# HG changeset patch # User blanchet # Date 1273869024 -7200 # Node ID ffad77bb3046e82b3501ddd3ea68adab2b76db90 # Parent ff01d3ae9ad451e4cdcc691e9507f7745ace4198 renamed Sledgehammer options diff -r ff01d3ae9ad4 -r ffad77bb3046 src/HOL/Metis_Examples/BigO.thy --- a/src/HOL/Metis_Examples/BigO.thy Fri May 14 22:29:50 2010 +0200 +++ b/src/HOL/Metis_Examples/BigO.thy Fri May 14 22:30:24 2010 +0200 @@ -28,7 +28,7 @@ (*** Now various verions with an increasing shrink factor ***) -sledgehammer_params [shrink_factor = 1] +sledgehammer_params [isar_proof, isar_shrink_factor = 1] lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). ALL x. (abs (h x)) <= (c * (abs (f x)))) @@ -58,7 +58,7 @@ thus "\h x\ \ \c\ * \f x\" by (metis F4) qed -sledgehammer_params [shrink_factor = 2] +sledgehammer_params [isar_proof, isar_shrink_factor = 2] lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). ALL x. (abs (h x)) <= (c * (abs (f x)))) @@ -80,7 +80,7 @@ thus "\h x\ \ \c\ * \f x\" by (metis F2) qed -sledgehammer_params [shrink_factor = 3] +sledgehammer_params [isar_proof, isar_shrink_factor = 3] lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). ALL x. (abs (h x)) <= (c * (abs (f x)))) @@ -99,7 +99,7 @@ thus "\h x\ \ \c\ * \f x\" by (metis A1 abs_mult abs_ge_zero) qed -sledgehammer_params [shrink_factor = 4] +sledgehammer_params [isar_proof, isar_shrink_factor = 4] lemma (*bigo_pos_const:*) "(EX (c::'a::linordered_idom). ALL x. (abs (h x)) <= (c * (abs (f x)))) @@ -118,7 +118,7 @@ thus "\h x\ \ \c\ * \f x\" by (metis abs_mult) qed -sledgehammer_params [shrink_factor = 1] +sledgehammer_params [isar_proof, isar_shrink_factor = 1] lemma bigo_alt_def: "O(f) = {h. EX c. (0 < c & (ALL x. abs (h x) <= c * abs (f x)))}" diff -r ff01d3ae9ad4 -r ffad77bb3046 src/HOL/Metis_Examples/TransClosure.thy --- a/src/HOL/Metis_Examples/TransClosure.thy Fri May 14 22:29:50 2010 +0200 +++ b/src/HOL/Metis_Examples/TransClosure.thy Fri May 14 22:30:24 2010 +0200 @@ -39,7 +39,7 @@ lemma "\f c = Intg x; \y. f b = Intg y \ y \ x; (a, b) \ R\<^sup>*; (b,c) \ R\<^sup>*\ \ \c. (b, c) \ R \ (a, c) \ R\<^sup>*" -(* sledgehammer [isar_proof, shrink_factor = 2] *) +(* sledgehammer [isar_proof, isar_shrink_factor = 2] *) proof - assume A1: "f c = Intg x" assume A2: "\y. f b = Intg y \ y \ x" diff -r ff01d3ae9ad4 -r ffad77bb3046 src/HOL/Metis_Examples/set.thy --- a/src/HOL/Metis_Examples/set.thy Fri May 14 22:29:50 2010 +0200 +++ b/src/HOL/Metis_Examples/set.thy Fri May 14 22:30:24 2010 +0200 @@ -16,7 +16,7 @@ lemma "P(n::nat) ==> ~P(0) ==> n ~= 0" by metis -sledgehammer_params [shrink_factor = 1] +sledgehammer_params [isar_proof, isar_shrink_factor = 1] (*multiple versions of this example*) lemma (*equal_union: *) @@ -85,7 +85,7 @@ by (metis 31 29) qed -sledgehammer_params [shrink_factor = 2] +sledgehammer_params [isar_proof, isar_shrink_factor = 2] lemma (*equal_union: *) "(X = Y \ Z) = @@ -128,7 +128,7 @@ by (metis 18 17) qed -sledgehammer_params [shrink_factor = 3] +sledgehammer_params [isar_proof, isar_shrink_factor = 3] lemma (*equal_union: *) "(X = Y \ Z) = @@ -163,7 +163,7 @@ (*Example included in TPHOLs paper*) -sledgehammer_params [shrink_factor = 4] +sledgehammer_params [isar_proof, isar_shrink_factor = 4] lemma (*equal_union: *) "(X = Y \ Z) =