# HG changeset patch # User haftmann # Date 1600345676 -7200 # Node ID ff32ddc8165c7d584e5f5cb5a72ba7053813bfb8 # Parent 47253b1a31ed97b8b684731ecea57e691a3a06ed dropped junk diff -r 47253b1a31ed -r ff32ddc8165c src/HOL/Computational_Algebra/Polynomial_Factorial.thy --- a/src/HOL/Computational_Algebra/Polynomial_Factorial.thy Thu Sep 17 13:55:21 2020 +0200 +++ b/src/HOL/Computational_Algebra/Polynomial_Factorial.thy Thu Sep 17 14:27:56 2020 +0200 @@ -422,7 +422,7 @@ lemma field_poly_irreducible_imp_prime: "prime_elem p" if "irreducible p" for p :: "'a :: field poly" using that by (fact field_poly.irreducible_imp_prime_elem) -find_theorems name:prod_mset_prime_factorization + lemma field_poly_prod_mset_prime_factorization: "prod_mset (field_poly.prime_factorization p) = smult (inverse (lead_coeff p)) p" if "p \ 0" for p :: "'a :: field poly" diff -r 47253b1a31ed -r ff32ddc8165c src/HOL/Real_Asymp/Multiseries_Expansion.thy --- a/src/HOL/Real_Asymp/Multiseries_Expansion.thy Thu Sep 17 13:55:21 2020 +0200 +++ b/src/HOL/Real_Asymp/Multiseries_Expansion.thy Thu Sep 17 14:27:56 2020 +0200 @@ -5147,7 +5147,6 @@ lemma filterlim_of_int_at_bot: "filterlim f F at_bot \ filterlim (\x. f (of_int x :: real)) F at_bot" by (erule filterlim_compose[OF _ filterlim_real_of_int_at_bot]) -find_theorems of_int at_bot lemma asymp_equiv_real_int_transfer_at_top: "f \[at_top] g \ (\x. f (of_int x :: real)) \[at_top] (\x. g (of_int x))" diff -r 47253b1a31ed -r ff32ddc8165c src/HOL/Word/Word.thy --- a/src/HOL/Word/Word.thy Thu Sep 17 13:55:21 2020 +0200 +++ b/src/HOL/Word/Word.thy Thu Sep 17 14:27:56 2020 +0200 @@ -2942,7 +2942,7 @@ by (metis mod_pos_pos_trivial uint_lt2p uint_mult_ge0 uint_word_ariths(3)) lemma uint_sub_lem: "uint x \ uint y \ uint (x - y) = uint x - uint y" - by (metis (mono_tags, hide_lams) diff_ge_0_iff_ge mod_pos_pos_trivial of_nat_0_le_iff take_bit_eq_mod uint_nat uint_sub_lt2p word_sub_wi word_ubin.eq_norm) find_theorems uint \- _\ + by (metis (mono_tags, hide_lams) diff_ge_0_iff_ge mod_pos_pos_trivial of_nat_0_le_iff take_bit_eq_mod uint_nat uint_sub_lt2p word_sub_wi word_ubin.eq_norm) lemma uint_add_le: "uint (x + y) \ uint x + uint y" unfolding uint_word_ariths by (simp add: zmod_le_nonneg_dividend)