible records in a simply typed +language like HOL feasible: +\begin{enumerate} +\item the more part is internalised, as a free term or type variable, +\item field names are externalised, they cannot be accessed within the logic + as first-class values. +\end{enumerate} + +\medskip + +In Isabelle/HOL record types have to be defined explicitly, fixing their field +names and types, and their (optional) parent record (see +\S\ref{sec:HOL:record-def}). Afterwards, records may be formed using above +syntax, while obeying the canonical order of fields as given by their +declaration. The record package also provides several operations like +selectors and updates (see \S\ref{sec:HOL:record-ops}), together with +characteristic properties (see \S\ref{sec:HOL:record-thms}). + +There is an example theory demonstrating most basic aspects of extensible +records (see theory \texttt{HOL/ex/Points} in the Isabelle sources). + + +\subsection{Defining records}\label{sec:HOL:record-def} + +The theory syntax for record type definitions is shown in +Fig.~\ref{fig:HOL:record}. For the definition of `typevarlist' and `type' see +\iflabelundefined{chap:classical} +{the appendix of the {\em Reference Manual\/}}% +{Appendix~\ref{app:TheorySyntax}}. + +\begin{figure}[htbp] +\begin{rail} +record : 'record' typevarlist name '=' parent (field +); + +parent : ( () | type '+'); +field : name '::' type; +\end{rail} +\caption{Syntax of record type definitions} +\label{fig:HOL:record} +\end{figure} + +A general \ttindex{record} specification is of the following form: +\[ +\mathtt{record}~(\alpha@1, \dots, \alpha@n) \, t ~=~ + (\tau@1, \dots, \tau@m) \, s ~+~ c@1 :: \sigma@1 ~ \dots ~ c@l :: \sigma@l +\] +where $\vec\alpha@n$ are distinct type variables, and $\vec\tau@m$, +$\vec\sigma@l$ are types containing at most variables from $\vec\alpha@n$. +Type constructor $t$ has to be new, while $s$ has to specify an existing +record type. Furthermore, the $\vec c@l$ have to be distinct field names. +There has to be at least one field. + +In principle, field names may never be shared with other records. This is no +actual restriction in practice, since $\vec c@l$ are internally declared +within a separate name space qualified by the name $t$ of the record. + +\medskip + +Above definition introduces a new record type $(\vec\alpha@n) \, t$ by +extending an existing one $(\vec\tau@m) \, s$ by new fields $\vec c@l \ty +\vec\sigma@l$. The parent record specification is optional, by omitting it +$t$ becomes a \emph{root record}. The hierarchy of all records declared +within a theory forms a forest structure, i.e.\ a set of trees, where any of +these is rooted by some root record. + +For convenience, $(\vec\alpha@n) \, t$ is made a type abbreviation for the +fixed record type $\record{\vec c@l \ty \vec\sigma@l}$, and $(\vec\alpha@n, +\zeta) \, t_scheme$ is made an abbreviation for $\record{\vec c@l \ty + \vec\sigma@l\fs \more \ty \zeta}$. + +\medskip + +The following simple example defines a root record type $point$ with fields $x +\ty nat$ and $y \ty nat$, and record type $cpoint$ by extending $point$ with +an additional $colour$ component. + +\begin{ttbox} + record point = + x :: nat + y :: nat + + record cpoint = point + + colour :: string +\end{ttbox} + + +\subsection{Record operations}\label{sec:HOL:record-ops} + +Any record definition of the form presented above produces certain standard +operations. Selectors and updates are provided for any field, including the +improper one ``$more$''. There are also cumulative record constructor +functions. + +To simplify the presentation below, we first assume that $(\vec\alpha@n) \, t$ +is a root record with fields $\vec c@l \ty \vec\sigma@l$. + +\medskip + +\textbf{Selectors} and \textbf{updates} are available for any field (including +``$more$'') as follows: +\begin{matharray}{lll} + c@i & \ty & \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To \sigma@i \\ + c@i_update & \ty & \sigma@i \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \To + \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} +\end{matharray} + +There is some special syntax for updates: $r \, \record{x \asn a}$ abbreviates +term $x_update \, a \, r$. Repeated updates are also supported: $r \, +\record{x \asn a} \, \record{y \asn b} \, \record{z \asn c}$ may be written as +$r \, \record{x \asn a\fs y \asn b\fs z \asn c}$. Note that because of +postfix notation the order of fields shown here is reverse than in the actual +term. This might lead to confusion in conjunction with proof tools like +ordered rewriting. + +Since repeated updates are just function applications, fields may be freely +permuted in $\record{x \asn a\fs y \asn b\fs z \asn c}$, as far as the logic +is concerned. Thus commutativity of updates can be proven within the logic +for any two fields, but not as a general theorem: fields are not first-class +values. + +\medskip + +\textbf{Make} operations provide cumulative record constructor functions: +\begin{matharray}{lll} + make & \ty & \vec\sigma@l \To \record{\vec c@l \ty \vec \sigma@l} \\ + make_scheme & \ty & \vec\sigma@l \To + \zeta \To \record{\vec c@l \ty \vec \sigma@l, \more \ty \zeta} \\ +\end{matharray} +\noindent +These functions are curried. The corresponding definitions in terms of actual +record terms are part of the standard simpset. Thus $point\dtt make\,a\,b$ +rewrites to $\record{x = a\fs y = b}$. + +\medskip + +Any of above selector, update and make operations are declared within a local +name space prefixed by the name $t$ of the record. In case that different +records share base names of fields, one has to qualify names explicitly (e.g.\ +$t\dtt c@i_update$). This is recommended especially for operations like +$make$ or $update_more$ that always have the same base name. Just use $t\dtt +make$ etc.\ to avoid confusion. + +\bigskip + +We reconsider the case of non-root records, which are derived of some parent +record. In general, the latter may depend on another parent as well, +resulting in a list of \emph{ancestor records}. Appending the lists of fields +of all ancestors results in a certain field prefix. The record package +automatically takes care of this by lifting operations over this context of +ancestor fields. Assuming that $(\vec\alpha@n) \, t$ has ancestor fields +$\vec d@k \ty \vec\rho@k$, selectors will get the following types: +\begin{matharray}{lll} + c@i & \ty & \record{\vec d@k \ty \vec\rho@k, \vec c@l \ty \vec \sigma@l, \more \ty \zeta} + \To \sigma@i +\end{matharray} +\noindent +Update and make operations are analogous. + + +\subsection{Proof tools}\label{sec:HOL:record-thms} + +The record package provides the following proof rules for any record type $t$. +\begin{enumerate} + +\item Standard conversions (selectors or updates applied to record constructor + terms, make function definitions) are part of the standard simpset (via + \texttt{addsimps}). + +\item Inject equations of a form analogous to $((x, y) = (x', y')) \equiv x=x' + \conj y=y'$ are made part of the standard simpset and claset (via + \texttt{addIffs}). + +\item A tactic for record field splitting (\ttindex{record_split_tac}) is made + part of the standard claset (via \texttt{addSWrapper}). This tactic is + based on rules analogous to $(\All x PROP~P~x) \equiv (\All{a~b} PROP~P(a, + b))$ for any field. +\end{enumerate} + +The first two kinds of rules are stored within the theory as $t\dtt simps$ and +$t\dtt iffs$, respectively. In some situations it might be appropriate to +expand the definitions of updates: $t\dtt updates$. Following a new trend in +Isabelle system architecture, these names are \emph{not} bound at the {\ML} +level, though. + +\medskip + +The example theory \texttt{HOL/ex/Points} demonstrates typical proofs +concerning records. The basic idea is to make \ttindex{record_split_tac} +expand quantified record variables and then simplify by the conversion rules. +By using a combination of the simplifier and classical prover together with +the default simpset and claset, record problems should be solved with a single +stroke of \texttt{Auto_tac} or \texttt{Force_tac}. + + +\section{Datatype definitions} +\label{sec:HOL:datatype} +\index{*datatype|(} + +Inductive datatypes, similar to those of \ML, frequently appear in +applications of Isabelle/HOL. In principle, such types could be defined by +hand via \texttt{typedef} (see \S\ref{sec:typedef}), but this would be far too +tedious. The \ttindex{datatype} definition package of \HOL\ automates such +chores. It generates an appropriate \texttt{typedef} based on a least +fixed-point construction, and proves freeness theorems and induction rules, as +well as theorems for recursion and case combinators. The user just has to +give a simple specification of new inductive types using a notation similar to +{\ML} or Haskell. + +The current datatype package can handle both mutual and indirect recursion. +It also offers to represent existing types as datatypes giving the advantage +of a more uniform view on standard theories. + + +\subsection{Basics} +\label{subsec:datatype:basics} + +A general \texttt{datatype} definition is of the following form: +\[ +\begin{array}{llcl} +\mathtt{datatype} & (\alpha@1,\ldots,\alpha@h)t@1 & = & + C^1@1~\tau^1@{1,1}~\ldots~\tau^1@{1,m^1@1} ~\mid~ \ldots ~\mid~ + C^1@{k@1}~\tau^1@{k@1,1}~\ldots~\tau^1@{k@1,m^1@{k@1}} \\ + & & \vdots \\ +\mathtt{and} & (\alpha@1,\ldots,\alpha@h)t@n & = & + C^n@1~\tau^n@{1,1}~\ldots~\tau^n@{1,m^n@1} ~\mid~ \ldots ~\mid~ + C^n@{k@n}~\tau^n@{k@n,1}~\ldots~\tau^n@{k@n,m^n@{k@n}} +\end{array} +\] +where $\alpha@i$ are type variables, $C^j@i$ are distinct constructor +names and $\tau^j@{i,i'}$ are {\em admissible} types containing at +most the type variables $\alpha@1, \ldots, \alpha@h$. A type $\tau$ +occurring in a \texttt{datatype} definition is {\em admissible} iff +\begin{itemize} +\item $\tau$ is non-recursive, i.e.\ $\tau$ does not contain any of the +newly defined type constructors $t@1,\ldots,t@n$, or +\item $\tau = (\alpha@1,\ldots,\alpha@h)t@{j'}$ where $1 \leq j' \leq n$, or +\item $\tau = (\tau'@1,\ldots,\tau'@{h'})t'$, where $t'$ is +the type constructor of an already existing datatype and $\tau'@1,\ldots,\tau'@{h'}$ +are admissible types. +\end{itemize} +If some $(\alpha@1,\ldots,\alpha@h)t@{j'}$ occurs in a type $\tau^j@{i,i'}$ +of the form +\[ +(\ldots,\ldots ~ (\alpha@1,\ldots,\alpha@h)t@{j'} ~ \ldots,\ldots)t' +\] +this is called a {\em nested} (or \emph{indirect}) occurrence. A very simple +example of a datatype is the type \texttt{list}, which can be defined by +\begin{ttbox} +datatype 'a list = Nil + | Cons 'a ('a list) +\end{ttbox} +Arithmetic expressions \texttt{aexp} and boolean expressions \texttt{bexp} can be modelled +by the mutually recursive datatype definition +\begin{ttbox} +datatype 'a aexp = If_then_else ('a bexp) ('a aexp) ('a aexp) + | Sum ('a aexp) ('a aexp) + | Diff ('a aexp) ('a aexp) + | Var 'a + | Num nat +and 'a bexp = Less ('a aexp) ('a aexp) + | And ('a bexp) ('a bexp) + | Or ('a bexp) ('a bexp) +\end{ttbox} +The datatype \texttt{term}, which is defined by +\begin{ttbox} +datatype ('a, 'b) term = Var 'a + | App 'b ((('a, 'b) term) list) +\end{ttbox} +is an example for a datatype with nested recursion. + +\medskip + +Types in HOL must be non-empty. Each of the new datatypes +$(\alpha@1,\ldots,\alpha@h)t@j$ with $1 \le j \le n$ is non-empty iff it has a +constructor $C^j@i$ with the following property: for all argument types +$\tau^j@{i,i'}$ of the form $(\alpha@1,\ldots,\alpha@h)t@{j'}$ the datatype +$(\alpha@1,\ldots,\alpha@h)t@{j'}$ is non-empty. + +If there are no nested occurrences of the newly defined datatypes, obviously +at least one of the newly defined datatypes $(\alpha@1,\ldots,\alpha@h)t@j$ +must have a constructor $C^j@i$ without recursive arguments, a \emph{base + case}, to ensure that the new types are non-empty. If there are nested +occurrences, a datatype can even be non-empty without having a base case +itself. Since \texttt{list} is a non-empty datatype, \texttt{datatype t = C (t + list)} is non-empty as well. + + +\subsubsection{Freeness of the constructors} + +The datatype constructors are automatically defined as functions of their +respective type: +\[ C^j@i :: [\tau^j@{i,1},\dots,\tau^j@{i,m^j@i}] \To (\alpha@1,\dots,\alpha@h)t@j \] +These functions have certain {\em freeness} properties. They construct +distinct values: +\[ +C^j@i~x@1~\dots~x@{m^j@i} \neq C^j@{i'}~y@1~\dots~y@{m^j@{i'}} \qquad +\mbox{for all}~ i \neq i'. +\] +The constructor functions are injective: +\[ +(C^j@i~x@1~\dots~x@{m^j@i} = C^j@i~y@1~\dots~y@{m^j@i}) = +(x@1 = y@1 \land \dots \land x@{m^j@i} = y@{m^j@i}) +\] +Because the number of distinctness inequalities is quadratic in the number of +constructors, a different representation is used if there are $7$ or more of +them. In that case every constructor term is mapped to a natural number: +\[ +t@j_ord \, (C^j@i \, x@1 \, \dots \, x@{m^j@i}) = i - 1 +\] +Then distinctness of constructor terms is expressed by: +\[ +t@j_ord \, x \neq t@j_ord \, y \Imp x \neq y. +\] + +\subsubsection{Structural induction} + +The datatype package also provides structural induction rules. For +datatypes without nested recursion, this is of the following form: +\[ +\infer{P@1~x@1 \wedge \dots \wedge P@n~x@n} + {\begin{array}{lcl} + \Forall x@1 \dots x@{m^1@1}. + \List{P@{s^1@{1,1}}~x@{r^1@{1,1}}; \dots; + P@{s^1@{1,l^1@1}}~x@{r^1@{1,l^1@1}}} & \Imp & + P@1~\left(C^1@1~x@1~\dots~x@{m^1@1}\right) \\ + & \vdots \\ + \Forall x@1 \dots x@{m^1@{k@1}}. + \List{P@{s^1@{k@1,1}}~x@{r^1@{k@1,1}}; \dots; + P@{s^1@{k@1,l^1@{k@1}}}~x@{r^1@{k@1,l^1@{k@1}}}} & \Imp & + P@1~\left(C^1@{k@1}~x@1~\ldots~x@{m^1@{k@1}}\right) \\ + & \vdots \\ + \Forall x@1 \dots x@{m^n@1}. + \List{P@{s^n@{1,1}}~x@{r^n@{1,1}}; \dots; + P@{s^n@{1,l^n@1}}~x@{r^n@{1,l^n@1}}} & \Imp & + P@n~\left(C^n@1~x@1~\ldots~x@{m^n@1}\right) \\ + & \vdots \\ + \Forall x@1 \dots x@{m^n@{k@n}}. + \List{P@{s^n@{k@n,1}}~x@{r^n@{k@n,1}}; \dots + P@{s^n@{k@n,l^n@{k@n}}}~x@{r^n@{k@n,l^n@{k@n}}}} & \Imp & + P@n~\left(C^n@{k@n}~x@1~\ldots~x@{m^n@{k@n}}\right) + \end{array}} +\] +where +\[ +\begin{array}{rcl} +Rec^j@i & := & + \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots, + \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\} = \\[2ex] +&& \left\{(i',i'')~\left|~ + 1\leq i' \leq m^j@i \wedge 1 \leq i'' \leq n \wedge + \tau^j@{i,i'} = (\alpha@1,\ldots,\alpha@h)t@{i''}\right.\right\} +\end{array} +\] +i.e.\ the properties $P@j$ can be assumed for all recursive arguments. + +For datatypes with nested recursion, such as the \texttt{term} example from +above, things are a bit more complicated. Conceptually, Isabelle/HOL unfolds +a definition like +\begin{ttbox} +datatype ('a, 'b) term = Var 'a + | App 'b ((('a, 'b) term) list) +\end{ttbox} +to an equivalent definition without nesting: +\begin{ttbox} +datatype ('a, 'b) term = Var + | App 'b (('a, 'b) term_list) +and ('a, 'b) term_list = Nil' + | Cons' (('a,'b) term) (('a,'b) term_list) +\end{ttbox} +Note however, that the type \texttt{('a,'b) term_list} and the constructors {\tt + Nil'} and \texttt{Cons'} are not really introduced. One can directly work with +the original (isomorphic) type \texttt{(('a, 'b) term) list} and its existing +constructors \texttt{Nil} and \texttt{Cons}. Thus, the structural induction rule for +\texttt{term} gets the form +\[ +\infer{P@1~x@1 \wedge P@2~x@2} + {\begin{array}{l} + \Forall x.~P@1~(\mathtt{Var}~x) \\ + \Forall x@1~x@2.~P@2~x@2 \Imp P@1~(\mathtt{App}~x@1~x@2) \\ + P@2~\mathtt{Nil} \\ + \Forall x@1~x@2. \List{P@1~x@1; P@2~x@2} \Imp P@2~(\mathtt{Cons}~x@1~x@2) + \end{array}} +\] +Note that there are two predicates $P@1$ and $P@2$, one for the type \texttt{('a,'b) term} +and one for the type \texttt{(('a, 'b) term) list}. + +\medskip In principle, inductive types are already fully determined by +freeness and structural induction. For convenience in applications, +the following derived constructions are automatically provided for any +datatype. + +\subsubsection{The \sdx{case} construct} + +The type comes with an \ML-like \texttt{case}-construct: +\[ +\begin{array}{rrcl} +\mbox{\tt case}~e~\mbox{\tt of} & C^j@1~x@{1,1}~\dots~x@{1,m^j@1} & \To & e@1 \\ + \vdots \\ + \mid & C^j@{k@j}~x@{k@j,1}~\dots~x@{k@j,m^j@{k@j}} & \To & e@{k@j} +\end{array} +\] +where the $x@{i,j}$ are either identifiers or nested tuple patterns as in +\S\ref{subsec:prod-sum}. +\begin{warn} + All constructors must be present, their order is fixed, and nested patterns + are not supported (with the exception of tuples). Violating this + restriction results in strange error messages. +\end{warn} + +To perform case distinction on a goal containing a \texttt{case}-construct, +the theorem $t@j.$\texttt{split} is provided: +\[ +\begin{array}{@{}rcl@{}} +P(t@j_\mathtt{case}~f@1~\dots~f@{k@j}~e) &\!\!\!=& +\!\!\! ((\forall x@1 \dots x@{m^j@1}. e = C^j@1~x@1\dots x@{m^j@1} \to + P(f@1~x@1\dots x@{m^j@1})) \\ +&&\!\!\! ~\land~ \dots ~\land \\ +&&~\!\!\! (\forall x@1 \dots x@{m^j@{k@j}}. e = C^j@{k@j}~x@1\dots x@{m^j@{k@j}} \to + P(f@{k@j}~x@1\dots x@{m^j@{k@j}}))) +\end{array} +\] +where $t@j$\texttt{_case} is the internal name of the \texttt{case}-construct. +This theorem can be added to a simpset via \ttindex{addsplits} +(see~\S\ref{subsec:HOL:case:splitting}). + +\subsubsection{The function \cdx{size}}\label{sec:HOL:size} + +Theory \texttt{Arith} declares a generic function \texttt{size} of type +$\alpha\To nat$. Each datatype defines a particular instance of \texttt{size} +by overloading according to the following scheme: +%%% FIXME: This formula is too big and is completely unreadable +\[ +size(C^j@i~x@1~\dots~x@{m^j@i}) = \! +\left\{ +\begin{array}{ll} +0 & \!\mbox{if $Rec^j@i = \emptyset$} \\ +\!\!\begin{array}{l} +size~x@{r^j@{i,1}} + \cdots \\ +\cdots + size~x@{r^j@{i,l^j@i}} + 1 +\end{array} & + \!\mbox{if $Rec^j@i = \left\{\left(r^j@{i,1},s^j@{i,1}\right),\ldots, + \left(r^j@{i,l^j@i},s^j@{i,l^j@i}\right)\right\}$} +\end{array} +\right. +\] +where $Rec^j@i$ is defined above. Viewing datatypes as generalised trees, the +size of a leaf is 0 and the size of a node is the sum of the sizes of its +subtrees ${}+1$. + +\subsection{Defining datatypes} + +The theory syntax for datatype definitions is shown in +Fig.~\ref{datatype-grammar}. In order to be well-formed, a datatype +definition has to obey the rules stated in the previous section. As a result +the theory is extended with the new types, the constructors, and the theorems +listed in the previous section. + +\begin{figure} +\begin{rail} +datatype : 'datatype' typedecls; + +typedecls: ( newtype '=' (cons + '|') ) + 'and' + ; +newtype : typevarlist id ( () | '(' infix ')' ) + ; +cons : name (argtype *) ( () | ( '(' mixfix ')' ) ) + ; +argtype : id | tid | ('(' typevarlist id ')') + ; +\end{rail} +\caption{Syntax of datatype declarations} +\label{datatype-grammar} +\end{figure} + +Most of the theorems about datatypes become part of the default simpset and +you never need to see them again because the simplifier applies them +automatically. Only induction or exhaustion are usually invoked by hand. +\begin{ttdescription} +\item[\ttindexbold{induct_tac} {\tt"}$x${\tt"} $i$] + applies structural induction on variable $x$ to subgoal $i$, provided the + type of $x$ is a datatype. +\item[\ttindexbold{mutual_induct_tac} + {\tt["}$x@1${\tt",}$\ldots${\tt,"}$x@n${\tt"]} $i$] applies simultaneous + structural induction on the variables $x@1,\ldots,x@n$ to subgoal $i$. This + is the canonical way to prove properties of mutually recursive datatypes + such as \texttt{aexp} and \texttt{bexp}, or datatypes with nested recursion such as + \texttt{term}. +\end{ttdescription} +In some cases, induction is overkill and a case distinction over all +constructors of the datatype suffices. +\begin{ttdescription} +\item[\ttindexbold{exhaust_tac} {\tt"}$u${\tt"} $i$] + performs an exhaustive case analysis for the term $u$ whose type + must be a datatype. If the datatype has $k@j$ constructors + $C^j@1$, \dots $C^j@{k@j}$, subgoal $i$ is replaced by $k@j$ new subgoals which + contain the additional assumption $u = C^j@{i'}~x@1~\dots~x@{m^j@{i'}}$ for + $i'=1$, $\dots$,~$k@j$. +\end{ttdescription} + +Note that induction is only allowed on free variables that should not occur +among the premises of the subgoal. Exhaustion applies to arbitrary terms. + +\bigskip + + +For the technically minded, we exhibit some more details. Processing the +theory file produces an \ML\ structure which, in addition to the usual +components, contains a structure named $t$ for each datatype $t$ defined in +the file. Each structure $t$ contains the following elements: +\begin{ttbox} +val distinct : thm list +val inject : thm list +val induct : thm +val exhaust : thm +val cases : thm list +val split : thm +val split_asm : thm +val recs : thm list +val size : thm list +val simps : thm list +\end{ttbox} +\texttt{distinct}, \texttt{inject}, \texttt{induct}, \texttt{size} +and \texttt{split} contain the theorems +described above. For user convenience, \texttt{distinct} contains +inequalities in both directions. The reduction rules of the {\tt + case}-construct are in \texttt{cases}. All theorems from {\tt + distinct}, \texttt{inject} and \texttt{cases} are combined in \texttt{simps}. +In case of mutually recursive datatypes, \texttt{recs}, \texttt{size}, \texttt{induct} +and \texttt{simps} are contained in a separate structure named $t@1_\ldots_t@n$. + + +\subsection{Representing existing types as datatypes} + +For foundational reasons, some basic types such as \texttt{nat}, \texttt{*}, {\tt + +}, \texttt{bool} and \texttt{unit} are not defined in a \texttt{datatype} section, +but by more primitive means using \texttt{typedef}. To be able to use the +tactics \texttt{induct_tac} and \texttt{exhaust_tac} and to define functions by +primitive recursion on these types, such types may be represented as actual +datatypes. This is done by specifying an induction rule, as well as theorems +stating the distinctness and injectivity of constructors in a {\tt + rep_datatype} section. For type \texttt{nat} this works as follows: +\begin{ttbox} +rep_datatype nat + distinct Suc_not_Zero, Zero_not_Suc + inject Suc_Suc_eq + induct nat_induct +\end{ttbox} +The datatype package automatically derives additional theorems for recursion +and case combinators from these rules. Any of the basic HOL types mentioned +above are represented as datatypes. Try an induction on \texttt{bool} +today. + + +\subsection{Examples} + +\subsubsection{The datatype $\alpha~mylist$} + +We want to define a type $\alpha~mylist$. To do this we have to build a new +theory that contains the type definition. We start from the theory +\texttt{Datatype} instead of \texttt{Main} in order to avoid clashes with the +\texttt{List} theory of Isabelle/HOL. +\begin{ttbox} +MyList = Datatype + + datatype 'a mylist = Nil | Cons 'a ('a mylist) +end +\end{ttbox} +After loading the theory, we can prove $Cons~x~xs\neq xs$, for example. To +ease the induction applied below, we state the goal with $x$ quantified at the +object-level. This will be stripped later using \ttindex{qed_spec_mp}. +\begin{ttbox} +Goal "!x. Cons x xs ~= xs"; +{\out Level 0} +{\out ! x. Cons x xs ~= xs} +{\out 1. ! x. Cons x xs ~= xs} +\end{ttbox} +This can be proved by the structural induction tactic: +\begin{ttbox} +by (induct_tac "xs" 1); +{\out Level 1} +{\out ! x. Cons x xs ~= xs} +{\out 1. ! x. Cons x Nil ~= Nil} +{\out 2. !!a mylist.} +{\out ! x. Cons x mylist ~= mylist ==>} +{\out ! x. Cons x (Cons a mylist) ~= Cons a mylist} +\end{ttbox} +The first subgoal can be proved using the simplifier. Isabelle/HOL has +already added the freeness properties of lists to the default simplification +set. +\begin{ttbox} +by (Simp_tac 1); +{\out Level 2} +{\out ! x. Cons x xs ~= xs} +{\out 1. !!a mylist.} +{\out ! x. Cons x mylist ~= mylist ==>} +{\out ! x. Cons x (Cons a mylist) ~= Cons a mylist} +\end{ttbox} +Similarly, we prove the remaining goal. +\begin{ttbox} +by (Asm_simp_tac 1); +{\out Level 3} +{\out ! x. Cons x xs ~= xs} +{\out No subgoals!} +\ttbreak +qed_spec_mp "not_Cons_self"; +{\out val not_Cons_self = "Cons x xs ~= xs" : thm} +\end{ttbox} +Because both subgoals could have been proved by \texttt{Asm_simp_tac} +we could have done that in one step: +\begin{ttbox} +by (ALLGOALS Asm_simp_tac); +\end{ttbox} + + +\subsubsection{The datatype $\alpha~mylist$ with mixfix syntax} + +In this example we define the type $\alpha~mylist$ again but this time +we want to write \texttt{[]} for \texttt{Nil} and we want to use infix +notation \verb|#| for \texttt{Cons}. To do this we simply add mixfix +annotations after the constructor declarations as follows: +\begin{ttbox} +MyList = Datatype + + datatype 'a mylist = + Nil ("[]") | + Cons 'a ('a mylist) (infixr "#" 70) +end +\end{ttbox} +Now the theorem in the previous example can be written \verb|x#xs ~= xs|. + + +\subsubsection{A datatype for weekdays} + +This example shows a datatype that consists of 7 constructors: +\begin{ttbox} +Days = Main + + datatype days = Mon | Tue | Wed | Thu | Fri | Sat | Sun +end +\end{ttbox} +Because there are more than 6 constructors, inequality is expressed via a function +\verb|days_ord|. The theorem \verb|Mon ~= Tue| is not directly +contained among the distinctness theorems, but the simplifier can +prove it thanks to rewrite rules inherited from theory \texttt{Arith}: +\begin{ttbox} +Goal "Mon ~= Tue"; +by (Simp_tac 1); +\end{ttbox} +You need not derive such inequalities explicitly: the simplifier will dispose +of them automatically. +\index{*datatype|)} + + +\section{Recursive function definitions}\label{sec:HOL:recursive} +\index{recursive functions|see{recursion}} + +Isabelle/HOL provides two main mechanisms of defining recursive functions. +\begin{enumerate} +\item \textbf{Primitive recursion} is available only for datatypes, and it is + somewhat restrictive. Recursive calls are only allowed on the argument's + immediate constituents. On the other hand, it is the form of recursion most + often wanted, and it is easy to use. + +\item \textbf{Well-founded recursion} requires that you supply a well-founded + relation that governs the recursion. Recursive calls are only allowed if + they make the argument decrease under the relation. Complicated recursion + forms, such as nested recursion, can be dealt with. Termination can even be + proved at a later time, though having unsolved termination conditions around + can make work difficult.% + \footnote{This facility is based on Konrad Slind's TFL + package~\cite{slind-tfl}. Thanks are due to Konrad for implementing TFL + and assisting with its installation.} +\end{enumerate} + +Following good HOL tradition, these declarations do not assert arbitrary +axioms. Instead, they define the function using a recursion operator. Both +HOL and ZF derive the theory of well-founded recursion from first +principles~\cite{paulson-set-II}. Primitive recursion over some datatype +relies on the recursion operator provided by the datatype package. With +either form of function definition, Isabelle proves the desired recursion +equations as theorems. + + +\subsection{Primitive recursive functions} +\label{sec:HOL:primrec} +\index{recursion!primitive|(} +\index{*primrec|(} + +Datatypes come with a uniform way of defining functions, {\bf primitive + recursion}. In principle, one could introduce primitive recursive functions +by asserting their reduction rules as new axioms, but this is not recommended: +\begin{ttbox}\slshape +Append = Main + +consts app :: ['a list, 'a list] => 'a list +rules + app_Nil "app [] ys = ys" + app_Cons "app (x#xs) ys = x#app xs ys" +end +\end{ttbox} +Asserting axioms brings the danger of accidentally asserting nonsense, as +in \verb$app [] ys = us$. + +The \ttindex{primrec} declaration is a safe means of defining primitive +recursive functions on datatypes: +\begin{ttbox} +Append = Main + +consts app :: ['a list, 'a list] => 'a list +primrec + "app [] ys = ys" + "app (x#xs) ys = x#app xs ys" +end +\end{ttbox} +Isabelle will now check that the two rules do indeed form a primitive +recursive definition. For example +\begin{ttbox} +primrec + "app [] ys = us" +\end{ttbox} +is rejected with an error message ``\texttt{Extra variables on rhs}''. + +\bigskip + +The general form of a primitive recursive definition is +\begin{ttbox} +primrec + {\it reduction rules} +\end{ttbox} +where \textit{reduction rules} specify one or more equations of the form +\[ f \, x@1 \, \dots \, x@m \, (C \, y@1 \, \dots \, y@k) \, z@1 \, +\dots \, z@n = r \] such that $C$ is a constructor of the datatype, $r$ +contains only the free variables on the left-hand side, and all recursive +calls in $r$ are of the form $f \, \dots \, y@i \, \dots$ for some $i$. There +must be at most one reduction rule for each constructor. The order is +immaterial. For missing constructors, the function is defined to return a +default value. + +If you would like to refer to some rule by name, then you must prefix +the rule with an identifier. These identifiers, like those in the +\texttt{rules} section of a theory, will be visible at the \ML\ level. + +The primitive recursive function can have infix or mixfix syntax: +\begin{ttbox}\underscoreon +consts "@" :: ['a list, 'a list] => 'a list (infixr 60) +primrec + "[] @ ys = ys" + "(x#xs) @ ys = x#(xs @ ys)" +\end{ttbox} + +The reduction rules become part of the default simpset, which +leads to short proof scripts: +\begin{ttbox}\underscoreon +Goal "(xs @ ys) @ zs = xs @ (ys @ zs)"; +by (induct\_tac "xs" 1); +by (ALLGOALS Asm\_simp\_tac); +\end{ttbox} + +\subsubsection{Example: Evaluation of expressions} +Using mutual primitive recursion, we can define evaluation functions \texttt{eval_aexp} +and \texttt{eval_bexp} for the datatypes of arithmetic and boolean expressions mentioned in +\S\ref{subsec:datatype:basics}: +\begin{ttbox} +consts + eval_aexp :: "['a => nat, 'a aexp] => nat" + eval_bexp :: "['a => nat, 'a bexp] => bool" + +primrec + "eval_aexp env (If_then_else b a1 a2) = + (if eval_bexp env b then eval_aexp env a1 else eval_aexp env a2)" + "eval_aexp env (Sum a1 a2) = eval_aexp env a1 + eval_aexp env a2" + "eval_aexp env (Diff a1 a2) = eval_aexp env a1 - eval_aexp env a2" + "eval_aexp env (Var v) = env v" + "eval_aexp env (Num n) = n" + + "eval_bexp env (Less a1 a2) = (eval_aexp env a1 < eval_aexp env a2)" + "eval_bexp env (And b1 b2) = (eval_bexp env b1 & eval_bexp env b2)" + "eval_bexp env (Or b1 b2) = (eval_bexp env b1 & eval_bexp env b2)" +\end{ttbox} +Since the value of an expression depends on the value of its variables, +the functions \texttt{eval_aexp} and \texttt{eval_bexp} take an additional +parameter, an {\em environment} of type \texttt{'a => nat}, which maps +variables to their values. + +Similarly, we may define substitution functions \texttt{subst_aexp} +and \texttt{subst_bexp} for expressions: The mapping \texttt{f} of type +\texttt{'a => 'a aexp} given as a parameter is lifted canonically +on the types {'a aexp} and {'a bexp}: +\begin{ttbox} +consts + subst_aexp :: "['a => 'b aexp, 'a aexp] => 'b aexp" + subst_bexp :: "['a => 'b aexp, 'a bexp] => 'b bexp" + +primrec + "subst_aexp f (If_then_else b a1 a2) = + If_then_else (subst_bexp f b) (subst_aexp f a1) (subst_aexp f a2)" + "subst_aexp f (Sum a1 a2) = Sum (subst_aexp f a1) (subst_aexp f a2)" + "subst_aexp f (Diff a1 a2) = Diff (subst_aexp f a1) (subst_aexp f a2)" + "subst_aexp f (Var v) = f v" + "subst_aexp f (Num n) = Num n" + + "subst_bexp f (Less a1 a2) = Less (subst_aexp f a1) (subst_aexp f a2)" + "subst_bexp f (And b1 b2) = And (subst_bexp f b1) (subst_bexp f b2)" + "subst_bexp f (Or b1 b2) = Or (subst_bexp f b1) (subst_bexp f b2)" +\end{ttbox} +In textbooks about semantics one often finds {\em substitution theorems}, +which express the relationship between substitution and evaluation. For +\texttt{'a aexp} and \texttt{'a bexp}, we can prove such a theorem by mutual +induction, followed by simplification: +\begin{ttbox} +Goal + "eval_aexp env (subst_aexp (Var(v := a')) a) = + eval_aexp (env(v := eval_aexp env a')) a & + eval_bexp env (subst_bexp (Var(v := a')) b) = + eval_bexp (env(v := eval_aexp env a')) b"; +by (mutual_induct_tac ["a","b"] 1); +by (ALLGOALS Asm_full_simp_tac); +\end{ttbox} + +\subsubsection{Example: A substitution function for terms} +Functions on datatypes with nested recursion, such as the type +\texttt{term} mentioned in \S\ref{subsec:datatype:basics}, are +also defined by mutual primitive recursion. A substitution +function \texttt{subst_term} on type \texttt{term}, similar to the functions +\texttt{subst_aexp} and \texttt{subst_bexp} described above, can +be defined as follows: +\begin{ttbox} +consts + subst_term :: "['a => ('a, 'b) term, ('a, 'b) term] => ('a, 'b) term" + subst_term_list :: + "['a => ('a, 'b) term, ('a, 'b) term list] => ('a, 'b) term list" + +primrec + "subst_term f (Var a) = f a" + "subst_term f (App b ts) = App b (subst_term_list f ts)" + + "subst_term_list f [] = []" + "subst_term_list f (t # ts) = + subst_term f t # subst_term_list f ts" +\end{ttbox} +The recursion scheme follows the structure of the unfolded definition of type +\texttt{term} shown in \S\ref{subsec:datatype:basics}. To prove properties of +this substitution function, mutual induction is needed: +\begin{ttbox} +Goal + "(subst_term ((subst_term f1) o f2) t) = + (subst_term f1 (subst_term f2 t)) & + (subst_term_list ((subst_term f1) o f2) ts) = + (subst_term_list f1 (subst_term_list f2 ts))"; +by (mutual_induct_tac ["t", "ts"] 1); +by (ALLGOALS Asm_full_simp_tac); +\end{ttbox} + +\index{recursion!primitive|)} +\index{*primrec|)} + + +\subsection{General recursive functions} +\label{sec:HOL:recdef} +\index{recursion!general|(} +\index{*recdef|(} + +Using \texttt{recdef}, you can declare functions involving nested recursion +and pattern-matching. Recursion need not involve datatypes and there are few +syntactic restrictions. Termination is proved by showing that each recursive +call makes the argument smaller in a suitable sense, which you specify by +supplying a well-founded relation. + +Here is a simple example, the Fibonacci function. The first line declares +\texttt{fib} to be a constant. The well-founded relation is simply~$<$ (on +the natural numbers). Pattern-matching is used here: \texttt{1} is a +macro for \texttt{Suc~0}. +\begin{ttbox} +consts fib :: "nat => nat" +recdef fib "less_than" + "fib 0 = 0" + "fib 1 = 1" + "fib (Suc(Suc x)) = (fib x + fib (Suc x))" +\end{ttbox} + +With \texttt{recdef}, function definitions may be incomplete, and patterns may +overlap, as in functional programming. The \texttt{recdef} package +disambiguates overlapping patterns by taking the order of rules into account. +For missing patterns, the function is defined to return a default value. + +%For example, here is a declaration of the list function \cdx{hd}: +%\begin{ttbox} +%consts hd :: 'a list => 'a +%recdef hd "\{\}" +% "hd (x#l) = x" +%\end{ttbox} +%Because this function is not recursive, we may supply the empty well-founded +%relation, $\{\}$. + +The well-founded relation defines a notion of ``smaller'' for the function's +argument type. The relation $\prec$ is \textbf{well-founded} provided it +admits no infinitely decreasing chains +\[ \cdots\prec x@n\prec\cdots\prec x@1. \] +If the function's argument has type~$\tau$, then $\prec$ has to be a relation +over~$\tau$: it must have type $(\tau\times\tau)set$. + +Proving well-foundedness can be tricky, so Isabelle/HOL provides a collection +of operators for building well-founded relations. The package recognises +these operators and automatically proves that the constructed relation is +well-founded. Here are those operators, in order of importance: +\begin{itemize} +\item \texttt{less_than} is ``less than'' on the natural numbers. + (It has type $(nat\times nat)set$, while $<$ has type $[nat,nat]\To bool$. + +\item $\mathop{\mathtt{measure}} f$, where $f$ has type $\tau\To nat$, is the + relation~$\prec$ on type~$\tau$ such that $x\prec y$ iff $f(x)nat)" + "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))" +\end{ttbox} + +The general form of a well-founded recursive definition is +\begin{ttbox} +recdef {\it function} {\it rel} + congs {\it congruence rules} {\bf(optional)} + simpset {\it simplification set} {\bf(optional)} + {\it reduction rules} +\end{ttbox} +where +\begin{itemize} +\item \textit{function} is the name of the function, either as an \textit{id} + or a \textit{string}. + +\item \textit{rel} is a {\HOL} expression for the well-founded termination + relation. + +\item \textit{congruence rules} are required only in highly exceptional + circumstances. + +\item The \textit{simplification set} is used to prove that the supplied + relation is well-founded. It is also used to prove the \textbf{termination + conditions}: assertions that arguments of recursive calls decrease under + \textit{rel}. By default, simplification uses \texttt{simpset()}, which + is sufficient to prove well-foundedness for the built-in relations listed + above. + +\item \textit{reduction rules} specify one or more recursion equations. Each + left-hand side must have the form $f\,t$, where $f$ is the function and $t$ + is a tuple of distinct variables. If more than one equation is present then + $f$ is defined by pattern-matching on components of its argument whose type + is a \texttt{datatype}. + + Unlike with \texttt{primrec}, the reduction rules are not added to the + default simpset, and individual rules may not be labelled with identifiers. + However, the identifier $f$\texttt{.rules} is visible at the \ML\ level + as a list of theorems. +\end{itemize} + +With the definition of \texttt{gcd} shown above, Isabelle/HOL is unable to +prove one termination condition. It remains as a precondition of the +recursion theorems. +\begin{ttbox} +gcd.rules; +{\out ["! m n. n ~= 0 --> m mod n < n} +{\out ==> gcd (?m, ?n) = (if ?n = 0 then ?m else gcd (?n, ?m mod ?n))"] } +{\out : thm list} +\end{ttbox} +The theory \texttt{HOL/ex/Primes} illustrates how to prove termination +conditions afterwards. The function \texttt{Tfl.tgoalw} is like the standard +function \texttt{goalw}, which sets up a goal to prove, but its argument +should be the identifier $f$\texttt{.rules} and its effect is to set up a +proof of the termination conditions: +\begin{ttbox} +Tfl.tgoalw thy [] gcd.rules; +{\out Level 0} +{\out ! m n. n ~= 0 --> m mod n < n} +{\out 1. ! m n. n ~= 0 --> m mod n < n} +\end{ttbox} +This subgoal has a one-step proof using \texttt{simp_tac}. Once the theorem +is proved, it can be used to eliminate the termination conditions from +elements of \texttt{gcd.rules}. Theory \texttt{HOL/Subst/Unify} is a much +more complicated example of this process, where the termination conditions can +only be proved by complicated reasoning involving the recursive function +itself. + +Isabelle/HOL can prove the \texttt{gcd} function's termination condition +automatically if supplied with the right simpset. +\begin{ttbox} +recdef gcd "measure ((\%(m,n). n) ::nat*nat=>nat)" + simpset "simpset() addsimps [mod_less_divisor, zero_less_eq]" + "gcd (m, n) = (if n=0 then m else gcd(n, m mod n))" +\end{ttbox} + +A \texttt{recdef} definition also returns an induction rule specialised for +the recursive function. For the \texttt{gcd} function above, the induction +rule is +\begin{ttbox} +gcd.induct; +{\out "(!!m n. n ~= 0 --> ?P n (m mod n) ==> ?P m n) ==> ?P ?u ?v" : thm} +\end{ttbox} +This rule should be used to reason inductively about the \texttt{gcd} +function. It usually makes the induction hypothesis available at all +recursive calls, leading to very direct proofs. If any termination conditions +remain unproved, they will become additional premises of this rule. + +\index{recursion!general|)} +\index{*recdef|)} + + +\section{Inductive and coinductive definitions} +\index{*inductive|(} +\index{*coinductive|(} + +An {\bf inductive definition} specifies the least set~$R$ closed under given +rules. (Applying a rule to elements of~$R$ yields a result within~$R$.) For +example, a structural operational semantics is an inductive definition of an +evaluation relation. Dually, a {\bf coinductive definition} specifies the +greatest set~$R$ consistent with given rules. (Every element of~$R$ can be +seen as arising by applying a rule to elements of~$R$.) An important example +is using bisimulation relations to formalise equivalence of processes and +infinite data structures. + +A theory file may contain any number of inductive and coinductive +definitions. They may be intermixed with other declarations; in +particular, the (co)inductive sets {\bf must} be declared separately as +constants, and may have mixfix syntax or be subject to syntax translations. + +Each (co)inductive definition adds definitions to the theory and also +proves some theorems. Each definition creates an \ML\ structure, which is a +substructure of the main theory structure. + +This package is related to the \ZF\ one, described in a separate +paper,% +\footnote{It appeared in CADE~\cite{paulson-CADE}; a longer version is + distributed with Isabelle.} % +which you should refer to in case of difficulties. The package is simpler +than \ZF's thanks to \HOL's extra-logical automatic type-checking. The types +of the (co)inductive sets determine the domain of the fixedpoint definition, +and the package does not have to use inference rules for type-checking. + + +\subsection{The result structure} +Many of the result structure's components have been discussed in the paper; +others are self-explanatory. +\begin{description} +\item[\tt defs] is the list of definitions of the recursive sets. + +\item[\tt mono] is a monotonicity theorem for the fixedpoint operator. + +\item[\tt unfold] is a fixedpoint equation for the recursive set (the union of +the recursive sets, in the case of mutual recursion). + +\item[\tt intrs] is the list of introduction rules, now proved as theorems, for +the recursive sets. The rules are also available individually, using the +names given them in the theory file. + +\item[\tt elims] is the list of elimination rule. + +\item[\tt elim] is the head of the list \texttt{elims}. + +\item[\tt mk_cases] is a function to create simplified instances of {\tt +elim} using freeness reasoning on underlying datatypes. +\end{description} + +For an inductive definition, the result structure contains the +rule \texttt{induct}. For a +coinductive definition, it contains the rule \verb|coinduct|. + +Figure~\ref{def-result-fig} summarises the two result signatures, +specifying the types of all these components. + +\begin{figure} +\begin{ttbox} +sig +val defs : thm list +val mono : thm +val unfold : thm +val intrs : thm list +val elims : thm list +val elim : thm +val mk_cases : string -> thm +{\it(Inductive definitions only)} +val induct : thm +{\it(coinductive definitions only)} +val coinduct : thm +end +\end{ttbox} +\hrule +\caption{The {\ML} result of a (co)inductive definition} \label{def-result-fig} +\end{figure} + +\subsection{The syntax of a (co)inductive definition} +An inductive definition has the form +\begin{ttbox} +inductive {\it inductive sets} + intrs {\it introduction rules} + monos {\it monotonicity theorems} + con_defs {\it constructor definitions} +\end{ttbox} +A coinductive definition is identical, except that it starts with the keyword +\texttt{coinductive}. + +The \texttt{monos} and \texttt{con_defs} sections are optional. If present, +each is specified by a list of identifiers. + +\begin{itemize} +\item The \textit{inductive sets} are specified by one or more strings. + +\item The \textit{introduction rules} specify one or more introduction rules in + the form \textit{ident\/}~\textit{string}, where the identifier gives the name of + the rule in the result structure. + +\item The \textit{monotonicity theorems} are required for each operator + applied to a recursive set in the introduction rules. There {\bf must} + be a theorem of the form $A\subseteq B\Imp M(A)\subseteq M(B)$, for each + premise $t\in M(R@i)$ in an introduction rule! + +\item The \textit{constructor definitions} contain definitions of constants + appearing in the introduction rules. In most cases it can be omitted. +\end{itemize} + + +\subsection{Example of an inductive definition} +Two declarations, included in a theory file, define the finite powerset +operator. First we declare the constant~\texttt{Fin}. Then we declare it +inductively, with two introduction rules: +\begin{ttbox} +consts Fin :: 'a set => 'a set set +inductive "Fin A" + intrs + emptyI "{\ttlbrace}{\ttrbrace} : Fin A" + insertI "[| a: A; b: Fin A |] ==> insert a b : Fin A" +\end{ttbox} +The resulting theory structure contains a substructure, called~\texttt{Fin}. +It contains the \texttt{Fin}$~A$ introduction rules as the list \texttt{Fin.intrs}, +and also individually as \texttt{Fin.emptyI} and \texttt{Fin.consI}. The induction +rule is \texttt{Fin.induct}. + +For another example, here is a theory file defining the accessible +part of a relation. The main thing to note is the use of~\texttt{Pow} in +the sole introduction rule, and the corresponding mention of the rule +\verb|Pow_mono| in the \texttt{monos} list. The paper +\cite{paulson-CADE} discusses a \ZF\ version of this example in more +detail. +\begin{ttbox} +Acc = WF + +consts pred :: "['b, ('a * 'b)set] => 'a set" (*Set of predecessors*) + acc :: "('a * 'a)set => 'a set" (*Accessible part*) +defs pred_def "pred x r == {y. (y,x):r}" +inductive "acc r" + intrs + pred "pred a r: Pow(acc r) ==> a: acc r" + monos Pow_mono +end +\end{ttbox} +The Isabelle distribution contains many other inductive definitions. Simple +examples are collected on subdirectory \texttt{HOL/Induct}. The theory +\texttt{HOL/Induct/LList} contains coinductive definitions. Larger examples +may be found on other subdirectories of \texttt{HOL}, such as \texttt{IMP}, +\texttt{Lambda} and \texttt{Auth}. + +\index{*coinductive|)} \index{*inductive|)} + + +\section{The examples directories} + +Directory \texttt{HOL/Auth} contains theories for proving the correctness of +cryptographic protocols. The approach is based upon operational +semantics~\cite{paulson-security} rather than the more usual belief logics. +On the same directory are proofs for some standard examples, such as the +Needham-Schroeder public-key authentication protocol~\cite{paulson-ns} +and the Otway-Rees protocol. + +Directory \texttt{HOL/IMP} contains a formalization of various denotational, +operational and axiomatic semantics of a simple while-language, the necessary +equivalence proofs, soundness and completeness of the Hoare rules with respect +to the +denotational semantics, and soundness and completeness of a verification +condition generator. Much of development is taken from +Winskel~\cite{winskel93}. For details see~\cite{nipkow-IMP}. + +Directory \texttt{HOL/Hoare} contains a user friendly surface syntax for Hoare +logic, including a tactic for generating verification-conditions. + +Directory \texttt{HOL/MiniML} contains a formalization of the type system of the +core functional language Mini-ML and a correctness proof for its type +inference algorithm $\cal W$~\cite{milner78,nazareth-nipkow}. + +Directory \texttt{HOL/Lambda} contains a formalization of untyped +$\lambda$-calculus in de~Bruijn notation and Church-Rosser proofs for $\beta$ +and $\eta$ reduction~\cite{Nipkow-CR}. + +Directory \texttt{HOL/Subst} contains Martin Coen's mechanization of a theory of +substitutions and unifiers. It is based on Paulson's previous +mechanisation in {\LCF}~\cite{paulson85} of Manna and Waldinger's +theory~\cite{mw81}. It demonstrates a complicated use of \texttt{recdef}, +with nested recursion. + +Directory \texttt{HOL/Induct} presents simple examples of (co)inductive +definitions and datatypes. +\begin{itemize} +\item Theory \texttt{PropLog} proves the soundness and completeness of + classical propositional logic, given a truth table semantics. The only + connective is $\imp$. A Hilbert-style axiom system is specified, and its + set of theorems defined inductively. A similar proof in \ZF{} is + described elsewhere~\cite{paulson-set-II}. + +\item Theory \texttt{Term} defines the datatype \texttt{term}. + +\item Theory \texttt{ABexp} defines arithmetic and boolean expressions + as mutually recursive datatypes. + +\item The definition of lazy lists demonstrates methods for handling + infinite data structures and coinduction in higher-order + logic~\cite{paulson-coind}.% +\footnote{To be precise, these lists are \emph{potentially infinite} rather + than lazy. Lazy implies a particular operational semantics.} + Theory \thydx{LList} defines an operator for + corecursion on lazy lists, which is used to define a few simple functions + such as map and append. A coinduction principle is defined + for proving equations on lazy lists. + +\item Theory \thydx{LFilter} defines the filter functional for lazy lists. + This functional is notoriously difficult to define because finding the next + element meeting the predicate requires possibly unlimited search. It is not + computable, but can be expressed using a combination of induction and + corecursion. + +\item Theory \thydx{Exp} illustrates the use of iterated inductive definitions + to express a programming language semantics that appears to require mutual + induction. Iterated induction allows greater modularity. +\end{itemize} + +Directory \texttt{HOL/ex} contains other examples and experimental proofs in +{\HOL}. +\begin{itemize} +\item Theory \texttt{Recdef} presents many examples of using \texttt{recdef} + to define recursive functions. Another example is \texttt{Fib}, which + defines the Fibonacci function. + +\item Theory \texttt{Primes} defines the Greatest Common Divisor of two + natural numbers and proves a key lemma of the Fundamental Theorem of + Arithmetic: if $p$ is prime and $p$ divides $m\times n$ then $p$ divides~$m$ + or $p$ divides~$n$. + +\item Theory \texttt{Primrec} develops some computation theory. It + inductively defines the set of primitive recursive functions and presents a + proof that Ackermann's function is not primitive recursive. + +\item File \texttt{cla.ML} demonstrates the classical reasoner on over sixty + predicate calculus theorems, ranging from simple tautologies to + moderately difficult problems involving equality and quantifiers. + +\item File \texttt{meson.ML} contains an experimental implementation of the {\sc + meson} proof procedure, inspired by Plaisted~\cite{plaisted90}. It is + much more powerful than Isabelle's classical reasoner. But it is less + useful in practice because it works only for pure logic; it does not + accept derived rules for the set theory primitives, for example. + +\item File \texttt{mesontest.ML} contains test data for the {\sc meson} proof + procedure. These are mostly taken from Pelletier \cite{pelletier86}. + +\item File \texttt{set.ML} proves Cantor's Theorem, which is presented in + \S\ref{sec:hol-cantor} below, and the Schr\"oder-Bernstein Theorem. + +\item Theory \texttt{MT} contains Jacob Frost's formalization~\cite{frost93} of + Milner and Tofte's coinduction example~\cite{milner-coind}. This + substantial proof concerns the soundness of a type system for a simple + functional language. The semantics of recursion is given by a cyclic + environment, which makes a coinductive argument appropriate. +\end{itemize} + + +\goodbreak +\section{Example: Cantor's Theorem}\label{sec:hol-cantor} +Cantor's Theorem states that every set has more subsets than it has +elements. It has become a favourite example in higher-order logic since +it is so easily expressed: +\[ \forall f::\alpha \To \alpha \To bool. \exists S::\alpha\To bool. + \forall x::\alpha. f~x \not= S +\] +% +Viewing types as sets, $\alpha\To bool$ represents the powerset +of~$\alpha$. This version states that for every function from $\alpha$ to +its powerset, some subset is outside its range. + +The Isabelle proof uses \HOL's set theory, with the type $\alpha\,set$ and +the operator \cdx{range}. +\begin{ttbox} +context Set.thy; +\end{ttbox} +The set~$S$ is given as an unknown instead of a +quantified variable so that we may inspect the subset found by the proof. +\begin{ttbox} +Goal "?S ~: range\thinspace(f :: 'a=>'a set)"; +{\out Level 0} +{\out ?S ~: range f} +{\out 1. ?S ~: range f} +\end{ttbox} +The first two steps are routine. The rule \tdx{rangeE} replaces +$\Var{S}\in \texttt{range} \, f$ by $\Var{S}=f~x$ for some~$x$. +\begin{ttbox} +by (resolve_tac [notI] 1); +{\out Level 1} +{\out ?S ~: range f} +{\out 1. ?S : range f ==> False} +\ttbreak +by (eresolve_tac [rangeE] 1); +{\out Level 2} +{\out ?S ~: range f} +{\out 1. !!x. ?S = f x ==> False} +\end{ttbox} +Next, we apply \tdx{equalityCE}, reasoning that since $\Var{S}=f~x$, +we have $\Var{c}\in \Var{S}$ if and only if $\Var{c}\in f~x$ for +any~$\Var{c}$. +\begin{ttbox} +by (eresolve_tac [equalityCE] 1); +{\out Level 3} +{\out ?S ~: range f} +{\out 1. !!x. [| ?c3 x : ?S; ?c3 x : f x |] ==> False} +{\out 2. !!x. [| ?c3 x ~: ?S; ?c3 x ~: f x |] ==> False} +\end{ttbox} +Now we use a bit of creativity. Suppose that~$\Var{S}$ has the form of a +comprehension. Then $\Var{c}\in\{x.\Var{P}~x\}$ implies +$\Var{P}~\Var{c}$. Destruct-resolution using \tdx{CollectD} +instantiates~$\Var{S}$ and creates the new assumption. +\begin{ttbox} +by (dresolve_tac [CollectD] 1); +{\out Level 4} +{\out {\ttlbrace}x. ?P7 x{\ttrbrace} ~: range f} +{\out 1. !!x. [| ?c3 x : f x; ?P7(?c3 x) |] ==> False} +{\out 2. !!x. [| ?c3 x ~: {\ttlbrace}x. ?P7 x{\ttrbrace}; ?c3 x ~: f x |] ==> False} +\end{ttbox} +Forcing a contradiction between the two assumptions of subgoal~1 +completes the instantiation of~$S$. It is now the set $\{x. x\not\in +f~x\}$, which is the standard diagonal construction. +\begin{ttbox} +by (contr_tac 1); +{\out Level 5} +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} +{\out 1. !!x. [| x ~: {\ttlbrace}x. x ~: f x{\ttrbrace}; x ~: f x |] ==> False} +\end{ttbox} +The rest should be easy. To apply \tdx{CollectI} to the negated +assumption, we employ \ttindex{swap_res_tac}: +\begin{ttbox} +by (swap_res_tac [CollectI] 1); +{\out Level 6} +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} +{\out 1. !!x. [| x ~: f x; ~ False |] ==> x ~: f x} +\ttbreak +by (assume_tac 1); +{\out Level 7} +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} +{\out No subgoals!} +\end{ttbox} +How much creativity is required? As it happens, Isabelle can prove this +theorem automatically. The default classical set \texttt{claset()} contains rules +for most of the constructs of \HOL's set theory. We must augment it with +\tdx{equalityCE} to break up set equalities, and then apply best-first +search. Depth-first search would diverge, but best-first search +successfully navigates through the large search space. +\index{search!best-first} +\begin{ttbox} +choplev 0; +{\out Level 0} +{\out ?S ~: range f} +{\out 1. ?S ~: range f} +\ttbreak +by (best_tac (claset() addSEs [equalityCE]) 1); +{\out Level 1} +{\out {\ttlbrace}x. x ~: f x{\ttrbrace} ~: range f} +{\out No subgoals!} +\end{ttbox} +If you run this example interactively, make sure your current theory contains +theory \texttt{Set}, for example by executing \ttindex{context}~{\tt Set.thy}. +Otherwise the default claset may not contain the rules for set theory. +\index{higher-order logic|)} + +%%% Local Variables: +%%% mode: latex +%%% TeX-master: "logics" +%%% End: diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/Makefile --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/Makefile Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,34 @@ +# $Id$ +######################################################################### +# # +# Makefile for the report "Isabelle's Logics: HOL" # +# # +######################################################################### + + +FILES = logics-HOL.tex ../Logics/syntax.tex FOL.tex HOL.tex\ + ../rail.sty ../proof.sty ../iman.sty ../extra.sty + +logics-HOL.dvi.gz: $(FILES) + test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps . + -rm logics-HOL.dvi* + latex logics-HOL + rail logics-HOL + bibtex logics-HOL + latex logics-HOL + latex logics-HOL + ../sedindex logics-HOL + latex logics-HOL + gzip -f logics-HOL.dvi + +dist: $(FILES) + test -r isabelle_hol.eps || ln -s ../gfx/isabelle_hol.eps . + -rm logics-HOL.dvi* + latex logics-HOL + latex logics-HOL + ../sedindex logics-HOL + latex logics-HOL + +clean: + @rm *.aux *.log *.toc *.idx *.rai + diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/logics-HOL.ind --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/logics-HOL.ind Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,439 @@ +\begin{theindex} + + \item {\tt !} symbol, 4, 6, 13, 14, 26 + \item {\tt[]} symbol, 26 + \item {\tt\#} symbol, 26 + \item {\tt\&} symbol, 4 + \item {\tt *} symbol, 5, 23 + \item {\tt *} type, 21 + \item {\tt +} symbol, 5, 23 + \item {\tt +} type, 21 + \item {\tt -} symbol, 5, 23 + \item {\tt -->} symbol, 4 + \item {\tt :} symbol, 12 + \item {\tt <} constant, 24 + \item {\tt <} symbol, 23 + \item {\tt <=} constant, 24 + \item {\tt <=} symbol, 12 + \item {\tt =} symbol, 4 + \item {\tt ?} symbol, 4, 6, 13, 14 + \item {\tt ?!} symbol, 4 + \item {\tt\at} symbol, 4, 26 + \item {\tt ``} symbol, 12 + \item \verb'{}' symbol, 12 + \item {\tt |} symbol, 4 + + \indexspace + + \item {\tt 0} constant, 23 + + \indexspace + + \item {\tt Addsplits}, \bold{20} + \item {\tt addsplits}, \bold{20}, 25, 37 + \item {\tt ALL} symbol, 4, 6, 13, 14 + \item {\tt All} constant, 4 + \item {\tt All_def} theorem, 8 + \item {\tt all_dupE} theorem, 10 + \item {\tt allE} theorem, 10 + \item {\tt allI} theorem, 10 + \item {\tt and_def} theorem, 8 + \item {\tt arg_cong} theorem, 9 + \item {\tt Arith} theory, 24 + \item {\tt arith_tac}, 25 + + \indexspace + + \item {\tt Ball} constant, 12, 14 + \item {\tt Ball_def} theorem, 15 + \item {\tt ballE} theorem, 16 + \item {\tt ballI} theorem, 16 + \item {\tt Bex} constant, 12, 14 + \item {\tt Bex_def} theorem, 15 + \item {\tt bexCI} theorem, 14, 16 + \item {\tt bexE} theorem, 16 + \item {\tt bexI} theorem, 14, 16 + \item {\textit {bool}} type, 5 + \item {\tt box_equals} theorem, 9, 11 + \item {\tt bspec} theorem, 16 + \item {\tt butlast} constant, 26 + + \indexspace + + \item {\tt case} symbol, 7, 24, 25, 37 + \item {\tt case_tac}, \bold{11} + \item {\tt ccontr} theorem, 10 + \item {\tt classical} theorem, 10 + \item {\tt coinductive}, 49--51 + \item {\tt Collect} constant, 12, 14 + \item {\tt Collect_mem_eq} theorem, 14, 15 + \item {\tt CollectD} theorem, 16, 54 + \item {\tt CollectE} theorem, 16 + \item {\tt CollectI} theorem, 16, 55 + \item {\tt Compl} constant, 12 + \item {\tt Compl_def} theorem, 15 + \item {\tt Compl_disjoint} theorem, 18 + \item {\tt Compl_Int} theorem, 18 + \item {\tt Compl_partition} theorem, 18 + \item {\tt Compl_Un} theorem, 18 + \item {\tt ComplD} theorem, 17 + \item {\tt ComplI} theorem, 17 + \item {\tt concat} constant, 26 + \item {\tt cong} theorem, 9 + \item {\tt conj_cong}, 19 + \item {\tt conjE} theorem, 9 + \item {\tt conjI} theorem, 9 + \item {\tt conjunct1} theorem, 9 + \item {\tt conjunct2} theorem, 9 + \item {\tt context}, 55 + + \indexspace + + \item {\tt datatype}, 34--42 + \item {\tt Delsplits}, \bold{20} + \item {\tt delsplits}, \bold{20} + \item {\tt disjCI} theorem, 10 + \item {\tt disjE} theorem, 9 + \item {\tt disjI1} theorem, 9 + \item {\tt disjI2} theorem, 9 + \item {\tt div} symbol, 23 + \item {\tt div_geq} theorem, 24 + \item {\tt div_less} theorem, 24 + \item {\tt Divides} theory, 24 + \item {\tt double_complement} theorem, 18 + \item {\tt drop} constant, 26 + \item {\tt dropWhile} constant, 26 + + \indexspace + + \item {\tt empty_def} theorem, 15 + \item {\tt emptyE} theorem, 17 + \item {\tt Eps} constant, 4, 6 + \item {\tt equalityCE} theorem, 14, 16, 54, 55 + \item {\tt equalityD1} theorem, 16 + \item {\tt equalityD2} theorem, 16 + \item {\tt equalityE} theorem, 16 + \item {\tt equalityI} theorem, 16 + \item {\tt EX} symbol, 4, 6, 13, 14 + \item {\tt Ex} constant, 4 + \item {\tt EX!} symbol, 4 + \item {\tt Ex1} constant, 4 + \item {\tt Ex1_def} theorem, 8 + \item {\tt ex1E} theorem, 10 + \item {\tt ex1I} theorem, 10 + \item {\tt Ex_def} theorem, 8 + \item {\tt exCI} theorem, 10 + \item {\tt excluded_middle} theorem, 10 + \item {\tt exE} theorem, 10 + \item {\tt exhaust_tac}, \bold{38} + \item {\tt exI} theorem, 10 + \item {\tt Exp} theory, 53 + \item {\tt ext} theorem, 7, 8 + + \indexspace + + \item {\tt False} constant, 4 + \item {\tt False_def} theorem, 8 + \item {\tt FalseE} theorem, 9 + \item {\tt filter} constant, 26 + \item {\tt foldl} constant, 26 + \item {\tt fst} constant, 21 + \item {\tt fst_conv} theorem, 21 + \item {\tt Fun} theory, 19 + \item {\textit {fun}} type, 5 + \item {\tt fun_cong} theorem, 9 + + \indexspace + + \item {\tt hd} constant, 26 + \item higher-order logic, 3--55 + \item {\tt HOL} theory, 3 + \item {\sc hol} system, 3, 6 + \item {\tt HOL_basic_ss}, \bold{19} + \item {\tt HOL_cs}, \bold{20} + \item {\tt HOL_quantifiers}, \bold{6}, 14 + \item {\tt HOL_ss}, \bold{19} + \item {\tt hyp_subst_tac}, 19 + + \indexspace + + \item {\tt If} constant, 4 + \item {\tt if_def} theorem, 8 + \item {\tt if_not_P} theorem, 10 + \item {\tt if_P} theorem, 10 + \item {\tt iff} theorem, 7, 8 + \item {\tt iffCE} theorem, 10, 14 + \item {\tt iffD1} theorem, 9 + \item {\tt iffD2} theorem, 9 + \item {\tt iffE} theorem, 9 + \item {\tt iffI} theorem, 9 + \item {\tt image_def} theorem, 15 + \item {\tt imageE} theorem, 17 + \item {\tt imageI} theorem, 17 + \item {\tt impCE} theorem, 10 + \item {\tt impE} theorem, 9 + \item {\tt impI} theorem, 7 + \item {\tt in} symbol, 5 + \item {\textit {ind}} type, 22 + \item {\tt induct_tac}, 24, \bold{38} + \item {\tt inductive}, 49--51 + \item {\tt inj} constant, 19 + \item {\tt inj_def} theorem, 19 + \item {\tt inj_Inl} theorem, 23 + \item {\tt inj_Inr} theorem, 23 + \item {\tt inj_on} constant, 19 + \item {\tt inj_on_def} theorem, 19 + \item {\tt inj_Suc} theorem, 23 + \item {\tt Inl} constant, 23 + \item {\tt Inl_not_Inr} theorem, 23 + \item {\tt Inr} constant, 23 + \item {\tt insert} constant, 12 + \item {\tt insert_def} theorem, 15 + \item {\tt insertE} theorem, 17 + \item {\tt insertI1} theorem, 17 + \item {\tt insertI2} theorem, 17 + \item {\tt INT} symbol, 12--14 + \item {\tt Int} symbol, 12 + \item {\tt Int_absorb} theorem, 18 + \item {\tt Int_assoc} theorem, 18 + \item {\tt Int_commute} theorem, 18 + \item {\tt INT_D} theorem, 17 + \item {\tt Int_def} theorem, 15 + \item {\tt INT_E} theorem, 17 + \item {\tt Int_greatest} theorem, 18 + \item {\tt INT_I} theorem, 17 + \item {\tt Int_Inter_image} theorem, 18 + \item {\tt Int_lower1} theorem, 18 + \item {\tt Int_lower2} theorem, 18 + \item {\tt Int_Un_distrib} theorem, 18 + \item {\tt Int_Union} theorem, 18 + \item {\tt IntD1} theorem, 17 + \item {\tt IntD2} theorem, 17 + \item {\tt IntE} theorem, 17 + \item {\tt INTER} constant, 12 + \item {\tt Inter} constant, 12 + \item {\tt INTER1} constant, 12 + \item {\tt INTER1_def} theorem, 15 + \item {\tt INTER_def} theorem, 15 + \item {\tt Inter_def} theorem, 15 + \item {\tt Inter_greatest} theorem, 18 + \item {\tt Inter_lower} theorem, 18 + \item {\tt Inter_Un_distrib} theorem, 18 + \item {\tt InterD} theorem, 17 + \item {\tt InterE} theorem, 17 + \item {\tt InterI} theorem, 17 + \item {\tt IntI} theorem, 17 + \item {\tt inv} constant, 19 + \item {\tt inv_def} theorem, 19 + + \indexspace + + \item {\tt last} constant, 26 + \item {\tt LEAST} constant, 5, 6, 24 + \item {\tt Least} constant, 4 + \item {\tt Least_def} theorem, 8 + \item {\tt length} constant, 26 + \item {\tt less_induct} theorem, 25 + \item {\tt Let} constant, 4, 7 + \item {\tt let} symbol, 5, 7 + \item {\tt Let_def} theorem, 7, 8 + \item {\tt LFilter} theory, 53 + \item {\tt List} theory, 25, 26 + \item {\textit{list}} type, 25 + \item {\tt LList} theory, 52 + + \indexspace + + \item {\tt map} constant, 26 + \item {\tt max} constant, 5, 24 + \item {\tt mem} symbol, 26 + \item {\tt mem_Collect_eq} theorem, 14, 15 + \item {\tt min} constant, 5, 24 + \item {\tt minus} class, 5 + \item {\tt mod} symbol, 23 + \item {\tt mod_geq} theorem, 24 + \item {\tt mod_less} theorem, 24 + \item {\tt mono} constant, 5 + \item {\tt mp} theorem, 7 + \item {\tt mutual_induct_tac}, \bold{38} + + \indexspace + + \item {\tt n_not_Suc_n} theorem, 23 + \item {\tt Nat} theory, 24 + \item {\textit {nat}} type, 23, 24 + \item {\textit{nat}} type, 22--25 + \item {\tt nat_induct} theorem, 23 + \item {\tt nat_rec} constant, 24 + \item {\tt NatDef} theory, 22 + \item {\tt Not} constant, 4 + \item {\tt not_def} theorem, 8 + \item {\tt not_sym} theorem, 9 + \item {\tt notE} theorem, 9 + \item {\tt notI} theorem, 9 + \item {\tt notnotD} theorem, 10 + \item {\tt null} constant, 26 + + \indexspace + + \item {\tt o} symbol, 4, 15 + \item {\tt o_def} theorem, 8 + \item {\tt of} symbol, 7 + \item {\tt or_def} theorem, 8 + \item {\tt Ord} theory, 5 + \item {\tt ord} class, 5, 6, 24 + \item {\tt order} class, 5, 24 + + \indexspace + + \item {\tt Pair} constant, 21 + \item {\tt Pair_eq} theorem, 21 + \item {\tt Pair_inject} theorem, 21 + \item {\tt PairE} theorem, 21 + \item {\tt plus} class, 5 + \item {\tt Pow} constant, 12 + \item {\tt Pow_def} theorem, 15 + \item {\tt PowD} theorem, 17 + \item {\tt PowI} theorem, 17 + \item {\tt primrec}, 43--46 + \item {\tt primrec} symbol, 24 + \item priorities, 1 + \item {\tt Prod} theory, 21 + \item {\tt prop_cs}, \bold{20} + + \indexspace + + \item {\tt qed_spec_mp}, 41 + + \indexspace + + \item {\tt range} constant, 12, 54 + \item {\tt range_def} theorem, 15 + \item {\tt rangeE} theorem, 17, 54 + \item {\tt rangeI} theorem, 17 + \item {\tt recdef}, 46--49 + \item {\tt record}, 31 + \item {\tt record_split_tac}, 33, 34 + \item recursion + \subitem general, 46--49 + \subitem primitive, 43--46 + \item recursive functions, \see{recursion}{42} + \item {\tt refl} theorem, 7 + \item {\tt res_inst_tac}, 6 + \item {\tt rev} constant, 26 + + \indexspace + + \item search + \subitem best-first, 55 + \item {\tt select_equality} theorem, 8, 10 + \item {\tt selectI} theorem, 7, 8 + \item {\tt Set} theory, 11, 14 + \item {\tt set} constant, 26 + \item {\tt set} type, 11 + \item {\tt set_diff_def} theorem, 15 + \item {\tt show_sorts}, 6 + \item {\tt show_types}, 6 + \item {\tt Sigma} constant, 21 + \item {\tt Sigma_def} theorem, 21 + \item {\tt SigmaE} theorem, 21 + \item {\tt SigmaI} theorem, 21 + \item simplification + \subitem of conjunctions, 19 + \item {\tt size} constant, 38 + \item {\tt snd} constant, 21 + \item {\tt snd_conv} theorem, 21 + \item {\tt spec} theorem, 10 + \item {\tt split} constant, 21 + \item {\tt split} theorem, 21 + \item {\tt split_all_tac}, \bold{22} + \item {\tt split_if} theorem, 10, 20 + \item {\tt split_list_case} theorem, 25 + \item {\tt split_split} theorem, 21 + \item {\tt split_sum_case} theorem, 23 + \item {\tt ssubst} theorem, 9, 11 + \item {\tt stac}, \bold{19} + \item {\tt strip_tac}, \bold{11} + \item {\tt subset_def} theorem, 15 + \item {\tt subset_refl} theorem, 16 + \item {\tt subset_trans} theorem, 16 + \item {\tt subsetCE} theorem, 14, 16 + \item {\tt subsetD} theorem, 14, 16 + \item {\tt subsetI} theorem, 16 + \item {\tt subst} theorem, 7 + \item {\tt Suc} constant, 23 + \item {\tt Suc_not_Zero} theorem, 23 + \item {\tt Sum} theory, 22 + \item {\tt sum_case} constant, 23 + \item {\tt sum_case_Inl} theorem, 23 + \item {\tt sum_case_Inr} theorem, 23 + \item {\tt sumE} theorem, 23 + \item {\tt surj} constant, 15, 19 + \item {\tt surj_def} theorem, 19 + \item {\tt surjective_pairing} theorem, 21 + \item {\tt surjective_sum} theorem, 23 + \item {\tt swap} theorem, 10 + \item {\tt swap_res_tac}, 55 + \item {\tt sym} theorem, 9 + + \indexspace + + \item {\tt take} constant, 26 + \item {\tt takeWhile} constant, 26 + \item {\tt term} class, 5 + \item {\tt times} class, 5 + \item {\tt tl} constant, 26 + \item tracing + \subitem of unification, 6 + \item {\tt trans} theorem, 9 + \item {\tt True} constant, 4 + \item {\tt True_def} theorem, 8 + \item {\tt True_or_False} theorem, 7, 8 + \item {\tt TrueI} theorem, 9 + \item {\tt Trueprop} constant, 4 + \item type definition, \bold{28} + \item {\tt typedef}, 25 + + \indexspace + + \item {\tt UN} symbol, 12--14 + \item {\tt Un} symbol, 12 + \item {\tt Un1} theorem, 14 + \item {\tt Un2} theorem, 14 + \item {\tt Un_absorb} theorem, 18 + \item {\tt Un_assoc} theorem, 18 + \item {\tt Un_commute} theorem, 18 + \item {\tt Un_def} theorem, 15 + \item {\tt UN_E} theorem, 17 + \item {\tt UN_I} theorem, 17 + \item {\tt Un_Int_distrib} theorem, 18 + \item {\tt Un_Inter} theorem, 18 + \item {\tt Un_least} theorem, 18 + \item {\tt Un_Union_image} theorem, 18 + \item {\tt Un_upper1} theorem, 18 + \item {\tt Un_upper2} theorem, 18 + \item {\tt UnCI} theorem, 14, 17 + \item {\tt UnE} theorem, 17 + \item {\tt UnI1} theorem, 17 + \item {\tt UnI2} theorem, 17 + \item unification + \subitem incompleteness of, 6 + \item {\tt Unify.trace_types}, 6 + \item {\tt UNION} constant, 12 + \item {\tt Union} constant, 12 + \item {\tt UNION1} constant, 12 + \item {\tt UNION1_def} theorem, 15 + \item {\tt UNION_def} theorem, 15 + \item {\tt Union_def} theorem, 15 + \item {\tt Union_least} theorem, 18 + \item {\tt Union_Un_distrib} theorem, 18 + \item {\tt Union_upper} theorem, 18 + \item {\tt UnionE} theorem, 17 + \item {\tt UnionI} theorem, 17 + \item {\tt unit_eq} theorem, 22 + + \indexspace + + \item {\tt ZF} theory, 3 + +\end{theindex} diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/logics-HOL.rao --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/logics-HOL.rao Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,122 @@ +% This file was generated by 'rail' from 'logics-HOL.rai' +\rail@i {1}{ typedef : 'typedef' ( () | '(' name ')') type '=' set witness; \par type : typevarlist name ( () | '(' infix ')' ); set : string; witness : () | '(' id ')'; } +\rail@o {1}{ +\rail@begin{2}{typedef} +\rail@term{typedef}[] +\rail@bar +\rail@nextbar{1} +\rail@term{(}[] +\rail@nont{name}[] +\rail@term{)}[] +\rail@endbar +\rail@nont{type}[] +\rail@term{=}[] +\rail@nont{set}[] +\rail@nont{witness}[] +\rail@end +\rail@begin{2}{type} +\rail@nont{typevarlist}[] +\rail@nont{name}[] +\rail@bar +\rail@nextbar{1} +\rail@term{(}[] +\rail@nont{infix}[] +\rail@term{)}[] +\rail@endbar +\rail@end +\rail@begin{1}{set} +\rail@nont{string}[] +\rail@end +\rail@begin{2}{witness} +\rail@bar +\rail@nextbar{1} +\rail@term{(}[] +\rail@nont{id}[] +\rail@term{)}[] +\rail@endbar +\rail@end +} +\rail@i {2}{ record : 'record' typevarlist name '=' parent (field +); \par parent : ( () | type '+'); field : name '::' type; } +\rail@o {2}{ +\rail@begin{2}{record} +\rail@term{record}[] +\rail@nont{typevarlist}[] +\rail@nont{name}[] +\rail@term{=}[] +\rail@nont{parent}[] +\rail@plus +\rail@nont{field}[] +\rail@nextplus{1} +\rail@endplus +\rail@end +\rail@begin{2}{parent} +\rail@bar +\rail@nextbar{1} +\rail@nont{type}[] +\rail@term{+}[] +\rail@endbar +\rail@end +\rail@begin{1}{field} +\rail@nont{name}[] +\rail@term{::}[] +\rail@nont{type}[] +\rail@end +} +\rail@i {3}{ datatype : 'datatype' typedecls; \par typedecls: ( newtype '=' (cons + '|') ) + 'and' ; newtype : typevarlist id ( () | '(' infix ')' ) ; cons : name (argtype *) ( () | ( '(' mixfix ')' ) ) ; argtype : id | tid | ('(' typevarlist id ')') ; } +\rail@o {3}{ +\rail@begin{1}{datatype} +\rail@term{datatype}[] +\rail@nont{typedecls}[] +\rail@end +\rail@begin{3}{typedecls} +\rail@plus +\rail@nont{newtype}[] +\rail@term{=}[] +\rail@plus +\rail@nont{cons}[] +\rail@nextplus{1} +\rail@cterm{|}[] +\rail@endplus +\rail@nextplus{2} +\rail@cterm{and}[] +\rail@endplus +\rail@end +\rail@begin{2}{newtype} +\rail@nont{typevarlist}[] +\rail@nont{id}[] +\rail@bar +\rail@nextbar{1} +\rail@term{(}[] +\rail@nont{infix}[] +\rail@term{)}[] +\rail@endbar +\rail@end +\rail@begin{3}{cons} +\rail@nont{name}[] +\rail@bar +\rail@nextbar{1} +\rail@plus +\rail@nont{argtype}[] +\rail@nextplus{2} +\rail@endplus +\rail@endbar +\rail@bar +\rail@nextbar{1} +\rail@term{(}[] +\rail@nont{mixfix}[] +\rail@term{)}[] +\rail@endbar +\rail@end +\rail@begin{3}{argtype} +\rail@bar +\rail@nont{id}[] +\rail@nextbar{1} +\rail@nont{tid}[] +\rail@nextbar{2} +\rail@term{(}[] +\rail@nont{typevarlist}[] +\rail@nont{id}[] +\rail@term{)}[] +\rail@endbar +\rail@end +} diff -r d0c6bb2577b1 -r ff2c3ffd38ee doc-src/HOL/logics-HOL.tex --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/doc-src/HOL/logics-HOL.tex Tue May 04 18:03:56 1999 +0200 @@ -0,0 +1,61 @@ +%% $Id$ +\documentclass[12pt]{report} +\usepackage{graphicx,a4,latexsym,../pdfsetup} + +\makeatletter +\input{../proof.sty} +\input{../rail.sty} +\input{../iman.sty} +\input{../extra.sty} +\makeatother + +%%% to index derived rls: ^\([a-zA-Z0-9][a-zA-Z0-9_]*\) \\tdx{\1} +%%% to index rulenames: ^ *(\([a-zA-Z0-9][a-zA-Z0-9_]*\), \\tdx{\1} +%%% to index constants: \\tt \([a-zA-Z0-9][a-zA-Z0-9_]*\) \\cdx{\1} +%%% to deverbify: \\verb|\([^|]*\)| \\ttindex{\1} + +\title{\includegraphics[scale=0.5]{isabelle_hol.eps} \\[4ex] + Isabelle's Logics: HOL} + +\author{{\em Lawrence C. Paulson}\\ + Computer Laboratory \\ University of Cambridge \\ + \texttt{lcp@cl.cam.ac.uk}\\[3ex] + With Contributions by Tobias Nipkow and Markus Wenzel% + \thanks{Tobias Nipkow developed~\HOL{}. Markus Wenzel made numerous + improvements. The research has been funded by the EPSRC (grants + GR/G53279, GR/H40570, GR/K57381, GR/K77051) and by ESPRIT project + 6453: Types.}} + +\newcommand\subcaption[1]{\par {\centering\normalsize\sc#1\par}\bigskip + \hrule\bigskip} +\newenvironment{constants}{\begin{center}\small\begin{tabular}{rrrr}}{\end{tabular}\end{center}} + +\makeindex + +\underscoreoff + +\setcounter{secnumdepth}{2} \setcounter{tocdepth}{2} %% {secnumdepth}{2}??? + +\pagestyle{headings} +\sloppy +\binperiod %%%treat . like a binary operator + +\begin{document} +\maketitle + +\begin{abstract} + This manual describes Isabelle's formalization of Higher-Order Logic, a + polymorphic version of Church's Simple Theory of Types. HOL can be best + understood as a simply-typed version of classical set theory. See also + \emph{Isabelle/HOL --- The Tutorial} for a gentle introduction on using + Isabelle/HOL, and the \emph{Isabelle Reference Manual} for general Isabelle + commands. +\end{abstract} + +\pagenumbering{roman} \tableofcontents \clearfirst +\include{../Logics/syntax} +\include{HOL} +\bibliographystyle{plain} +\bibliography{string,general,atp,theory,funprog,logicprog,isabelle,crossref} +\input{logics-HOL.ind} +\end{document}