merged
authorpaulson
Tue, 27 Oct 2009 14:46:03 +0000
changeset 33270 320a1d67b9ae
parent 33269 3b7e2dbbd684 (current diff)
parent 33220 11a1af478dac (diff)
child 33271 7be66dee1a5a
merged
NEWS
src/HOL/IsaMakefile
src/HOL/Library/Convex_Euclidean_Space.thy
src/HOL/Library/Determinants.thy
src/HOL/Library/Euclidean_Space.thy
src/HOL/Library/Fin_Fun.thy
src/HOL/Library/Finite_Cartesian_Product.thy
src/HOL/Library/Topology_Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Convex_Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Euclidean_Space.thy
src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
src/HOL/Tools/Function/auto_term.ML
src/HOL/Tools/Function/fundef.ML
src/HOL/Tools/Function/fundef_common.ML
src/HOL/Tools/Function/fundef_core.ML
src/HOL/Tools/Function/fundef_datatype.ML
src/HOL/Tools/Function/fundef_lib.ML
--- a/Admin/isatest/isatest-makeall	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/isatest-makeall	Tue Oct 27 14:46:03 2009 +0000
@@ -63,7 +63,7 @@
         ;;
   
     sunbroy2)
-        MFLAGS="-k -j 6"
+        MFLAGS="-k -j 2"
         NICE="nice"
         ;;
 
--- a/Admin/isatest/isatest-makedist	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/isatest-makedist	Tue Oct 27 14:46:03 2009 +0000
@@ -91,7 +91,7 @@
 
 ## spawn test runs
 
-#$SSH sunbroy2 "$MAKEALL $HOME/settings/sun-poly"
+$SSH sunbroy2 "$MAKEALL $HOME/settings/sun-poly"
 # give test some time to copy settings and start
 sleep 15
 $SSH macbroy22 "$MAKEALL $HOME/settings/at-poly"
@@ -110,8 +110,8 @@
 sleep 15
 $SSH macbroy5 "$MAKEALL $HOME/settings/mac-poly"
 sleep 15
-#$SSH macbroy6 "$MAKEALL $HOME/settings/at-mac-poly-5.1-para"
-#sleep 15
+$SSH macbroy6 "sleep 10800; $MAKEALL $HOME/settings/at-mac-poly-5.1-para"
+sleep 15
 $SSH atbroy51 "$HOME/admin/isatest/isatest-annomaly"
 
 echo ------------------- spawned tests successfully --- `date` --- $HOSTNAME >> $DISTLOG 2>&1
--- a/Admin/isatest/settings/at-mac-poly-5.1-para	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/at-mac-poly-5.1-para	Tue Oct 27 14:46:03 2009 +0000
@@ -23,6 +23,6 @@
 ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
-ISABELLE_USEDIR_OPTIONS="-i false -d false -M 4"
+ISABELLE_USEDIR_OPTIONS="-i false -d false -t true -M 4 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 2 -q 0"
--- a/Admin/isatest/settings/mac-poly-M4	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/mac-poly-M4	Tue Oct 27 14:46:03 2009 +0000
@@ -1,7 +1,7 @@
 # -*- shell-script -*- :mode=shellscript:
 
-  POLYML_HOME="/home/polyml/polyml-svn"
-  ML_SYSTEM="polyml-experimental"
+  POLYML_HOME="/home/polyml/polyml-5.2.1"
+  ML_SYSTEM="polyml-5.2.1"
   ML_PLATFORM="x86-darwin"
   ML_HOME="$POLYML_HOME/$ML_PLATFORM"
   ML_OPTIONS="--mutable 800 --immutable 2000"
@@ -23,6 +23,6 @@
 ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
-ISABELLE_USEDIR_OPTIONS="-i false -d false -M 4 -t true -q 2"
+ISABELLE_USEDIR_OPTIONS="-i false -d false -t true -M 4 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 2 -q 0"
--- a/Admin/isatest/settings/mac-poly-M8	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/mac-poly-M8	Tue Oct 27 14:46:03 2009 +0000
@@ -1,7 +1,7 @@
 # -*- shell-script -*- :mode=shellscript:
 
-  POLYML_HOME="/home/polyml/polyml-svn"
-  ML_SYSTEM="polyml-experimental"
+  POLYML_HOME="/home/polyml/polyml-5.2.1"
+  ML_SYSTEM="polyml-5.2.1"
   ML_PLATFORM="x86-darwin"
   ML_HOME="$POLYML_HOME/$ML_PLATFORM"
   ML_OPTIONS="--mutable 800 --immutable 2000"
@@ -23,6 +23,6 @@
 ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
-ISABELLE_USEDIR_OPTIONS="-i false -d false -M 8 -t true -q 2"
+ISABELLE_USEDIR_OPTIONS="-i false -d false -t true -M 8 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 2 -q 0"
--- a/Admin/isatest/settings/mac-poly64-M4	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/mac-poly64-M4	Tue Oct 27 14:46:03 2009 +0000
@@ -23,6 +23,6 @@
 ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
-ISABELLE_USEDIR_OPTIONS="-i false -d false -M 4 -q 2 -t true"
+ISABELLE_USEDIR_OPTIONS="-i false -d false -t true -M 4 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 2 -q 2"
--- a/Admin/isatest/settings/mac-poly64-M8	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/mac-poly64-M8	Tue Oct 27 14:46:03 2009 +0000
@@ -23,6 +23,6 @@
 ISABELLE_OUTPUT="$ISABELLE_HOME_USER/heaps"
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
-ISABELLE_USEDIR_OPTIONS="-i false -d false -M 8 -q 2 -t true"
+ISABELLE_USEDIR_OPTIONS="-i false -d false -t true -M 8 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 2 -q 2"
--- a/Admin/isatest/settings/sun-poly	Tue Oct 27 12:59:57 2009 +0000
+++ b/Admin/isatest/settings/sun-poly	Tue Oct 27 14:46:03 2009 +0000
@@ -23,6 +23,6 @@
 ISABELLE_BROWSER_INFO="$ISABELLE_HOME_USER/browser_info"
 
 #ISABELLE_USEDIR_OPTIONS="-i true -d dvi -g true -v true"
-ISABELLE_USEDIR_OPTIONS="-i true -d pdf -v true -t true -M 1"
+ISABELLE_USEDIR_OPTIONS="-i true -d pdf -v true -t true -M 6 -q 2"
 
 HOL_USEDIR_OPTIONS="-p 0" 
--- a/CONTRIBUTORS	Tue Oct 27 12:59:57 2009 +0000
+++ b/CONTRIBUTORS	Tue Oct 27 14:46:03 2009 +0000
@@ -7,44 +7,48 @@
 Contributions to this Isabelle version
 --------------------------------------
 
+* October 2009: Jasmin Blanchette, TUM
+  Nitpick: yet another counterexample generator for Isabelle/HOL
+
 * October 2009: Sascha Boehme, TUM
-  Extension of SMT method: proof-reconstruction for the SMT solver Z3
+  Extension of SMT method: proof-reconstruction for the SMT solver Z3.
 
 * October 2009: Florian Haftmann, TUM
-  Refinement of parts of the HOL datatype package
+  Refinement of parts of the HOL datatype package.
 
 * October 2009: Florian Haftmann, TUM
-  Generic term styles for term antiquotations
+  Generic term styles for term antiquotations.
 
 * September 2009: Thomas Sewell, NICTA
-  More efficient HOL/record implementation
+  More efficient HOL/record implementation.
 
 * September 2009: Sascha Boehme, TUM
-  SMT method using external SMT solvers
+  SMT method using external SMT solvers.
 
 * September 2009: Florian Haftmann, TUM
-  Refinement of sets and lattices
+  Refinement of sets and lattices.
 
 * July 2009: Jeremy Avigad and Amine Chaieb
-  New number theory
+  New number theory.
 
 * July 2009: Philipp Meyer, TUM
-  HOL/Library/Sum_of_Squares: functionality to call a remote csdp prover
+  HOL/Library/Sum_Of_Squares: functionality to call a remote csdp
+  prover.
 
 * July 2009: Florian Haftmann, TUM
-  New quickcheck implementation using new code generator
+  New quickcheck implementation using new code generator.
 
 * July 2009: Florian Haftmann, TUM
-  HOL/Library/FSet: an explicit type of sets; finite sets ready to use for code generation
-
-* June 2009: Andreas Lochbihler, Uni Karlsruhe
-  HOL/Library/Fin_Fun: almost everywhere constant functions
+  HOL/Library/FSet: an explicit type of sets; finite sets ready to use
+  for code generation.
 
 * June 2009: Florian Haftmann, TUM
-  HOL/Library/Tree: searchtrees implementing mappings, ready to use for code generation
+  HOL/Library/Tree: searchtrees implementing mappings, ready to use
+  for code generation.
 
 * March 2009: Philipp Meyer, TUM
-  minimalization algorithm for results from sledgehammer call
+  Minimalization algorithm for results from sledgehammer call.
+
 
 Contributions to Isabelle2009
 -----------------------------
--- a/NEWS	Tue Oct 27 12:59:57 2009 +0000
+++ b/NEWS	Tue Oct 27 14:46:03 2009 +0000
@@ -50,6 +50,9 @@
 this method is proof-producing. Certificates are provided to
 avoid calling the external solvers solely for re-checking proofs.
 
+* New counterexample generator tool "nitpick" based on the Kodkod
+relational model finder.
+
 * Reorganization of number theory:
   * former session NumberTheory now named Old_Number_Theory
   * new session Number_Theory by Jeremy Avigad; if possible, prefer this.
@@ -167,7 +170,8 @@
 
 * New implementation of quickcheck uses generic code generator;
 default generators are provided for all suitable HOL types, records
-and datatypes.
+and datatypes.  Old quickcheck can be re-activated importing
+theory Library/SML_Quickcheck.
 
 * Renamed theorems:
 Suc_eq_add_numeral_1 -> Suc_eq_plus1
--- a/doc-src/Dirs	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/Dirs	Tue Oct 27 14:46:03 2009 +0000
@@ -1,1 +1,1 @@
-Intro Ref System Logics HOL ZF Inductive TutorialI IsarOverview IsarRef IsarImplementation Locales LaTeXsugar Classes Codegen Functions Main
+Intro Ref System Logics HOL ZF Inductive TutorialI IsarOverview IsarRef IsarImplementation Locales LaTeXsugar Classes Codegen Functions Nitpick Main
--- a/doc-src/IsarImplementation/Thy/Logic.thy	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/Logic.thy	Tue Oct 27 14:46:03 2009 +0000
@@ -322,9 +322,9 @@
   @{index_ML fastype_of: "term -> typ"} \\
   @{index_ML lambda: "term -> term -> term"} \\
   @{index_ML betapply: "term * term -> term"} \\
-  @{index_ML Sign.declare_const: "Properties.T -> (binding * typ) * mixfix ->
+  @{index_ML Sign.declare_const: "(binding * typ) * mixfix ->
   theory -> term * theory"} \\
-  @{index_ML Sign.add_abbrev: "string -> Properties.T -> binding * term ->
+  @{index_ML Sign.add_abbrev: "string -> binding * term ->
   theory -> (term * term) * theory"} \\
   @{index_ML Sign.const_typargs: "theory -> string * typ -> typ list"} \\
   @{index_ML Sign.const_instance: "theory -> string * typ list -> typ"} \\
@@ -370,11 +370,11 @@
   "t u"}, with topmost @{text "\<beta>"}-conversion if @{text "t"} is an
   abstraction.
 
-  \item @{ML Sign.declare_const}~@{text "properties ((c, \<sigma>), mx)"}
+  \item @{ML Sign.declare_const}~@{text "((c, \<sigma>), mx)"}
   declares a new constant @{text "c :: \<sigma>"} with optional mixfix
   syntax.
 
-  \item @{ML Sign.add_abbrev}~@{text "print_mode properties (c, t)"}
+  \item @{ML Sign.add_abbrev}~@{text "print_mode (c, t)"}
   introduces a new term abbreviation @{text "c \<equiv> t"}.
 
   \item @{ML Sign.const_typargs}~@{text "thy (c, \<tau>)"} and @{ML
--- a/doc-src/IsarImplementation/Thy/ML.thy	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/ML.thy	Tue Oct 27 14:46:03 2009 +0000
@@ -317,7 +317,7 @@
   a theory by constant declararion and primitive definitions:
 
   \smallskip\begin{mldecls}
-  @{ML "Sign.declare_const: Properties.T -> (binding * typ) * mixfix
+  @{ML "Sign.declare_const: (binding * typ) * mixfix
   -> theory -> term * theory"} \\
   @{ML "Thm.add_def: bool -> bool -> binding * term -> theory -> thm * theory"}
   \end{mldecls}
@@ -329,7 +329,7 @@
   \smallskip\begin{mldecls}
   @{ML "(fn (t, thy) => Thm.add_def false false
   (Binding.name \"bar_def\", Logic.mk_equals (t, @{term \"%x. x\"})) thy)
-    (Sign.declare_const []
+    (Sign.declare_const
       ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn) thy)"}
   \end{mldecls}
 
@@ -344,7 +344,7 @@
 
   \smallskip\begin{mldecls}
 @{ML "thy
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
 |> (fn (t, thy) => thy
 |> Thm.add_def false false
      (Binding.name \"bar_def\", Logic.mk_equals (t, @{term \"%x. x\"})))"}
@@ -368,7 +368,7 @@
 
   \smallskip\begin{mldecls}
 @{ML "thy
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
 |-> (fn t => Thm.add_def false false
       (Binding.name \"bar_def\", Logic.mk_equals (t, @{term \"%x. x\"})))
 "}
@@ -378,7 +378,7 @@
 
   \smallskip\begin{mldecls}
 @{ML "thy
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
 |>> (fn t => Logic.mk_equals (t, @{term \"%x. x\"}))
 |-> (fn def => Thm.add_def false false (Binding.name \"bar_def\", def))
 "}
@@ -389,7 +389,7 @@
 
   \smallskip\begin{mldecls}
 @{ML "thy
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
 ||> Sign.add_path \"foobar\"
 |-> (fn t => Thm.add_def false false
       (Binding.name \"bar_def\", Logic.mk_equals (t, @{term \"%x. x\"})))
@@ -401,8 +401,8 @@
 
   \smallskip\begin{mldecls}
 @{ML "thy
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
-||>> Sign.declare_const [] ((Binding.name \"foobar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+||>> Sign.declare_const ((Binding.name \"foobar\", @{typ \"foo => foo\"}), NoSyn)
 |-> (fn (t1, t2) => Thm.add_def false false
       (Binding.name \"bar_def\", Logic.mk_equals (t1, t2)))
 "}
@@ -447,7 +447,7 @@
   val consts = [\"foo\", \"bar\"];
 in
   thy
-  |> fold_map (fn const => Sign.declare_const []
+  |> fold_map (fn const => Sign.declare_const
        ((Binding.name const, @{typ \"foo => foo\"}), NoSyn)) consts
   |>> map (fn t => Logic.mk_equals (t, @{term \"%x. x\"}))
   |-> (fn defs => fold_map (fn def =>
@@ -486,11 +486,11 @@
   \smallskip\begin{mldecls}
 @{ML "thy
 |> tap (fn _ => writeln \"now adding constant\")
-|> Sign.declare_const [] ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
+|> Sign.declare_const ((Binding.name \"bar\", @{typ \"foo => foo\"}), NoSyn)
 ||>> `(fn thy => Sign.declared_const thy
          (Sign.full_name thy (Binding.name \"foobar\")))
 |-> (fn (t, b) => if b then I
-       else Sign.declare_const []
+       else Sign.declare_const
          ((Binding.name \"foobar\", @{typ \"foo => foo\"}), NoSyn) #> snd)
 "}
   \end{mldecls}
--- a/doc-src/IsarImplementation/Thy/Prelim.thy	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/Prelim.thy	Tue Oct 27 14:46:03 2009 +0000
@@ -689,19 +689,19 @@
   @{index_ML Long_Name.explode: "string -> string list"} \\
   \end{mldecls}
   \begin{mldecls}
-  @{index_ML_type NameSpace.naming} \\
-  @{index_ML NameSpace.default_naming: NameSpace.naming} \\
-  @{index_ML NameSpace.add_path: "string -> NameSpace.naming -> NameSpace.naming"} \\
-  @{index_ML NameSpace.full_name: "NameSpace.naming -> binding -> string"} \\
+  @{index_ML_type Name_Space.naming} \\
+  @{index_ML Name_Space.default_naming: Name_Space.naming} \\
+  @{index_ML Name_Space.add_path: "string -> Name_Space.naming -> Name_Space.naming"} \\
+  @{index_ML Name_Space.full_name: "Name_Space.naming -> binding -> string"} \\
   \end{mldecls}
   \begin{mldecls}
-  @{index_ML_type NameSpace.T} \\
-  @{index_ML NameSpace.empty: NameSpace.T} \\
-  @{index_ML NameSpace.merge: "NameSpace.T * NameSpace.T -> NameSpace.T"} \\
-  @{index_ML NameSpace.declare: "NameSpace.naming -> binding -> NameSpace.T ->
-  string * NameSpace.T"} \\
-  @{index_ML NameSpace.intern: "NameSpace.T -> string -> string"} \\
-  @{index_ML NameSpace.extern: "NameSpace.T -> string -> string"} \\
+  @{index_ML_type Name_Space.T} \\
+  @{index_ML Name_Space.empty: "string -> Name_Space.T"} \\
+  @{index_ML Name_Space.merge: "Name_Space.T * Name_Space.T -> Name_Space.T"} \\
+  @{index_ML Name_Space.declare: "bool -> Name_Space.naming -> binding -> Name_Space.T ->
+  string * Name_Space.T"} \\
+  @{index_ML Name_Space.intern: "Name_Space.T -> string -> string"} \\
+  @{index_ML Name_Space.extern: "Name_Space.T -> string -> string"} \\
   \end{mldecls}
 
   \begin{description}
@@ -719,41 +719,43 @@
   Long_Name.explode}~@{text "name"} convert between the packed string
   representation and the explicit list form of qualified names.
 
-  \item @{ML_type NameSpace.naming} represents the abstract concept of
+  \item @{ML_type Name_Space.naming} represents the abstract concept of
   a naming policy.
 
-  \item @{ML NameSpace.default_naming} is the default naming policy.
+  \item @{ML Name_Space.default_naming} is the default naming policy.
   In a theory context, this is usually augmented by a path prefix
   consisting of the theory name.
 
-  \item @{ML NameSpace.add_path}~@{text "path naming"} augments the
+  \item @{ML Name_Space.add_path}~@{text "path naming"} augments the
   naming policy by extending its path component.
 
-  \item @{ML NameSpace.full_name}~@{text "naming binding"} turns a
+  \item @{ML Name_Space.full_name}~@{text "naming binding"} turns a
   name binding (usually a basic name) into the fully qualified
   internal name, according to the given naming policy.
 
-  \item @{ML_type NameSpace.T} represents name spaces.
+  \item @{ML_type Name_Space.T} represents name spaces.
 
-  \item @{ML NameSpace.empty} and @{ML NameSpace.merge}~@{text
+  \item @{ML Name_Space.empty}~@{text "kind"} and @{ML Name_Space.merge}~@{text
   "(space\<^isub>1, space\<^isub>2)"} are the canonical operations for
   maintaining name spaces according to theory data management
-  (\secref{sec:context-data}).
+  (\secref{sec:context-data}); @{text "kind"} is a formal comment
+  to characterize the purpose of a name space.
 
-  \item @{ML NameSpace.declare}~@{text "naming bindings space"} enters a
-  name binding as fully qualified internal name into the name space,
-  with external accesses determined by the naming policy.
+  \item @{ML Name_Space.declare}~@{text "strict naming bindings
+  space"} enters a name binding as fully qualified internal name into
+  the name space, with external accesses determined by the naming
+  policy.
 
-  \item @{ML NameSpace.intern}~@{text "space name"} internalizes a
+  \item @{ML Name_Space.intern}~@{text "space name"} internalizes a
   (partially qualified) external name.
 
   This operation is mostly for parsing!  Note that fully qualified
   names stemming from declarations are produced via @{ML
-  "NameSpace.full_name"} and @{ML "NameSpace.declare"}
+  "Name_Space.full_name"} and @{ML "Name_Space.declare"}
   (or their derivatives for @{ML_type theory} and
   @{ML_type Proof.context}).
 
-  \item @{ML NameSpace.extern}~@{text "space name"} externalizes a
+  \item @{ML Name_Space.extern}~@{text "space name"} externalizes a
   (fully qualified) internal name.
 
   This operation is mostly for printing!  User code should not rely on
--- a/doc-src/IsarImplementation/Thy/document/Logic.tex	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/document/Logic.tex	Tue Oct 27 14:46:03 2009 +0000
@@ -325,9 +325,9 @@
   \indexdef{}{ML}{fastype\_of}\verb|fastype_of: term -> typ| \\
   \indexdef{}{ML}{lambda}\verb|lambda: term -> term -> term| \\
   \indexdef{}{ML}{betapply}\verb|betapply: term * term -> term| \\
-  \indexdef{}{ML}{Sign.declare\_const}\verb|Sign.declare_const: Properties.T -> (binding * typ) * mixfix ->|\isasep\isanewline%
+  \indexdef{}{ML}{Sign.declare\_const}\verb|Sign.declare_const: (binding * typ) * mixfix ->|\isasep\isanewline%
 \verb|  theory -> term * theory| \\
-  \indexdef{}{ML}{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> Properties.T -> binding * term ->|\isasep\isanewline%
+  \indexdef{}{ML}{Sign.add\_abbrev}\verb|Sign.add_abbrev: string -> binding * term ->|\isasep\isanewline%
 \verb|  theory -> (term * term) * theory| \\
   \indexdef{}{ML}{Sign.const\_typargs}\verb|Sign.const_typargs: theory -> string * typ -> typ list| \\
   \indexdef{}{ML}{Sign.const\_instance}\verb|Sign.const_instance: theory -> string * typ list -> typ| \\
@@ -365,11 +365,11 @@
   \item \verb|betapply|~\isa{{\isacharparenleft}t{\isacharcomma}\ u{\isacharparenright}} produces an application \isa{t\ u}, with topmost \isa{{\isasymbeta}}-conversion if \isa{t} is an
   abstraction.
 
-  \item \verb|Sign.declare_const|~\isa{properties\ {\isacharparenleft}{\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharparenright}{\isacharcomma}\ mx{\isacharparenright}}
+  \item \verb|Sign.declare_const|~\isa{{\isacharparenleft}{\isacharparenleft}c{\isacharcomma}\ {\isasymsigma}{\isacharparenright}{\isacharcomma}\ mx{\isacharparenright}}
   declares a new constant \isa{c\ {\isacharcolon}{\isacharcolon}\ {\isasymsigma}} with optional mixfix
   syntax.
 
-  \item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ properties\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}}
+  \item \verb|Sign.add_abbrev|~\isa{print{\isacharunderscore}mode\ {\isacharparenleft}c{\isacharcomma}\ t{\isacharparenright}}
   introduces a new term abbreviation \isa{c\ {\isasymequiv}\ t}.
 
   \item \verb|Sign.const_typargs|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isasymtau}{\isacharparenright}} and \verb|Sign.const_instance|~\isa{thy\ {\isacharparenleft}c{\isacharcomma}\ {\isacharbrackleft}{\isasymtau}\isactrlisub {\isadigit{1}}{\isacharcomma}\ {\isasymdots}{\isacharcomma}\ {\isasymtau}\isactrlisub n{\isacharbrackright}{\isacharparenright}}
--- a/doc-src/IsarImplementation/Thy/document/ML.tex	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/document/ML.tex	Tue Oct 27 14:46:03 2009 +0000
@@ -242,14 +242,14 @@
   view being presented to the user.
 
   Occasionally, such global process flags are treated like implicit
-  arguments to certain operations, by using the \verb|setmp| combinator
+  arguments to certain operations, by using the \verb|setmp_CRITICAL| combinator
   for safe temporary assignment.  Its traditional purpose was to
   ensure proper recovery of the original value when exceptions are
   raised in the body, now the functionality is extended to enter the
   \emph{critical section} (with its usual potential of degrading
   parallelism).
 
-  Note that recovery of plain value passing semantics via \verb|setmp|~\isa{ref\ value} assumes that this \isa{ref} is
+  Note that recovery of plain value passing semantics via \verb|setmp_CRITICAL|~\isa{ref\ value} assumes that this \isa{ref} is
   exclusively manipulated within the critical section.  In particular,
   any persistent global assignment of \isa{ref\ {\isacharcolon}{\isacharequal}\ value} needs to
   be marked critical as well, to prevent intruding another threads
@@ -277,7 +277,7 @@
 \begin{mldecls}
   \indexdef{}{ML}{NAMED\_CRITICAL}\verb|NAMED_CRITICAL: string -> (unit -> 'a) -> 'a| \\
   \indexdef{}{ML}{CRITICAL}\verb|CRITICAL: (unit -> 'a) -> 'a| \\
-  \indexdef{}{ML}{setmp}\verb|setmp: 'a Unsynchronized.ref -> 'a -> ('b -> 'c) -> 'b -> 'c| \\
+  \indexdef{}{ML}{setmp\_CRITICAL}\verb|setmp_CRITICAL: 'a Unsynchronized.ref -> 'a -> ('b -> 'c) -> 'b -> 'c| \\
   \end{mldecls}
 
   \begin{description}
@@ -291,7 +291,7 @@
   \item \verb|CRITICAL| is the same as \verb|NAMED_CRITICAL| with empty
   name argument.
 
-  \item \verb|setmp|~\isa{ref\ value\ f\ x} evaluates \isa{f\ x}
+  \item \verb|setmp_CRITICAL|~\isa{ref\ value\ f\ x} evaluates \isa{f\ x}
   while staying within the critical section and having \isa{ref\ {\isacharcolon}{\isacharequal}\ value} assigned temporarily.  This recovers a value-passing
   semantics involving global references, regardless of exceptions or
   concurrency.
@@ -366,7 +366,7 @@
   a theory by constant declararion and primitive definitions:
 
   \smallskip\begin{mldecls}
-  \verb|Sign.declare_const: Properties.T -> (binding * typ) * mixfix|\isasep\isanewline%
+  \verb|Sign.declare_const: (binding * typ) * mixfix|\isasep\isanewline%
 \verb|  -> theory -> term * theory| \\
   \verb|Thm.add_def: bool -> bool -> binding * term -> theory -> thm * theory|
   \end{mldecls}
@@ -378,7 +378,7 @@
   \smallskip\begin{mldecls}
   \verb|(fn (t, thy) => Thm.add_def false false|\isasep\isanewline%
 \verb|  (Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})) thy)|\isasep\isanewline%
-\verb|    (Sign.declare_const []|\isasep\isanewline%
+\verb|    (Sign.declare_const|\isasep\isanewline%
 \verb|      ((Binding.name "bar", @{typ "foo => foo"}), NoSyn) thy)|
   \end{mldecls}
 
@@ -394,7 +394,7 @@
 
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb|> (fn (t, thy) => thy|\isasep\isanewline%
 \verb||\verb,|,\verb|> Thm.add_def false false|\isasep\isanewline%
 \verb|     (Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))|
@@ -433,7 +433,7 @@
 
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb|-> (fn t => Thm.add_def false false|\isasep\isanewline%
 \verb|      (Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))|\isasep\isanewline%
 
@@ -443,7 +443,7 @@
 
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb|>> (fn t => Logic.mk_equals (t, @{term "%x. x"}))|\isasep\isanewline%
 \verb||\verb,|,\verb|-> (fn def => Thm.add_def false false (Binding.name "bar_def", def))|\isasep\isanewline%
 
@@ -454,7 +454,7 @@
 
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb||\verb,|,\verb|> Sign.add_path "foobar"|\isasep\isanewline%
 \verb||\verb,|,\verb|-> (fn t => Thm.add_def false false|\isasep\isanewline%
 \verb|      (Binding.name "bar_def", Logic.mk_equals (t, @{term "%x. x"})))|\isasep\isanewline%
@@ -466,8 +466,8 @@
 
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
-\verb||\verb,|,\verb||\verb,|,\verb|>> Sign.declare_const [] ((Binding.name "foobar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb||\verb,|,\verb|>> Sign.declare_const ((Binding.name "foobar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb|-> (fn (t1, t2) => Thm.add_def false false|\isasep\isanewline%
 \verb|      (Binding.name "bar_def", Logic.mk_equals (t1, t2)))|\isasep\isanewline%
 
@@ -527,7 +527,7 @@
 \verb|  val consts = ["foo", "bar"];|\isasep\isanewline%
 \verb|in|\isasep\isanewline%
 \verb|  thy|\isasep\isanewline%
-\verb|  |\verb,|,\verb|> fold_map (fn const => Sign.declare_const []|\isasep\isanewline%
+\verb|  |\verb,|,\verb|> fold_map (fn const => Sign.declare_const|\isasep\isanewline%
 \verb|       ((Binding.name const, @{typ "foo => foo"}), NoSyn)) consts|\isasep\isanewline%
 \verb|  |\verb,|,\verb|>> map (fn t => Logic.mk_equals (t, @{term "%x. x"}))|\isasep\isanewline%
 \verb|  |\verb,|,\verb|-> (fn defs => fold_map (fn def =>|\isasep\isanewline%
@@ -596,11 +596,11 @@
   \smallskip\begin{mldecls}
 \verb|thy|\isasep\isanewline%
 \verb||\verb,|,\verb|> tap (fn _ => writeln "now adding constant")|\isasep\isanewline%
-\verb||\verb,|,\verb|> Sign.declare_const [] ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
+\verb||\verb,|,\verb|> Sign.declare_const ((Binding.name "bar", @{typ "foo => foo"}), NoSyn)|\isasep\isanewline%
 \verb||\verb,|,\verb||\verb,|,\verb|>> `(fn thy => Sign.declared_const thy|\isasep\isanewline%
 \verb|         (Sign.full_name thy (Binding.name "foobar")))|\isasep\isanewline%
 \verb||\verb,|,\verb|-> (fn (t, b) => if b then I|\isasep\isanewline%
-\verb|       else Sign.declare_const []|\isasep\isanewline%
+\verb|       else Sign.declare_const|\isasep\isanewline%
 \verb|         ((Binding.name "foobar", @{typ "foo => foo"}), NoSyn) #> snd)|\isasep\isanewline%
 
   \end{mldecls}%
--- a/doc-src/IsarImplementation/Thy/document/Prelim.tex	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/IsarImplementation/Thy/document/Prelim.tex	Tue Oct 27 14:46:03 2009 +0000
@@ -798,19 +798,19 @@
   \indexdef{}{ML}{Long\_Name.explode}\verb|Long_Name.explode: string -> string list| \\
   \end{mldecls}
   \begin{mldecls}
-  \indexdef{}{ML type}{NameSpace.naming}\verb|type NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.default\_naming}\verb|NameSpace.default_naming: NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.add\_path}\verb|NameSpace.add_path: string -> NameSpace.naming -> NameSpace.naming| \\
-  \indexdef{}{ML}{NameSpace.full\_name}\verb|NameSpace.full_name: NameSpace.naming -> binding -> string| \\
+  \indexdef{}{ML type}{Name\_Space.naming}\verb|type Name_Space.naming| \\
+  \indexdef{}{ML}{Name\_Space.default\_naming}\verb|Name_Space.default_naming: Name_Space.naming| \\
+  \indexdef{}{ML}{Name\_Space.add\_path}\verb|Name_Space.add_path: string -> Name_Space.naming -> Name_Space.naming| \\
+  \indexdef{}{ML}{Name\_Space.full\_name}\verb|Name_Space.full_name: Name_Space.naming -> binding -> string| \\
   \end{mldecls}
   \begin{mldecls}
-  \indexdef{}{ML type}{NameSpace.T}\verb|type NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.empty}\verb|NameSpace.empty: NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.merge}\verb|NameSpace.merge: NameSpace.T * NameSpace.T -> NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.declare}\verb|NameSpace.declare: NameSpace.naming -> binding -> NameSpace.T ->|\isasep\isanewline%
-\verb|  string * NameSpace.T| \\
-  \indexdef{}{ML}{NameSpace.intern}\verb|NameSpace.intern: NameSpace.T -> string -> string| \\
-  \indexdef{}{ML}{NameSpace.extern}\verb|NameSpace.extern: NameSpace.T -> string -> string| \\
+  \indexdef{}{ML type}{Name\_Space.T}\verb|type Name_Space.T| \\
+  \indexdef{}{ML}{Name\_Space.empty}\verb|Name_Space.empty: string -> Name_Space.T| \\
+  \indexdef{}{ML}{Name\_Space.merge}\verb|Name_Space.merge: Name_Space.T * Name_Space.T -> Name_Space.T| \\
+  \indexdef{}{ML}{Name\_Space.declare}\verb|Name_Space.declare: bool -> Name_Space.naming -> binding -> Name_Space.T ->|\isasep\isanewline%
+\verb|  string * Name_Space.T| \\
+  \indexdef{}{ML}{Name\_Space.intern}\verb|Name_Space.intern: Name_Space.T -> string -> string| \\
+  \indexdef{}{ML}{Name\_Space.extern}\verb|Name_Space.extern: Name_Space.T -> string -> string| \\
   \end{mldecls}
 
   \begin{description}
@@ -827,39 +827,40 @@
   \item \verb|Long_Name.implode|~\isa{names} and \verb|Long_Name.explode|~\isa{name} convert between the packed string
   representation and the explicit list form of qualified names.
 
-  \item \verb|NameSpace.naming| represents the abstract concept of
+  \item \verb|Name_Space.naming| represents the abstract concept of
   a naming policy.
 
-  \item \verb|NameSpace.default_naming| is the default naming policy.
+  \item \verb|Name_Space.default_naming| is the default naming policy.
   In a theory context, this is usually augmented by a path prefix
   consisting of the theory name.
 
-  \item \verb|NameSpace.add_path|~\isa{path\ naming} augments the
+  \item \verb|Name_Space.add_path|~\isa{path\ naming} augments the
   naming policy by extending its path component.
 
-  \item \verb|NameSpace.full_name|~\isa{naming\ binding} turns a
+  \item \verb|Name_Space.full_name|~\isa{naming\ binding} turns a
   name binding (usually a basic name) into the fully qualified
   internal name, according to the given naming policy.
 
-  \item \verb|NameSpace.T| represents name spaces.
-
-  \item \verb|NameSpace.empty| and \verb|NameSpace.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
-  maintaining name spaces according to theory data management
-  (\secref{sec:context-data}).
+  \item \verb|Name_Space.T| represents name spaces.
 
-  \item \verb|NameSpace.declare|~\isa{naming\ bindings\ space} enters a
-  name binding as fully qualified internal name into the name space,
-  with external accesses determined by the naming policy.
+  \item \verb|Name_Space.empty|~\isa{kind} and \verb|Name_Space.merge|~\isa{{\isacharparenleft}space\isactrlisub {\isadigit{1}}{\isacharcomma}\ space\isactrlisub {\isadigit{2}}{\isacharparenright}} are the canonical operations for
+  maintaining name spaces according to theory data management
+  (\secref{sec:context-data}); \isa{kind} is a formal comment
+  to characterize the purpose of a name space.
 
-  \item \verb|NameSpace.intern|~\isa{space\ name} internalizes a
+  \item \verb|Name_Space.declare|~\isa{strict\ naming\ bindings\ space} enters a name binding as fully qualified internal name into
+  the name space, with external accesses determined by the naming
+  policy.
+
+  \item \verb|Name_Space.intern|~\isa{space\ name} internalizes a
   (partially qualified) external name.
 
   This operation is mostly for parsing!  Note that fully qualified
-  names stemming from declarations are produced via \verb|NameSpace.full_name| and \verb|NameSpace.declare|
+  names stemming from declarations are produced via \verb|Name_Space.full_name| and \verb|Name_Space.declare|
   (or their derivatives for \verb|theory| and
   \verb|Proof.context|).
 
-  \item \verb|NameSpace.extern|~\isa{space\ name} externalizes a
+  \item \verb|Name_Space.extern|~\isa{space\ name} externalizes a
   (fully qualified) internal name.
 
   This operation is mostly for printing!  User code should not rely on
--- a/doc-src/Makefile.in	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/Makefile.in	Tue Oct 27 14:46:03 2009 +0000
@@ -45,6 +45,9 @@
 isabelle_zf.eps:
 	test -r isabelle_zf.eps || ln -s ../gfx/isabelle_zf.eps .
 
+isabelle_nitpick.eps:
+	test -r isabelle_nitpick.eps || ln -s ../gfx/isabelle_nitpick.eps .
+
 
 isabelle.pdf:
 	test -r isabelle.pdf || ln -s ../gfx/isabelle.pdf .
@@ -58,6 +61,9 @@
 isabelle_zf.pdf:
 	test -r isabelle_zf.pdf || ln -s ../gfx/isabelle_zf.pdf .
 
+isabelle_nitpick.pdf:
+	test -r isabelle_nitpick.pdf || ln -s ../gfx/isabelle_nitpick.pdf .
+
 typedef.ps:
 	test -r typedef.ps || ln -s ../gfx/typedef.ps .
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Nitpick/Makefile	Tue Oct 27 14:46:03 2009 +0000
@@ -0,0 +1,36 @@
+#
+# $Id$
+#
+
+## targets
+
+default: dvi
+
+
+## dependencies
+
+include ../Makefile.in
+
+NAME = nitpick
+FILES = nitpick.tex ../iman.sty ../manual.bib
+
+dvi: $(NAME).dvi
+
+$(NAME).dvi: $(FILES) isabelle_nitpick.eps
+	$(LATEX) $(NAME)
+	$(BIBTEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(LATEX) $(NAME)
+	$(SEDINDEX) $(NAME)
+	$(LATEX) $(NAME)
+
+pdf: $(NAME).pdf
+
+$(NAME).pdf: $(FILES) isabelle_nitpick.pdf
+	$(PDFLATEX) $(NAME)
+	$(BIBTEX) $(NAME)
+	$(PDFLATEX) $(NAME)
+	$(PDFLATEX) $(NAME)
+	$(SEDINDEX) $(NAME)
+	$(FIXBOOKMARKS) $(NAME).out
+	$(PDFLATEX) $(NAME)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/Nitpick/nitpick.tex	Tue Oct 27 14:46:03 2009 +0000
@@ -0,0 +1,2486 @@
+\documentclass[a4paper,12pt]{article}
+\usepackage[T1]{fontenc}
+\usepackage{amsmath}
+\usepackage{amssymb}
+\usepackage[french,english]{babel}
+\usepackage{color}
+\usepackage{graphicx}
+%\usepackage{mathpazo}
+\usepackage{multicol}
+\usepackage{stmaryrd}
+%\usepackage[scaled=.85]{beramono}
+\usepackage{../iman,../pdfsetup}
+
+%\oddsidemargin=4.6mm
+%\evensidemargin=4.6mm
+%\textwidth=150mm
+%\topmargin=4.6mm
+%\headheight=0mm
+%\headsep=0mm
+%\textheight=234mm
+
+\def\Colon{\mathord{:\mkern-1.5mu:}}
+%\def\lbrakk{\mathopen{\lbrack\mkern-3.25mu\lbrack}}
+%\def\rbrakk{\mathclose{\rbrack\mkern-3.255mu\rbrack}}
+\def\lparr{\mathopen{(\mkern-4mu\mid}}
+\def\rparr{\mathclose{\mid\mkern-4mu)}}
+
+\def\undef{\textit{undefined}}
+\def\unk{{?}}
+%\def\unr{\textit{others}}
+\def\unr{\ldots}
+\def\Abs#1{\hbox{\rm{\flqq}}{\,#1\,}\hbox{\rm{\frqq}}}
+\def\Q{{\smash{\lower.2ex\hbox{$\scriptstyle?$}}}}
+
+\hyphenation{Mini-Sat size-change First-Steps grand-parent nit-pick
+counter-example counter-examples data-type data-types co-data-type 
+co-data-types in-duc-tive co-in-duc-tive}
+
+\urlstyle{tt}
+
+\begin{document}
+
+\title{\includegraphics[scale=0.5]{isabelle_nitpick} \\[4ex]
+Picking Nits \\[\smallskipamount]
+\Large A User's Guide to Nitpick for Isabelle/HOL 2010}
+\author{\hbox{} \\
+Jasmin Christian Blanchette \\
+{\normalsize Fakult\"at f\"ur Informatik, Technische Universit\"at M\"unchen} \\
+\hbox{}}
+
+\maketitle
+
+\tableofcontents
+
+\setlength{\parskip}{.7em plus .2em minus .1em}
+\setlength{\parindent}{0pt}
+\setlength{\abovedisplayskip}{\parskip}
+\setlength{\abovedisplayshortskip}{.9\parskip}
+\setlength{\belowdisplayskip}{\parskip}
+\setlength{\belowdisplayshortskip}{.9\parskip}
+
+% General-purpose enum environment with correct spacing
+\newenvironment{enum}%
+    {\begin{list}{}{%
+        \setlength{\topsep}{.1\parskip}%
+        \setlength{\partopsep}{.1\parskip}%
+        \setlength{\itemsep}{\parskip}%
+        \advance\itemsep by-\parsep}}
+    {\end{list}}
+
+\def\pre{\begingroup\vskip0pt plus1ex\advance\leftskip by\leftmargin
+\advance\rightskip by\leftmargin}
+\def\post{\vskip0pt plus1ex\endgroup}
+
+\def\prew{\pre\advance\rightskip by-\leftmargin}
+\def\postw{\post}
+
+\section{Introduction}
+\label{introduction}
+
+Nitpick \cite{blanchette-nipkow-2009} is a counterexample generator for
+Isabelle/HOL \cite{isa-tutorial} that is designed to handle formulas
+combining (co)in\-duc\-tive datatypes, (co)in\-duc\-tively defined predicates, and
+quantifiers. It builds on Kodkod \cite{torlak-jackson-2007}, a highly optimized
+first-order relational model finder developed by the Software Design Group at
+MIT. It is conceptually similar to Refute \cite{weber-2008}, from which it
+borrows many ideas and code fragments, but it benefits from Kodkod's
+optimizations and a new encoding scheme. The name Nitpick is shamelessly
+appropriated from a now retired Alloy precursor.
+
+Nitpick is easy to use---you simply enter \textbf{nitpick} after a putative
+theorem and wait a few seconds. Nonetheless, there are situations where knowing
+how it works under the hood and how it reacts to various options helps
+increase the test coverage. This manual also explains how to install the tool on
+your workstation. Should the motivation fail you, think of the many hours of
+hard work Nitpick will save you. Proving non-theorems is \textsl{hard work}.
+
+Another common use of Nitpick is to find out whether the axioms of a locale are
+satisfiable, while the locale is being developed. To check this, it suffices to
+write
+
+\prew
+\textbf{lemma}~``$\textit{False}$'' \\
+\textbf{nitpick}~[\textit{show\_all}]
+\postw
+
+after the locale's \textbf{begin} keyword. To falsify \textit{False}, Nitpick
+must find a model for the axioms. If it finds no model, we have an indication
+that the axioms might be unsatisfiable.
+
+Nitpick requires the Kodkodi package for Isabelle as well as a Java 1.5 virtual
+machine called \texttt{java}. The examples presented in this manual can be found
+in Isabelle's \texttt{src/HOL/Nitpick\_Examples/Manual\_Nits.thy} theory.
+
+\newbox\boxA
+\setbox\boxA=\hbox{\texttt{nospam}}
+
+The known bugs and limitations at the time of writing are listed in
+\S\ref{known-bugs-and-limitations}. Comments and bug reports concerning Nitpick
+or this manual should be directed to
+\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@\allowbreak
+in.\allowbreak tum.\allowbreak de}.
+
+\vskip2.5\smallskipamount
+
+\textbf{Acknowledgment.} The author would like to thank Mark Summerfield for
+suggesting several textual improvements.
+% and Perry James for reporting a typo.
+
+\section{First Steps}
+\label{first-steps}
+
+This section introduces Nitpick by presenting small examples. If possible, you
+should try out the examples on your workstation. Your theory file should start
+the standard way:
+
+\prew
+\textbf{theory}~\textit{Scratch} \\
+\textbf{imports}~\textit{Main} \\
+\textbf{begin}
+\postw
+
+The results presented here were obtained using the JNI version of MiniSat and
+with multithreading disabled to reduce nondeterminism. This was done by adding
+the line
+
+\prew
+\textbf{nitpick\_params} [\textit{sat\_solver}~= \textit{MiniSatJNI}, \,\textit{max\_threads}~= 1]
+\postw
+
+after the \textbf{begin} keyword. The JNI version of MiniSat is bundled with
+Kodkodi and is precompiled for the major platforms. Other SAT solvers can also
+be installed, as explained in \S\ref{optimizations}. If you have already
+configured SAT solvers in Isabelle (e.g., for Refute), these will also be
+available to Nitpick.
+
+Throughout this manual, we will explicitly invoke the \textbf{nitpick} command.
+Nitpick also provides an automatic mode that can be enabled by specifying
+
+\prew
+\textbf{nitpick\_params} [\textit{auto}]
+\postw
+
+at the beginning of the theory file. In this mode, Nitpick is run for up to 5
+seconds (by default) on every newly entered theorem, much like Auto Quickcheck.
+
+\subsection{Propositional Logic}
+\label{propositional-logic}
+
+Let's start with a trivial example from propositional logic:
+
+\prew
+\textbf{lemma}~``$P \longleftrightarrow Q$'' \\
+\textbf{nitpick}
+\postw
+
+You should get the following output:
+
+\prew
+\slshape
+Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{True}$ \\
+\hbox{}\qquad\qquad $Q = \textit{False}$
+\postw
+
+Nitpick can also be invoked on individual subgoals, as in the example below:
+
+\prew
+\textbf{apply}~\textit{auto} \\[2\smallskipamount]
+{\slshape goal (2 subgoals): \\
+\ 1. $P\,\Longrightarrow\, Q$ \\
+\ 2. $Q\,\Longrightarrow\, P$} \\[2\smallskipamount]
+\textbf{nitpick}~1 \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{True}$ \\
+\hbox{}\qquad\qquad $Q = \textit{False}$} \\[2\smallskipamount]
+\textbf{nitpick}~2 \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{False}$ \\
+\hbox{}\qquad\qquad $Q = \textit{True}$} \\[2\smallskipamount]
+\textbf{oops}
+\postw
+
+\subsection{Type Variables}
+\label{type-variables}
+
+If you are left unimpressed by the previous example, don't worry. The next
+one is more mind- and computer-boggling:
+
+\prew
+\textbf{lemma} ``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
+\postw
+\pagebreak[2] %% TYPESETTING
+
+The putative lemma involves the definite description operator, {THE}, presented
+in section 5.10.1 of the Isabelle tutorial \cite{isa-tutorial}. The
+operator is defined by the axiom $(\textrm{THE}~x.\; x = a) = a$. The putative
+lemma is merely asserting the indefinite description operator axiom with {THE}
+substituted for {SOME}.
+
+The free variable $x$ and the bound variable $y$ have type $'a$. For formulas
+containing type variables, Nitpick enumerates the possible domains for each type
+variable, up to a given cardinality (8 by default), looking for a finite
+countermodel:
+
+\prew
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape
+Trying 8 scopes: \nopagebreak \\
+\hbox{}\qquad \textit{card}~$'a$~= 1; \\
+\hbox{}\qquad \textit{card}~$'a$~= 2; \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card}~$'a$~= 8. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\[2\smallskipamount]
+Total time: 580 ms.
+\postw
+
+Nitpick found a counterexample in which $'a$ has cardinality 3. (For
+cardinalities 1 and 2, the formula holds.) In the counterexample, the three
+values of type $'a$ are written $a_1$, $a_2$, and $a_3$.
+
+The message ``Trying $n$ scopes: {\ldots}''\ is shown only if the option
+\textit{verbose} is enabled. You can specify \textit{verbose} each time you
+invoke \textbf{nitpick}, or you can set it globally using the command
+
+\prew
+\textbf{nitpick\_params} [\textit{verbose}]
+\postw
+
+This command also displays the current default values for all of the options
+supported by Nitpick. The options are listed in \S\ref{option-reference}.
+
+\subsection{Constants}
+\label{constants}
+
+By just looking at Nitpick's output, it might not be clear why the
+counterexample in \S\ref{type-variables} is genuine. Let's invoke Nitpick again,
+this time telling it to show the values of the constants that occur in the
+formula:
+
+\prew
+\textbf{lemma}~``$P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$'' \\
+\textbf{nitpick}~[\textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{The}~\textsl{fallback} = a_1$
+\postw
+
+We can see more clearly now. Since the predicate $P$ isn't true for a unique
+value, $\textrm{THE}~y.\;P~y$ can denote any value of type $'a$, even
+$a_1$. Since $P~a_1$ is false, the entire formula is falsified.
+
+As an optimization, Nitpick's preprocessor introduced the special constant
+``\textit{The} fallback'' corresponding to $\textrm{THE}~y.\;P~y$ (i.e.,
+$\mathit{The}~(\lambda y.\;P~y)$) when there doesn't exist a unique $y$
+satisfying $P~y$. We disable this optimization by passing the
+\textit{full\_descrs} option:
+
+\prew
+\textbf{nitpick}~[\textit{full\_descrs},\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{a_2,\, a_3\}$ \\
+\hbox{}\qquad\qquad $x = a_3$ \\
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\hbox{\slshape THE}~y.\;P~y = a_1$
+\postw
+
+As the result of another optimization, Nitpick directly assigned a value to the
+subterm $\textrm{THE}~y.\;P~y$, rather than to the \textit{The} constant. If we
+disable this second optimization by using the command
+
+\prew
+\textbf{nitpick}~[\textit{dont\_specialize},\, \textit{full\_descrs},\,
+\textit{show\_consts}]
+\postw
+
+we finally get \textit{The}:
+
+\prew
+\slshape Constant: \nopagebreak \\
+\hbox{}\qquad $\mathit{The} = \undef{}
+    (\!\begin{aligned}[t]%
+    & \{\} := a_3,\> \{a_3\} := a_3,\> \{a_2\} := a_2, \\[-2pt] %% TYPESETTING
+    & \{a_2, a_3\} := a_1,\> \{a_1\} := a_1,\> \{a_1, a_3\} := a_3, \\[-2pt]
+    & \{a_1, a_2\} := a_3,\> \{a_1, a_2, a_3\} := a_3)\end{aligned}$
+\postw
+
+Notice that $\textit{The}~(\lambda y.\;P~y) = \textit{The}~\{a_2, a_3\} = a_1$,
+just like before.\footnote{The \undef{} symbol's presence is explained as
+follows: In higher-order logic, any function can be built from the undefined
+function using repeated applications of the function update operator $f(x :=
+y)$, just like any list can be built from the empty list using $x \mathbin{\#}
+xs$.}
+
+Our misadventures with THE suggest adding `$\exists!x{.}$' (``there exists a
+unique $x$ such that'') at the front of our putative lemma's assumption:
+
+\prew
+\textbf{lemma}~``$\exists {!}x.\; P~x\,\Longrightarrow\, P~(\textrm{THE}~y.\;P~y)$''
+\postw
+
+The fix appears to work:
+
+\prew
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+We can further increase our confidence in the formula by exhausting all
+cardinalities up to 50:
+
+\prew
+\textbf{nitpick} [\textit{card} $'a$~= 1--50]\footnote{The symbol `--'
+can be entered as \texttt{-} (hyphen) or
+\texttt{\char`\\\char`\<midarrow\char`\>}.} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+Let's see if Sledgehammer \cite{sledgehammer-2009} can find a proof:
+
+\prew
+\textbf{sledgehammer} \\[2\smallskipamount]
+{\slshape Sledgehammer: external prover ``$e$'' for subgoal 1: \\
+$\exists{!}x.\; P~x\,\Longrightarrow\, P~(\hbox{\slshape THE}~y.\; P~y)$ \\
+Try this command: \textrm{apply}~(\textit{metis~the\_equality})} \\[2\smallskipamount]
+\textbf{apply}~(\textit{metis~the\_equality\/}) \nopagebreak \\[2\smallskipamount]
+{\slshape No subgoals!}% \\[2\smallskipamount]
+%\textbf{done}
+\postw
+
+This must be our lucky day.
+
+\subsection{Skolemization}
+\label{skolemization}
+
+Are all invertible functions onto? Let's find out:
+
+\prew
+\textbf{lemma} ``$\exists g.\; \forall x.~g~(f~x) = x
+ \,\Longrightarrow\, \forall y.\; \exists x.~y = f~x$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $f = \undef{}(b_1 := a_1)$ \\
+\hbox{}\qquad Skolem constants: \nopagebreak \\
+\hbox{}\qquad\qquad $g = \undef{}(a_1 := b_1,\> a_2 := b_1)$ \\
+\hbox{}\qquad\qquad $y = a_2$
+\postw
+
+Although $f$ is the only free variable occurring in the formula, Nitpick also
+displays values for the bound variables $g$ and $y$. These values are available
+to Nitpick because it performs skolemization as a preprocessing step.
+
+In the previous example, skolemization only affected the outermost quantifiers.
+This is not always the case, as illustrated below:
+
+\prew
+\textbf{lemma} ``$\exists x.\; \forall f.\; f~x = x$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Skolem constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda x.\; f =
+    \undef{}(\!\begin{aligned}[t]
+    & a_1 := \undef{}(a_1 := a_2,\> a_2 := a_1), \\[-2pt]
+    & a_2 := \undef{}(a_1 := a_1,\> a_2 := a_1))\end{aligned}$
+\postw
+
+The variable $f$ is bound within the scope of $x$; therefore, $f$ depends on
+$x$, as suggested by the notation $\lambda x.\,f$. If $x = a_1$, then $f$ is the
+function that maps $a_1$ to $a_2$ and vice versa; otherwise, $x = a_2$ and $f$
+maps both $a_1$ and $a_2$ to $a_1$. In both cases, $f~x \not= x$.
+
+The source of the Skolem constants is sometimes more obscure:
+
+\prew
+\textbf{lemma} ``$\mathit{refl}~r\,\Longrightarrow\, \mathit{sym}~r$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $r = \{(a_1, a_1),\, (a_2, a_1),\, (a_2, a_2)\}$ \\
+\hbox{}\qquad Skolem constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\mathit{sym}.x = a_2$ \\
+\hbox{}\qquad\qquad $\mathit{sym}.y = a_1$
+\postw
+
+What happened here is that Nitpick expanded the \textit{sym} constant to its
+definition:
+
+\prew
+$\mathit{sym}~r \,\equiv\,
+ \forall x\> y.\,\> (x, y) \in r \longrightarrow (y, x) \in r.$
+\postw
+
+As their names suggest, the Skolem constants $\mathit{sym}.x$ and
+$\mathit{sym}.y$ are simply the bound variables $x$ and $y$
+from \textit{sym}'s definition.
+
+Although skolemization is a useful optimization, you can disable it by invoking
+Nitpick with \textit{dont\_skolemize}. See \S\ref{optimizations} for details.
+
+\subsection{Natural Numbers and Integers}
+\label{natural-numbers-and-integers}
+
+Because of the axiom of infinity, the type \textit{nat} does not admit any
+finite models. To deal with this, Nitpick considers prefixes $\{0,\, 1,\,
+\ldots,\, K - 1\}$ of \textit{nat} (where $K = \textit{card}~\textit{nat}$) and
+maps all other numbers to the undefined value ($\unk$). The type \textit{int} is
+handled in a similar way: If $K = \textit{card}~\textit{int}$, the subset of
+\textit{int} known to Nitpick is $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor
+K/2 \rfloor\}$. Undefined values lead to a three-valued logic.
+
+Here is an example involving \textit{int}:
+
+\prew
+\textbf{lemma} ``$\lbrakk i \le j;\> n \le (m{\Colon}\mathit{int})\rbrakk \,\Longrightarrow\, i * n + j * m \le i * m + j * n$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $i = 0$ \\
+\hbox{}\qquad\qquad $j = 1$ \\
+\hbox{}\qquad\qquad $m = 1$ \\
+\hbox{}\qquad\qquad $n = 0$
+\postw
+
+With infinite types, we don't always have the luxury of a genuine counterexample
+and must often content ourselves with a potential one. The tedious task of
+finding out whether the potential counterexample is in fact genuine can be
+outsourced to \textit{auto} by passing the option \textit{check\_potential}. For
+example:
+
+\prew
+\textbf{lemma} ``$\forall n.\; \textit{Suc}~n \mathbin{\not=} n \,\Longrightarrow\, P$'' \\
+\textbf{nitpick} [\textit{card~nat}~= 100,\, \textit{check\_potential}] \\[2\smallskipamount]
+\slshape Nitpick found a potential counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \textit{False}$ \\[2\smallskipamount]
+Confirmation by ``\textit{auto}'': The above counterexample is genuine.
+\postw
+
+You might wonder why the counterexample is first reported as potential. The root
+of the problem is that the bound variable in $\forall n.\; \textit{Suc}~n
+\mathbin{\not=} n$ ranges over an infinite type. If Nitpick finds an $n$ such
+that $\textit{Suc}~n \mathbin{=} n$, it evaluates the assumption to
+\textit{False}; but otherwise, it does not know anything about values of $n \ge
+\textit{card~nat}$ and must therefore evaluate the assumption to $\unk$, not
+\textit{True}. Since the assumption can never be satisfied, the putative lemma
+can never be falsified.
+
+Incidentally, if you distrust the so-called genuine counterexamples, you can
+enable \textit{check\_\allowbreak genuine} to verify them as well. However, be
+aware that \textit{auto} will often fail to prove that the counterexample is
+genuine or spurious.
+
+Some conjectures involving elementary number theory make Nitpick look like a
+giant with feet of clay:
+
+\prew
+\textbf{lemma} ``$P~\textit{Suc}$'' \\
+\textbf{nitpick} [\textit{card} = 1--6] \\[2\smallskipamount]
+\slshape
+Nitpick found no counterexample.
+\postw
+
+For any cardinality $k$, \textit{Suc} is the partial function $\{0 \mapsto 1,\,
+1 \mapsto 2,\, \ldots,\, k - 1 \mapsto \unk\}$, which evaluates to $\unk$ when
+it is passed as argument to $P$. As a result, $P~\textit{Suc}$ is always $\unk$.
+The next example is similar:
+
+\prew
+\textbf{lemma} ``$P~(\textit{op}~{+}\Colon
+\textit{nat}\mathbin{\Rightarrow}\textit{nat}\mathbin{\Rightarrow}\textit{nat})$'' \\
+\textbf{nitpick} [\textit{card nat} = 1] \\[2\smallskipamount]
+{\slshape Nitpick found a counterexample:} \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{\}$ \\[2\smallskipamount]
+\textbf{nitpick} [\textit{card nat} = 2] \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.}
+\postw
+
+The problem here is that \textit{op}~+ is total when \textit{nat} is taken to be
+$\{0\}$ but becomes partial as soon as we add $1$, because $1 + 1 \notin \{0,
+1\}$.
+
+Because numbers are infinite and are approximated using a three-valued logic,
+there is usually no need to systematically enumerate domain sizes. If Nitpick
+cannot find a genuine counterexample for \textit{card~nat}~= $k$, it is very
+unlikely that one could be found for smaller domains. (The $P~(\textit{op}~{+})$
+example above is an exception to this principle.) Nitpick nonetheless enumerates
+all cardinalities from 1 to 8 for \textit{nat}, mainly because smaller
+cardinalities are fast to handle and give rise to simpler counterexamples. This
+is explained in more detail in \S\ref{scope-monotonicity}.
+
+\subsection{Inductive Datatypes}
+\label{inductive-datatypes}
+
+Like natural numbers and integers, inductive datatypes with recursive
+constructors admit no finite models and must be approximated by a subterm-closed
+subset. For example, using a cardinality of 10 for ${'}a~\textit{list}$,
+Nitpick looks for all counterexamples that can be built using at most 10
+different lists.
+
+Let's see with an example involving \textit{hd} (which returns the first element
+of a list) and $@$ (which concatenates two lists):
+
+\prew
+\textbf{lemma} ``$\textit{hd}~(\textit{xs} \mathbin{@} [y, y]) = \textit{hd}~\textit{xs}$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = []$ \\
+\hbox{}\qquad\qquad $\textit{y} = a_3$
+\postw
+
+To see why the counterexample is genuine, we enable \textit{show\_consts}
+and \textit{show\_\allowbreak datatypes}:
+
+\prew
+{\slshape Datatype:} \\
+\hbox{}\qquad $'a$~\textit{list}~= $\{[],\, [a_3, a_3],\, [a_3],\, \unr\}$ \\
+{\slshape Constants:} \\
+\hbox{}\qquad $\lambda x_1.\; x_1 \mathbin{@} [y, y] = \undef([] := [a_3, a_3],\> [a_3, a_3] := \unk,\> [a_3] := \unk)$ \\
+\hbox{}\qquad $\textit{hd} = \undef([] := a_2,\> [a_3, a_3] := a_3,\> [a_3] := a_3)$
+\postw
+
+Since $\mathit{hd}~[]$ is undefined in the logic, it may be given any value,
+including $a_2$.
+
+The second constant, $\lambda x_1.\; x_1 \mathbin{@} [y, y]$, is simply the
+append operator whose second argument is fixed to be $[y, y]$. Appending $[a_3,
+a_3]$ to $[a_3]$ would normally give $[a_3, a_3, a_3]$, but this value is not
+representable in the subset of $'a$~\textit{list} considered by Nitpick, which
+is shown under the ``Datatype'' heading; hence the result is $\unk$. Similarly,
+appending $[a_3, a_3]$ to itself gives $\unk$.
+
+Given \textit{card}~$'a = 3$ and \textit{card}~$'a~\textit{list} = 3$, Nitpick
+considers the following subsets:
+
+\kern-.5\smallskipamount %% TYPESETTING
+
+\prew
+\begin{multicols}{3}
+$\{[],\, [a_1],\, [a_2]\}$; \\
+$\{[],\, [a_1],\, [a_3]\}$; \\
+$\{[],\, [a_2],\, [a_3]\}$; \\
+$\{[],\, [a_1],\, [a_1, a_1]\}$; \\
+$\{[],\, [a_1],\, [a_2, a_1]\}$; \\
+$\{[],\, [a_1],\, [a_3, a_1]\}$; \\
+$\{[],\, [a_2],\, [a_1, a_2]\}$; \\
+$\{[],\, [a_2],\, [a_2, a_2]\}$; \\
+$\{[],\, [a_2],\, [a_3, a_2]\}$; \\
+$\{[],\, [a_3],\, [a_1, a_3]\}$; \\
+$\{[],\, [a_3],\, [a_2, a_3]\}$; \\
+$\{[],\, [a_3],\, [a_3, a_3]\}$.
+\end{multicols}
+\postw
+
+\kern-2\smallskipamount %% TYPESETTING
+
+All subterm-closed subsets of $'a~\textit{list}$ consisting of three values
+are listed and only those. As an example of a non-subterm-closed subset,
+consider $\mathcal{S} = \{[],\, [a_1],\,\allowbreak [a_1, a_3]\}$, and observe
+that $[a_1, a_3]$ (i.e., $a_1 \mathbin{\#} [a_3]$) has $[a_3] \notin
+\mathcal{S}$ as a subterm.
+
+Here's another m\"ochtegern-lemma that Nitpick can refute without a blink:
+
+\prew
+\textbf{lemma} ``$\lbrakk \textit{length}~\textit{xs} = 1;\> \textit{length}~\textit{ys} = 1
+\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$''
+\\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$~= 3: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = [a_2]$ \\
+\hbox{}\qquad\qquad $\textit{ys} = [a_3]$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
+\hbox{}\qquad\qquad $'a$~\textit{list} = $\{[],\, [a_3],\, [a_2],\, \unr\}$
+\postw
+
+Because datatypes are approximated using a three-valued logic, there is usually
+no need to systematically enumerate cardinalities: If Nitpick cannot find a
+genuine counterexample for \textit{card}~$'a~\textit{list}$~= 10, it is very
+unlikely that one could be found for smaller cardinalities.
+
+\subsection{Typedefs, Records, Rationals, and Reals}
+\label{typedefs-records-rationals-and-reals}
+
+Nitpick generally treats types declared using \textbf{typedef} as datatypes
+whose single constructor is the corresponding \textit{Abs\_\kern.1ex} function.
+For example:
+
+\prew
+\textbf{typedef}~\textit{three} = ``$\{0\Colon\textit{nat},\, 1,\, 2\}$'' \\
+\textbf{by}~\textit{blast} \\[2\smallskipamount]
+\textbf{definition}~$A \mathbin{\Colon} \textit{three}$ \textbf{where} ``\kern-.1em$A \,\equiv\, \textit{Abs\_\allowbreak three}~0$'' \\
+\textbf{definition}~$B \mathbin{\Colon} \textit{three}$ \textbf{where} ``$B \,\equiv\, \textit{Abs\_three}~1$'' \\
+\textbf{definition}~$C \mathbin{\Colon} \textit{three}$ \textbf{where} ``$C \,\equiv\, \textit{Abs\_three}~2$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\lbrakk P~A;\> P~B\rbrakk \,\Longrightarrow\, P~x$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $P = \{\Abs{1},\, \Abs{0}\}$ \\
+\hbox{}\qquad\qquad $x = \Abs{2}$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{three} = \{\Abs{2},\, \Abs{1},\, \Abs{0},\, \unr\}$
+\postw
+
+%% MARK
+In the output above, $\Abs{n}$ abbreviates $\textit{Abs\_three}~n$.
+
+%% MARK
+Records, which are implemented as \textbf{typedef}s behind the scenes, are
+handled in much the same way:
+
+\prew
+\textbf{record} \textit{point} = \\
+\hbox{}\quad $\textit{Xcoord} \mathbin{\Colon} \textit{int}$ \\
+\hbox{}\quad $\textit{Ycoord} \mathbin{\Colon} \textit{int}$ \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{Xcoord}~(p\Colon\textit{point}) = \textit{Xcoord}~(q\Colon\textit{point})$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $p = \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr$ \\
+\hbox{}\qquad\qquad $q = \lparr\textit{Xcoord} = 1,\> \textit{Ycoord} = 1\rparr$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{point} = \{\lparr\textit{Xcoord} = 1,\>
+\textit{Ycoord} = 1\rparr,\> \lparr\textit{Xcoord} = 0,\> \textit{Ycoord} = 0\rparr,\, \unr\}$\kern-1pt %% QUIET
+\postw
+
+Finally, Nitpick provides rudimentary support for rationals and reals using a
+similar approach:
+
+\prew
+\textbf{lemma} ``$4 * x + 3 * (y\Colon\textit{real}) \not= 1/2$'' \\
+\textbf{nitpick} [\textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $x = 1/2$ \\
+\hbox{}\qquad\qquad $y = -1/2$ \\
+\hbox{}\qquad Datatypes: \\
+\hbox{}\qquad\qquad $\textit{nat} = \{0,\, 1,\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{int} = \{0,\, 1,\, 2,\, 3,\, 4,\, -3,\, -2,\, -1,\, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{real} = \{1,\, 0,\, 4,\, -3/2,\, 3,\, 2,\, 1/2,\, -1/2,\, \unr\}$
+\postw
+
+\subsection{Inductive and Coinductive Predicates}
+\label{inductive-and-coinductive-predicates}
+
+Inductively defined predicates (and sets) are particularly problematic for
+counterexample generators. They can make Quickcheck~\cite{berghofer-nipkow-2004}
+loop forever and Refute~\cite{weber-2008} run out of resources. The crux of
+the problem is that they are defined using a least fixed point construction.
+
+Nitpick's philosophy is that not all inductive predicates are equal. Consider
+the \textit{even} predicate below:
+
+\prew
+\textbf{inductive}~\textit{even}~\textbf{where} \\
+``\textit{even}~0'' $\,\mid$ \\
+``\textit{even}~$n\,\Longrightarrow\, \textit{even}~(\textit{Suc}~(\textit{Suc}~n))$''
+\postw
+
+This predicate enjoys the desirable property of being well-founded, which means
+that the introduction rules don't give rise to infinite chains of the form
+
+\prew
+$\cdots\,\Longrightarrow\, \textit{even}~k''
+       \,\Longrightarrow\, \textit{even}~k'
+       \,\Longrightarrow\, \textit{even}~k.$
+\postw
+
+For \textit{even}, this is obvious: Any chain ending at $k$ will be of length
+$k/2 + 1$:
+
+\prew
+$\textit{even}~0\,\Longrightarrow\, \textit{even}~2\,\Longrightarrow\, \cdots
+       \,\Longrightarrow\, \textit{even}~(k - 2)
+       \,\Longrightarrow\, \textit{even}~k.$
+\postw
+
+Wellfoundedness is desirable because it enables Nitpick to use a very efficient
+fixed point computation.%
+\footnote{If an inductive predicate is
+well-founded, then it has exactly one fixed point, which is simultaneously the
+least and the greatest fixed point. In these circumstances, the computation of
+the least fixed point amounts to the computation of an arbitrary fixed point,
+which can be performed using a straightforward recursive equation.}
+Moreover, Nitpick can prove wellfoundedness of most well-founded predicates,
+just as Isabelle's \textbf{function} package usually discharges termination
+proof obligations automatically.
+
+Let's try an example:
+
+\prew
+\textbf{lemma} ``$\exists n.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 100,\, \textit{verbose}] \\[2\smallskipamount]
+\slshape The inductive predicate ``\textit{even}'' was proved well-founded.
+Nitpick can compute it efficiently. \\[2\smallskipamount]
+Trying 1 scope: \\
+\hbox{}\qquad \textit{card nat}~= 100. \\[2\smallskipamount]
+Nitpick found a potential counterexample for \textit{card nat}~= 100: \\[2\smallskipamount]
+\hbox{}\qquad Empty assignment \\[2\smallskipamount]
+Nitpick could not find a better counterexample. \\[2\smallskipamount]
+Total time: 2274 ms.
+\postw
+
+No genuine counterexample is possible because Nitpick cannot rule out the
+existence of a natural number $n \ge 100$ such that both $\textit{even}~n$ and
+$\textit{even}~(\textit{Suc}~n)$ are true. To help Nitpick, we can bound the
+existential quantifier:
+
+\prew
+\textbf{lemma} ``$\exists n \mathbin{\le} 99.\; \textit{even}~n \mathrel{\land} \textit{even}~(\textit{Suc}~n)$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 100] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Empty assignment
+\postw
+
+So far we were blessed by the wellfoundedness of \textit{even}. What happens if
+we use the following definition instead?
+
+\prew
+\textbf{inductive} $\textit{even}'$ \textbf{where} \\
+``$\textit{even}'~(0{\Colon}\textit{nat})$'' $\,\mid$ \\
+``$\textit{even}'~2$'' $\,\mid$ \\
+``$\lbrakk\textit{even}'~m;\> \textit{even}'~n\rbrakk \,\Longrightarrow\, \textit{even}'~(m + n)$''
+\postw
+
+This definition is not well-founded: From $\textit{even}'~0$ and
+$\textit{even}'~0$, we can derive that $\textit{even}'~0$. Nonetheless, the
+predicates $\textit{even}$ and $\textit{even}'$ are equivalent.
+
+Let's check a property involving $\textit{even}'$. To make up for the
+foreseeable computational hurdles entailed by non-wellfoundedness, we decrease
+\textit{nat}'s cardinality to a mere 10:
+
+\prew
+\textbf{lemma}~``$\exists n \in \{0, 2, 4, 6, 8\}.\;
+\lnot\;\textit{even}'~n$'' \\
+\textbf{nitpick}~[\textit{card nat}~= 10,\, \textit{verbose},\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape
+The inductive predicate ``$\textit{even}'\!$'' could not be proved well-founded.
+Nitpick might need to unroll it. \\[2\smallskipamount]
+Trying 6 scopes: \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 0; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 1; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 4; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 8; \\
+\hbox{}\qquad \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 9. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card nat}~= 10 and \textit{iter} $\textit{even}'$~= 2: \\[2\smallskipamount]
+\hbox{}\qquad Constant: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
+& 2 := \{0, 2, 4, 6, 8, 1^\Q, 3^\Q, 5^\Q, 7^\Q, 9^\Q\}, \\[-2pt]
+& 1 := \{0, 2, 4, 1^\Q, 3^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\}, \\[-2pt]
+& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$ \\[2\smallskipamount]
+Total time: 1140 ms.
+\postw
+
+Nitpick's output is very instructive. First, it tells us that the predicate is
+unrolled, meaning that it is computed iteratively from the empty set. Then it
+lists six scopes specifying different bounds on the numbers of iterations:\ 0,
+1, 2, 4, 8, and~9.
+
+The output also shows how each iteration contributes to $\textit{even}'$. The
+notation $\lambda i.\; \textit{even}'$ indicates that the value of the
+predicate depends on an iteration counter. Iteration 0 provides the basis
+elements, $0$ and $2$. Iteration 1 contributes $4$ ($= 2 + 2$). Iteration 2
+throws $6$ ($= 2 + 4 = 4 + 2$) and $8$ ($= 4 + 4$) into the mix. Further
+iterations would not contribute any new elements.
+
+Some values are marked with superscripted question
+marks~(`\lower.2ex\hbox{$^\Q$}'). These are the elements for which the
+predicate evaluates to $\unk$. Thus, $\textit{even}'$ evaluates to either
+\textit{True} or $\unk$, never \textit{False}.
+
+When unrolling a predicate, Nitpick tries 0, 1, 2, 4, 8, 12, 16, and 24
+iterations. However, these numbers are bounded by the cardinality of the
+predicate's domain. With \textit{card~nat}~= 10, no more than 9 iterations are
+ever needed to compute the value of a \textit{nat} predicate. You can specify
+the number of iterations using the \textit{iter} option, as explained in
+\S\ref{scope-of-search}.
+
+In the next formula, $\textit{even}'$ occurs both positively and negatively:
+
+\prew
+\textbf{lemma} ``$\textit{even}'~(n - 2) \,\Longrightarrow\, \textit{even}'~n$'' \\
+\textbf{nitpick} [\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $n = 1$ \\
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{even}'$ = $\undef(\!\begin{aligned}[t]
+& 0 := \{0, 2, 1^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q\})\end{aligned}$  \\
+\hbox{}\qquad\qquad $\textit{even}' \subseteq \{0, 2, 4, 6, 8, \unr\}$
+\postw
+
+Notice the special constraint $\textit{even}' \subseteq \{0,\, 2,\, 4,\, 6,\,
+8,\, \unr\}$ in the output, whose right-hand side represents an arbitrary
+fixed point (not necessarily the least one). It is used to falsify
+$\textit{even}'~n$. In contrast, the unrolled predicate is used to satisfy
+$\textit{even}'~(n - 2)$.
+
+Coinductive predicates are handled dually. For example:
+
+\prew
+\textbf{coinductive} \textit{nats} \textbf{where} \\
+``$\textit{nats}~(x\Colon\textit{nat}) \,\Longrightarrow\, \textit{nats}~x$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{nats} = \{0, 1, 2, 3, 4\}$'' \\
+\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample:
+\\[2\smallskipamount]
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\lambda i.\; \textit{nats} = \undef(0 := \{\!\begin{aligned}[t]
+& 0^\Q, 1^\Q, 2^\Q, 3^\Q, 4^\Q, 5^\Q, 6^\Q, 7^\Q, 8^\Q, 9^\Q, \\[-2pt]
+& \unr\})\end{aligned}$ \\
+\hbox{}\qquad\qquad $nats \supseteq \{9, 5^\Q, 6^\Q, 7^\Q, 8^\Q, \unr\}$
+\postw
+
+As a special case, Nitpick uses Kodkod's transitive closure operator to encode
+negative occurrences of non-well-founded ``linear inductive predicates,'' i.e.,
+inductive predicates for which each the predicate occurs in at most one
+assumption of each introduction rule. For example:
+
+\prew
+\textbf{inductive} \textit{odd} \textbf{where} \\
+``$\textit{odd}~1$'' $\,\mid$ \\
+``$\lbrakk \textit{odd}~m;\>\, \textit{even}~n\rbrakk \,\Longrightarrow\, \textit{odd}~(m + n)$'' \\[2\smallskipamount]
+\textbf{lemma}~``$\textit{odd}~n \,\Longrightarrow\, \textit{odd}~(n - 2)$'' \\
+\textbf{nitpick}~[\textit{card nat} = 10,\, \textit{show\_consts}] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $n = 1$ \\
+\hbox{}\qquad Constants: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{even} = \{0, 2, 4, 6, 8, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{odd}_{\textsl{base}} = \{1, \unr\}$ \\
+\hbox{}\qquad\qquad $\textit{odd}_{\textsl{step}} = \!
+\!\begin{aligned}[t]
+  & \{(0, 0), (0, 2), (0, 4), (0, 6), (0, 8), (1, 1), (1, 3), (1, 5), \\[-2pt]
+  & \phantom{\{} (1, 7), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3),
+       (3, 5), \\[-2pt]
+  & \phantom{\{} (3, 7), (3, 9), (4, 4), (4, 6), (4, 8), (5, 5), (5, 7), (5, 9), \\[-2pt]
+  & \phantom{\{} (6, 6), (6, 8), (7, 7), (7, 9), (8, 8), (9, 9), \unr\}\end{aligned}$ \\
+\hbox{}\qquad\qquad $\textit{odd} \subseteq \{1, 3, 5, 7, 9, 8^\Q, \unr\}$
+\postw
+
+\noindent
+In the output, $\textit{odd}_{\textrm{base}}$ represents the base elements and
+$\textit{odd}_{\textrm{step}}$ is a transition relation that computes new
+elements from known ones. The set $\textit{odd}$ consists of all the values
+reachable through the reflexive transitive closure of
+$\textit{odd}_{\textrm{step}}$ starting with any element from
+$\textit{odd}_{\textrm{base}}$, namely 1, 3, 5, 7, and 9. Using Kodkod's
+transitive closure to encode linear predicates is normally either more thorough
+or more efficient than unrolling (depending on the value of \textit{iter}), but
+for those cases where it isn't you can disable it by passing the
+\textit{dont\_star\_linear\_preds} option.
+
+\subsection{Coinductive Datatypes}
+\label{coinductive-datatypes}
+
+While Isabelle regrettably lacks a high-level mechanism for defining coinductive
+datatypes, the \textit{Coinductive\_List} theory provides a coinductive ``lazy
+list'' datatype, $'a~\textit{llist}$, defined the hard way. Nitpick supports
+these lazy lists seamlessly and provides a hook, described in
+\S\ref{registration-of-coinductive-datatypes}, to register custom coinductive
+datatypes.
+
+(Co)intuitively, a coinductive datatype is similar to an inductive datatype but
+allows infinite objects. Thus, the infinite lists $\textit{ps}$ $=$ $[a, a, a,
+\ldots]$, $\textit{qs}$ $=$ $[a, b, a, b, \ldots]$, and $\textit{rs}$ $=$ $[0,
+1, 2, 3, \ldots]$ can be defined as lazy lists using the
+$\textit{LNil}\mathbin{\Colon}{'}a~\textit{llist}$ and
+$\textit{LCons}\mathbin{\Colon}{'}a \mathbin{\Rightarrow} {'}a~\textit{llist}
+\mathbin{\Rightarrow} {'}a~\textit{llist}$ constructors.
+
+Although it is otherwise no friend of infinity, Nitpick can find counterexamples
+involving cyclic lists such as \textit{ps} and \textit{qs} above as well as
+finite lists:
+
+\prew
+\textbf{lemma} ``$\textit{xs} \not= \textit{LCons}~a~\textit{xs}$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for {\itshape card}~$'a$ = 1: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{a} = a_1$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_1~\omega$
+\postw
+
+The notation $\textrm{THE}~\omega.\; \omega = t(\omega)$ stands
+for the infinite term $t(t(t(\ldots)))$. Hence, \textit{xs} is simply the
+infinite list $[a_1, a_1, a_1, \ldots]$.
+
+The next example is more interesting:
+
+\prew
+\textbf{lemma}~``$\lbrakk\textit{xs} = \textit{LCons}~a~\textit{xs};\>\,
+\textit{ys} = \textit{iterates}~(\lambda b.\> a)~b\rbrakk \,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape The type ``\kern1pt$'a$'' passed the monotonicity test. Nitpick might be able to skip
+some scopes. \\[2\smallskipamount]
+Trying 8 scopes: \\
+\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 1,
+and \textit{bisim\_depth}~= 0. \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} ``\kern1pt$'a~\textit{list}$''~= 8,
+and \textit{bisim\_depth}~= 7. \\[2\smallskipamount]
+Nitpick found a counterexample for {\itshape card}~$'a$ = 2,
+\textit{card}~``\kern1pt$'a~\textit{list}$''~= 2, and \textit{bisim\_\allowbreak
+depth}~= 1:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{a} = a_2$ \\
+\hbox{}\qquad\qquad $\textit{b} = a_1$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad\qquad $\textit{ys} = \textit{LCons}~a_1~(\textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega)$ \\[2\smallskipamount]
+Total time: 726 ms.
+\postw
+
+The lazy list $\textit{xs}$ is simply $[a_2, a_2, a_2, \ldots]$, whereas
+$\textit{ys}$ is $[a_1, a_2, a_2, a_2, \ldots]$, i.e., a lasso-shaped list with
+$[a_1]$ as its stem and $[a_2]$ as its cycle. In general, the list segment
+within the scope of the {THE} binder corresponds to the lasso's cycle, whereas
+the segment leading to the binder is the stem.
+
+A salient property of coinductive datatypes is that two objects are considered
+equal if and only if they lead to the same observations. For example, the lazy
+lists $\textrm{THE}~\omega.\; \omega =
+\textit{LCons}~a~(\textit{LCons}~b~\omega)$ and
+$\textit{LCons}~a~(\textrm{THE}~\omega.\; \omega =
+\textit{LCons}~b~(\textit{LCons}~a~\omega))$ are identical, because both lead
+to the sequence of observations $a$, $b$, $a$, $b$, \hbox{\ldots} (or,
+equivalently, both encode the infinite list $[a, b, a, b, \ldots]$). This
+concept of equality for coinductive datatypes is called bisimulation and is
+defined coinductively.
+
+Internally, Nitpick encodes the coinductive bisimilarity predicate as part of
+the Kodkod problem to ensure that distinct objects lead to different
+observations. This precaution is somewhat expensive and often unnecessary, so it
+can be disabled by setting the \textit{bisim\_depth} option to $-1$. The
+bisimilarity check is then performed \textsl{after} the counterexample has been
+found to ensure correctness. If this after-the-fact check fails, the
+counterexample is tagged as ``likely genuine'' and Nitpick recommends to try
+again with \textit{bisim\_depth} set to a nonnegative integer. Disabling the
+check for the previous example saves approximately 150~milli\-seconds; the speed
+gains can be more significant for larger scopes.
+
+The next formula illustrates the need for bisimilarity (either as a Kodkod
+predicate or as an after-the-fact check) to prevent spurious counterexamples:
+
+\prew
+\textbf{lemma} ``$\lbrakk xs = \textit{LCons}~a~\textit{xs};\>\, \textit{ys} = \textit{LCons}~a~\textit{ys}\rbrakk
+\,\Longrightarrow\, \textit{xs} = \textit{ys}$'' \\
+\textbf{nitpick} [\textit{bisim\_depth} = $-1$,\, \textit{show\_datatypes}] \\[2\smallskipamount]
+\slshape Nitpick found a likely genuine counterexample for $\textit{card}~'a$ = 2: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $a = a_2$ \\
+\hbox{}\qquad\qquad $\textit{xs} = \textsl{THE}~\omega.\; \omega =
+\textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad\qquad $\textit{ys} = \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega$ \\
+\hbox{}\qquad Codatatype:\strut \nopagebreak \\
+\hbox{}\qquad\qquad $'a~\textit{llist} =
+\{\!\begin{aligned}[t]
+  & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega, \\[-2pt]
+  & \textsl{THE}~\omega.\; \omega = \textit{LCons}~a_2~\omega,\> \unr\}\end{aligned}$
+\\[2\smallskipamount]
+Try again with ``\textit{bisim\_depth}'' set to a nonnegative value to confirm
+that the counterexample is genuine. \\[2\smallskipamount]
+{\upshape\textbf{nitpick}} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+In the first \textbf{nitpick} invocation, the after-the-fact check discovered 
+that the two known elements of type $'a~\textit{llist}$ are bisimilar.
+
+A compromise between leaving out the bisimilarity predicate from the Kodkod
+problem and performing the after-the-fact check is to specify a lower
+nonnegative \textit{bisim\_depth} value than the default one provided by
+Nitpick. In general, a value of $K$ means that Nitpick will require all lists to
+be distinguished from each other by their prefixes of length $K$. Be aware that
+setting $K$ to a too low value can overconstrain Nitpick, preventing it from
+finding any counterexamples.
+
+\subsection{Boxing}
+\label{boxing}
+
+Nitpick normally maps function and product types directly to the corresponding
+Kodkod concepts. As a consequence, if $'a$ has cardinality 3 and $'b$ has
+cardinality 4, then $'a \times {'}b$ has cardinality 12 ($= 4 \times 3$) and $'a
+\Rightarrow {'}b$ has cardinality 64 ($= 4^3$). In some circumstances, it pays
+off to treat these types in the same way as plain datatypes, by approximating
+them by a subset of a given cardinality. This technique is called ``boxing'' and
+is particularly useful for functions passed as arguments to other functions, for
+high-arity functions, and for large tuples. Under the hood, boxing involves
+wrapping occurrences of the types $'a \times {'}b$ and $'a \Rightarrow {'}b$ in
+isomorphic datatypes, as can be seen by enabling the \textit{debug} option.
+
+To illustrate boxing, we consider a formalization of $\lambda$-terms represented
+using de Bruijn's notation:
+
+\prew
+\textbf{datatype} \textit{tm} = \textit{Var}~\textit{nat}~$\mid$~\textit{Lam}~\textit{tm} $\mid$ \textit{App~tm~tm}
+\postw
+
+The $\textit{lift}~t~k$ function increments all variables with indices greater
+than or equal to $k$ by one:
+
+\prew
+\textbf{primrec} \textit{lift} \textbf{where} \\
+``$\textit{lift}~(\textit{Var}~j)~k = \textit{Var}~(\textrm{if}~j < k~\textrm{then}~j~\textrm{else}~j + 1)$'' $\mid$ \\
+``$\textit{lift}~(\textit{Lam}~t)~k = \textit{Lam}~(\textit{lift}~t~(k + 1))$'' $\mid$ \\
+``$\textit{lift}~(\textit{App}~t~u)~k = \textit{App}~(\textit{lift}~t~k)~(\textit{lift}~u~k)$''
+\postw
+
+The $\textit{loose}~t~k$ predicate returns \textit{True} if and only if
+term $t$ has a loose variable with index $k$ or more:
+
+\prew
+\textbf{primrec}~\textit{loose} \textbf{where} \\
+``$\textit{loose}~(\textit{Var}~j)~k = (j \ge k)$'' $\mid$ \\
+``$\textit{loose}~(\textit{Lam}~t)~k = \textit{loose}~t~(\textit{Suc}~k)$'' $\mid$ \\
+``$\textit{loose}~(\textit{App}~t~u)~k = (\textit{loose}~t~k \mathrel{\lor} \textit{loose}~u~k)$''
+\postw
+
+Next, the $\textit{subst}~\sigma~t$ function applies the substitution $\sigma$
+on $t$:
+
+\prew
+\textbf{primrec}~\textit{subst} \textbf{where} \\
+``$\textit{subst}~\sigma~(\textit{Var}~j) = \sigma~j$'' $\mid$ \\
+``$\textit{subst}~\sigma~(\textit{Lam}~t) = {}$\phantom{''} \\
+\phantom{``}$\textit{Lam}~(\textit{subst}~(\lambda n.\> \textrm{case}~n~\textrm{of}~0 \Rightarrow \textit{Var}~0 \mid \textit{Suc}~m \Rightarrow \textit{lift}~(\sigma~m)~1)~t)$'' $\mid$ \\
+``$\textit{subst}~\sigma~(\textit{App}~t~u) = \textit{App}~(\textit{subst}~\sigma~t)~(\textit{subst}~\sigma~u)$''
+\postw
+
+A substitution is a function that maps variable indices to terms. Observe that
+$\sigma$ is a function passed as argument and that Nitpick can't optimize it
+away, because the recursive call for the \textit{Lam} case involves an altered
+version. Also notice the \textit{lift} call, which increments the variable
+indices when moving under a \textit{Lam}.
+
+A reasonable property to expect of substitution is that it should leave closed
+terms unchanged. Alas, even this simple property does not hold:
+
+\pre
+\textbf{lemma}~``$\lnot\,\textit{loose}~t~0 \,\Longrightarrow\, \textit{subst}~\sigma~t = t$'' \\
+\textbf{nitpick} [\textit{verbose}] \\[2\smallskipamount]
+\slshape
+Trying 8 scopes: \nopagebreak \\
+\hbox{}\qquad \textit{card~nat}~= 1, \textit{card tm}~= 1, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 1; \\
+\hbox{}\qquad \textit{card~nat}~= 2, \textit{card tm}~= 2, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 2; \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card~nat}~= 8, \textit{card tm}~= 8, and \textit{card} ``$\textit{nat} \Rightarrow \textit{tm}$'' = 8. \\[2\smallskipamount]
+Nitpick found a counterexample for \textit{card~nat}~= 6, \textit{card~tm}~= 6,
+and \textit{card}~``$\textit{nat} \Rightarrow \textit{tm}$''~= 6: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\sigma = \undef(\!\begin{aligned}[t]
+& 0 := \textit{Var}~0,\>
+  1 := \textit{Var}~0,\>
+  2 := \textit{Var}~0, \\[-2pt]
+& 3 := \textit{Var}~0,\>
+  4 := \textit{Var}~0,\>
+  5 := \textit{Var}~0)\end{aligned}$ \\
+\hbox{}\qquad\qquad $t = \textit{Lam}~(\textit{Lam}~(\textit{Var}~1))$ \\[2\smallskipamount]
+Total time: $4679$ ms.
+\postw
+
+Using \textit{eval}, we find out that $\textit{subst}~\sigma~t =
+\textit{Lam}~(\textit{Lam}~(\textit{Var}~0))$. Using the traditional
+$\lambda$-term notation, $t$~is
+$\lambda x\, y.\> x$ whereas $\textit{subst}~\sigma~t$ is $\lambda x\, y.\> y$.
+The bug is in \textit{subst}: The $\textit{lift}~(\sigma~m)~1$ call should be
+replaced with $\textit{lift}~(\sigma~m)~0$.
+
+An interesting aspect of Nitpick's verbose output is that it assigned inceasing
+cardinalities from 1 to 8 to the type $\textit{nat} \Rightarrow \textit{tm}$.
+For the formula of interest, knowing 6 values of that type was enough to find
+the counterexample. Without boxing, $46\,656$ ($= 6^6$) values must be
+considered, a hopeless undertaking:
+
+\prew
+\textbf{nitpick} [\textit{dont\_box}] \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 4 of 8 scopes.}
+\postw
+
+{\looseness=-1
+Boxing can be enabled or disabled globally or on a per-type basis using the
+\textit{box} option. Moreover, setting the cardinality of a function or
+product type implicitly enables boxing for that type. Nitpick usually performs
+reasonable choices about which types should be boxed, but option tweaking
+sometimes helps.
+
+}
+
+\subsection{Scope Monotonicity}
+\label{scope-monotonicity}
+
+The \textit{card} option (together with \textit{iter}, \textit{bisim\_depth},
+and \textit{max}) controls which scopes are actually tested. In general, to
+exhaust all models below a certain cardinality bound, the number of scopes that
+Nitpick must consider increases exponentially with the number of type variables
+(and \textbf{typedecl}'d types) occurring in the formula. Given the default
+cardinality specification of 1--8, no fewer than $8^4 = 4096$ scopes must be
+considered for a formula involving $'a$, $'b$, $'c$, and $'d$.
+
+Fortunately, many formulas exhibit a property called \textsl{scope
+monotonicity}, meaning that if the formula is falsifiable for a given scope,
+it is also falsifiable for all larger scopes \cite[p.~165]{jackson-2006}.
+
+Consider the formula
+
+\prew
+\textbf{lemma}~``$\textit{length~xs} = \textit{length~ys} \,\Longrightarrow\, \textit{rev}~(\textit{zip~xs~ys}) = \textit{zip~xs}~(\textit{rev~ys})$''
+\postw
+
+where \textit{xs} is of type $'a~\textit{list}$ and \textit{ys} is of type
+$'b~\textit{list}$. A priori, Nitpick would need to consider 512 scopes to
+exhaust the specification \textit{card}~= 1--8. However, our intuition tells us
+that any counterexample found with a small scope would still be a counterexample
+in a larger scope---by simply ignoring the fresh $'a$ and $'b$ values provided
+by the larger scope. Nitpick comes to the same conclusion after a careful
+inspection of the formula and the relevant definitions:
+
+\prew
+\textbf{nitpick}~[\textit{verbose}] \\[2\smallskipamount]
+\slshape
+The types ``\kern1pt$'a$'' and ``\kern1pt$'b$'' passed the monotonicity test.
+Nitpick might be able to skip some scopes.
+ \\[2\smallskipamount]
+Trying 8 scopes: \\
+\hbox{}\qquad \textit{card} $'a$~= 1, \textit{card} $'b$~= 1,
+\textit{card} \textit{nat}~= 1, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 1, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 1, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 1. \\
+\hbox{}\qquad \textit{card} $'a$~= 2, \textit{card} $'b$~= 2,
+\textit{card} \textit{nat}~= 2, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 2, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 2, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 2. \\
+\hbox{}\qquad $\qquad\vdots$ \\[.5\smallskipamount]
+\hbox{}\qquad \textit{card} $'a$~= 8, \textit{card} $'b$~= 8,
+\textit{card} \textit{nat}~= 8, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 8, \\
+\hbox{}\qquad\quad \textit{card} ``\kern1pt$'a$ \textit{list}''~= 8, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 8.
+\\[2\smallskipamount]
+Nitpick found a counterexample for
+\textit{card} $'a$~= 5, \textit{card} $'b$~= 5,
+\textit{card} \textit{nat}~= 5, \textit{card} ``$('a \times {'}b)$
+\textit{list}''~= 5, \textit{card} ``\kern1pt$'a$ \textit{list}''~= 5, and
+\textit{card} ``\kern1pt$'b$ \textit{list}''~= 5:
+\\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $\textit{xs} = [a_4, a_5]$ \\
+\hbox{}\qquad\qquad $\textit{ys} = [b_3, b_3]$ \\[2\smallskipamount]
+Total time: 1636 ms.
+\postw
+
+In theory, it should be sufficient to test a single scope:
+
+\prew
+\textbf{nitpick}~[\textit{card}~= 8]
+\postw
+
+However, this is often less efficient in practice and may lead to overly complex
+counterexamples.
+
+If the monotonicity check fails but we believe that the formula is monotonic (or
+we don't mind missing some counterexamples), we can pass the
+\textit{mono} option. To convince yourself that this option is risky,
+simply consider this example from \S\ref{skolemization}:
+
+\prew
+\textbf{lemma} ``$\exists g.\; \forall x\Colon 'b.~g~(f~x) = x
+ \,\Longrightarrow\, \forall y\Colon {'}a.\; \exists x.~y = f~x$'' \\
+\textbf{nitpick} [\textit{mono}] \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.} \\[2\smallskipamount]
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape
+Nitpick found a counterexample for \textit{card} $'a$~= 2 and \textit{card} $'b$~=~1: \\
+\hbox{}\qquad $\vdots$
+\postw
+
+(It turns out the formula holds if and only if $\textit{card}~'a \le
+\textit{card}~'b$.) Although this is rarely advisable, the automatic
+monotonicity checks can be disabled by passing \textit{non\_mono}
+(\S\ref{optimizations}).
+
+As insinuated in \S\ref{natural-numbers-and-integers} and
+\S\ref{inductive-datatypes}, \textit{nat}, \textit{int}, and inductive datatypes
+are normally monotonic and treated as such. The same is true for record types,
+\textit{rat}, \textit{real}, and some \textbf{typedef}'d types. Thus, given the
+cardinality specification 1--8, a formula involving \textit{nat}, \textit{int},
+\textit{int~list}, \textit{rat}, and \textit{rat~list} will lead Nitpick to
+consider only 8~scopes instead of $32\,768$.
+
+\section{Case Studies}
+\label{case-studies}
+
+As a didactic device, the previous section focused mostly on toy formulas whose
+validity can easily be assessed just by looking at the formula. We will now
+review two somewhat more realistic case studies that are within Nitpick's
+reach:\ a context-free grammar modeled by mutually inductive sets and a
+functional implementation of AA trees. The results presented in this
+section were produced with the following settings:
+
+\prew
+\textbf{nitpick\_params} [\textit{max\_potential}~= 0,\, \textit{max\_threads} = 2]
+\postw
+
+\subsection{A Context-Free Grammar}
+\label{a-context-free-grammar}
+
+Our first case study is taken from section 7.4 in the Isabelle tutorial
+\cite{isa-tutorial}. The following grammar, originally due to Hopcroft and
+Ullman, produces all strings with an equal number of $a$'s and $b$'s:
+
+\prew
+\begin{tabular}{@{}r@{$\;\,$}c@{$\;\,$}l@{}}
+$S$ & $::=$ & $\epsilon \mid bA \mid aB$ \\
+$A$ & $::=$ & $aS \mid bAA$ \\
+$B$ & $::=$ & $bS \mid aBB$
+\end{tabular}
+\postw
+
+The intuition behind the grammar is that $A$ generates all string with one more
+$a$ than $b$'s and $B$ generates all strings with one more $b$ than $a$'s.
+
+The alphabet consists exclusively of $a$'s and $b$'s:
+
+\prew
+\textbf{datatype} \textit{alphabet}~= $a$ $\mid$ $b$
+\postw
+
+Strings over the alphabet are represented by \textit{alphabet list}s.
+Nonterminals in the grammar become sets of strings. The production rules
+presented above can be expressed as a mutually inductive definition:
+
+\prew
+\textbf{inductive\_set} $S$ \textbf{and} $A$ \textbf{and} $B$ \textbf{where} \\
+\textit{R1}:\kern.4em ``$[] \in S$'' $\,\mid$ \\
+\textit{R2}:\kern.4em ``$w \in A\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R3}:\kern.4em ``$w \in B\,\Longrightarrow\, a \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R4}:\kern.4em ``$w \in S\,\Longrightarrow\, a \mathbin{\#} w \in A$'' $\,\mid$ \\
+\textit{R5}:\kern.4em ``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$'' $\,\mid$ \\
+\textit{R6}:\kern.4em ``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
+\postw
+
+The conversion of the grammar into the inductive definition was done manually by
+Joe Blow, an underpaid undergraduate student. As a result, some errors might
+have sneaked in.
+
+Debugging faulty specifications is at the heart of Nitpick's \textsl{raison
+d'\^etre}. A good approach is to state desirable properties of the specification
+(here, that $S$ is exactly the set of strings over $\{a, b\}$ with as many $a$'s
+as $b$'s) and check them with Nitpick. If the properties are correctly stated,
+counterexamples will point to bugs in the specification. For our grammar
+example, we will proceed in two steps, separating the soundness and the
+completeness of the set $S$. First, soundness:
+
+\prew
+\textbf{theorem}~\textit{S\_sound}: \\
+``$w \in S \longrightarrow \textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
+  \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [b]$
+\postw
+
+It would seem that $[b] \in S$. How could this be? An inspection of the
+introduction rules reveals that the only rule with a right-hand side of the form
+$b \mathbin{\#} {\ldots} \in S$ that could have introduced $[b]$ into $S$ is
+\textit{R5}:
+
+\prew
+``$w \in S\,\Longrightarrow\, b \mathbin{\#} w \in S$''
+\postw
+
+On closer inspection, we can see that this rule is wrong. To match the
+production $B ::= bS$, the second $S$ should be a $B$. We fix the typo and try
+again:
+
+\prew
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [a, a, b]$
+\postw
+
+Some detective work is necessary to find out what went wrong here. To get $[a,
+a, b] \in S$, we need $[a, b] \in B$ by \textit{R3}, which in turn can only come
+from \textit{R6}:
+
+\prew
+``$\lbrakk v \in B;\> v \in B\rbrakk \,\Longrightarrow\, a \mathbin{\#} v \mathbin{@} w \in B$''
+\postw
+
+Now, this formula must be wrong: The same assumption occurs twice, and the
+variable $w$ is unconstrained. Clearly, one of the two occurrences of $v$ in
+the assumptions should have been a $w$.
+
+With the correction made, we don't get any counterexample from Nitpick. Let's
+move on and check completeness:
+
+\prew
+\textbf{theorem}~\textit{S\_complete}: \\
+``$\textit{length}~[x\mathbin{\leftarrow} w.\; x = a] =
+   \textit{length}~[x\mathbin{\leftarrow} w.\; x = b]
+  \longrightarrow w \in S$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variable: \nopagebreak \\
+\hbox{}\qquad\qquad $w = [b, b, a, a]$
+\postw
+
+Apparently, $[b, b, a, a] \notin S$, even though it has the same numbers of
+$a$'s and $b$'s. But since our inductive definition passed the soundness check,
+the introduction rules we have are probably correct. Perhaps we simply lack an
+introduction rule. Comparing the grammar with the inductive definition, our
+suspicion is confirmed: Joe Blow simply forgot the production $A ::= bAA$,
+without which the grammar cannot generate two or more $b$'s in a row. So we add
+the rule
+
+\prew
+``$\lbrakk v \in A;\> w \in A\rbrakk \,\Longrightarrow\, b \mathbin{\#} v \mathbin{@} w \in A$''
+\postw
+
+With this last change, we don't get any counterexamples from Nitpick for either
+soundness or completeness. We can even generalize our result to cover $A$ and
+$B$ as well:
+
+\prew
+\textbf{theorem} \textit{S\_A\_B\_sound\_and\_complete}: \\
+``$w \in S \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b]$'' \\
+``$w \in A \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] + 1$'' \\
+``$w \in B \longleftrightarrow \textit{length}~[x \mathbin{\leftarrow} w.\; x = b] = \textit{length}~[x \mathbin{\leftarrow} w.\; x = a] + 1$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found no counterexample.
+\postw
+
+\subsection{AA Trees}
+\label{aa-trees}
+
+AA trees are a kind of balanced trees discovered by Arne Andersson that provide
+similar performance to red-black trees, but with a simpler implementation
+\cite{andersson-1993}. They can be used to store sets of elements equipped with
+a total order $<$. We start by defining the datatype and some basic extractor
+functions:
+
+\prew
+\textbf{datatype} $'a$~\textit{tree} = $\Lambda$ $\mid$ $N$ ``\kern1pt$'a\Colon \textit{linorder}$'' \textit{nat} ``\kern1pt$'a$ \textit{tree}'' ``\kern1pt$'a$ \textit{tree}''  \\[2\smallskipamount]
+\textbf{primrec} \textit{data} \textbf{where} \\
+``$\textit{data}~\Lambda = \undef$'' $\,\mid$ \\
+``$\textit{data}~(N~x~\_~\_~\_) = x$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{dataset} \textbf{where} \\
+``$\textit{dataset}~\Lambda = \{\}$'' $\,\mid$ \\
+``$\textit{dataset}~(N~x~\_~t~u) = \{x\} \cup \textit{dataset}~t \mathrel{\cup} \textit{dataset}~u$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{level} \textbf{where} \\
+``$\textit{level}~\Lambda = 0$'' $\,\mid$ \\
+``$\textit{level}~(N~\_~k~\_~\_) = k$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{left} \textbf{where} \\
+``$\textit{left}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{left}~(N~\_~\_~t~\_) = t$'' \\[2\smallskipamount]
+\textbf{primrec} \textit{right} \textbf{where} \\
+``$\textit{right}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{right}~(N~\_~\_~\_~u) = u$''
+\postw
+
+The wellformedness criterion for AA trees is fairly complex. Wikipedia states it
+as follows \cite{wikipedia-2009-aa-trees}:
+
+\kern.2\parskip %% TYPESETTING
+
+\pre
+Each node has a level field, and the following invariants must remain true for
+the tree to be valid:
+
+\raggedright
+
+\kern-.4\parskip %% TYPESETTING
+
+\begin{enum}
+\item[]
+\begin{enum}
+\item[1.] The level of a leaf node is one.
+\item[2.] The level of a left child is strictly less than that of its parent.
+\item[3.] The level of a right child is less than or equal to that of its parent.
+\item[4.] The level of a right grandchild is strictly less than that of its grandparent.
+\item[5.] Every node of level greater than one must have two children.
+\end{enum}
+\end{enum}
+\post
+
+\kern.4\parskip %% TYPESETTING
+
+The \textit{wf} predicate formalizes this description:
+
+\prew
+\textbf{primrec} \textit{wf} \textbf{where} \\
+``$\textit{wf}~\Lambda = \textit{True}$'' $\,\mid$ \\
+``$\textit{wf}~(N~\_~k~t~u) =$ \\
+\phantom{``}$(\textrm{if}~t = \Lambda~\textrm{then}$ \\
+\phantom{``$(\quad$}$k = 1 \mathrel{\land} (u = \Lambda \mathrel{\lor} (\textit{level}~u = 1 \mathrel{\land} \textit{left}~u = \Lambda \mathrel{\land} \textit{right}~u = \Lambda))$ \\
+\phantom{``$($}$\textrm{else}$ \\
+\hbox{}\phantom{``$(\quad$}$\textit{wf}~t \mathrel{\land} \textit{wf}~u
+\mathrel{\land} u \not= \Lambda \mathrel{\land} \textit{level}~t < k
+\mathrel{\land} \textit{level}~u \le k$ \\
+\hbox{}\phantom{``$(\quad$}${\land}\; \textit{level}~(\textit{right}~u) < k)$''
+\postw
+
+Rebalancing the tree upon insertion and removal of elements is performed by two
+auxiliary functions called \textit{skew} and \textit{split}, defined below:
+
+\prew
+\textbf{primrec} \textit{skew} \textbf{where} \\
+``$\textit{skew}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{skew}~(N~x~k~t~u) = {}$ \\
+\phantom{``}$(\textrm{if}~t \not= \Lambda \mathrel{\land} k =
+\textit{level}~t~\textrm{then}$ \\
+\phantom{``(\quad}$N~(\textit{data}~t)~k~(\textit{left}~t)~(N~x~k~
+(\textit{right}~t)~u)$ \\
+\phantom{``(}$\textrm{else}$ \\
+\phantom{``(\quad}$N~x~k~t~u)$''
+\postw
+
+\prew
+\textbf{primrec} \textit{split} \textbf{where} \\
+``$\textit{split}~\Lambda = \Lambda$'' $\,\mid$ \\
+``$\textit{split}~(N~x~k~t~u) = {}$ \\
+\phantom{``}$(\textrm{if}~u \not= \Lambda \mathrel{\land} k =
+\textit{level}~(\textit{right}~u)~\textrm{then}$ \\
+\phantom{``(\quad}$N~(\textit{data}~u)~(\textit{Suc}~k)~
+(N~x~k~t~(\textit{left}~u))~(\textit{right}~u)$ \\
+\phantom{``(}$\textrm{else}$ \\
+\phantom{``(\quad}$N~x~k~t~u)$''
+\postw
+
+Performing a \textit{skew} or a \textit{split} should have no impact on the set
+of elements stored in the tree:
+
+\prew
+\textbf{theorem}~\textit{dataset\_skew\_split}:\\
+``$\textit{dataset}~(\textit{skew}~t) = \textit{dataset}~t$'' \\
+``$\textit{dataset}~(\textit{split}~t) = \textit{dataset}~t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 7 of 8 scopes.}
+\postw
+
+Furthermore, applying \textit{skew} or \textit{split} to a well-formed tree
+should not alter the tree:
+
+\prew
+\textbf{theorem}~\textit{wf\_skew\_split}:\\
+``$\textit{wf}~t\,\Longrightarrow\, \textit{skew}~t = t$'' \\
+``$\textit{wf}~t\,\Longrightarrow\, \textit{split}~t = t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick found no counterexample.}
+\postw
+
+Insertion is implemented recursively. It preserves the sort order:
+
+\prew
+\textbf{primrec}~\textit{insort} \textbf{where} \\
+``$\textit{insort}~\Lambda~x = N~x~1~\Lambda~\Lambda$'' $\,\mid$ \\
+``$\textit{insort}~(N~y~k~t~u)~x =$ \\
+\phantom{``}$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~(\textrm{if}~x < y~\textrm{then}~\textit{insort}~t~x~\textrm{else}~t)$ \\
+\phantom{``$({*}~(\textit{split} \circ \textit{skew})~{*})~(N~y~k~$}$(\textrm{if}~x > y~\textrm{then}~\textit{insort}~u~x~\textrm{else}~u))$''
+\postw
+
+Notice that we deliberately commented out the application of \textit{skew} and
+\textit{split}. Let's see if this causes any problems:
+
+\prew
+\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\slshape Nitpick found a counterexample for \textit{card} $'a$ = 4: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $t = N~a_3~1~\Lambda~\Lambda$ \\
+\hbox{}\qquad\qquad $x = a_4$ \\[2\smallskipamount]
+Hint: Maybe you forgot a type constraint?
+\postw
+
+It's hard to see why this is a counterexample. The hint is of no help here. To
+improve readability, we will restrict the theorem to \textit{nat}, so that we
+don't need to look up the value of the $\textit{op}~{<}$ constant to find out
+which element is smaller than the other. In addition, we will tell Nitpick to
+display the value of $\textit{insort}~t~x$ using the \textit{eval} option. This
+gives
+
+\prew
+\textbf{theorem} \textit{wf\_insort\_nat}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~(x\Colon\textit{nat}))$'' \\
+\textbf{nitpick} [\textit{eval} = ``$\textit{insort}~t~x$''] \\[2\smallskipamount]
+\slshape Nitpick found a counterexample: \\[2\smallskipamount]
+\hbox{}\qquad Free variables: \nopagebreak \\
+\hbox{}\qquad\qquad $t = N~1~1~\Lambda~\Lambda$ \\
+\hbox{}\qquad\qquad $x = 0$ \\
+\hbox{}\qquad Evaluated term: \\
+\hbox{}\qquad\qquad $\textit{insort}~t~x = N~1~1~(N~0~1~\Lambda~\Lambda)~\Lambda$
+\postw
+
+Nitpick's output reveals that the element $0$ was added as a left child of $1$,
+where both have a level of 1. This violates the second AA tree invariant, which
+states that a left child's level must be less than its parent's. This shouldn't
+come as a surprise, considering that we commented out the tree rebalancing code.
+Reintroducing the code seems to solve the problem:
+
+\prew
+\textbf{theorem}~\textit{wf\_insort}:\kern.4em ``$\textit{wf}~t\,\Longrightarrow\, \textit{wf}~(\textit{insort}~t~x)$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 6 of 8 scopes.}
+\postw
+
+Insertion should transform the set of elements represented by the tree in the
+obvious way:
+
+\prew
+\textbf{theorem} \textit{dataset\_insort}:\kern.4em
+``$\textit{dataset}~(\textit{insort}~t~x) = \{x\} \cup \textit{dataset}~t$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+{\slshape Nitpick ran out of time after checking 5 of 8 scopes.}
+\postw
+
+We could continue like this and sketch a complete theory of AA trees without
+performing a single proof. Once the definitions and main theorems are in place
+and have been thoroughly tested using Nitpick, we could start working on the
+proofs. Developing theories this way usually saves time, because faulty theorems
+and definitions are discovered much earlier in the process.
+
+\section{Option Reference}
+\label{option-reference}
+
+\def\flushitem#1{\item[]\noindent\kern-\leftmargin \textbf{#1}}
+\def\qty#1{$\left<\textit{#1}\right>$}
+\def\qtybf#1{$\mathbf{\left<\textbf{\textit{#1}}\right>}$}
+\def\optrue#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{true}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\opfalse#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool}$\bigr]$\quad [\textit{false}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\opsmart#1#2{\flushitem{\textit{#1} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\quad [\textit{smart}]\hfill (neg.: \textit{#2})}\nopagebreak\\[\parskip]}
+\def\ops#1#2{\flushitem{\textit{#1} = \qtybf{#2}} \nopagebreak\\[\parskip]}
+\def\opt#1#2#3{\flushitem{\textit{#1} = \qtybf{#2}\quad [\textit{#3}]} \nopagebreak\\[\parskip]}
+\def\opu#1#2#3{\flushitem{\textit{#1} \qtybf{#2} = \qtybf{#3}} \nopagebreak\\[\parskip]}
+\def\opusmart#1#2#3{\flushitem{\textit{#1} \qtybf{#2} $\bigl[$= \qtybf{bool\_or\_smart}$\bigr]$\hfill (neg.: \textit{#3})}\nopagebreak\\[\parskip]}
+
+Nitpick's behavior can be influenced by various options, which can be specified
+in brackets after the \textbf{nitpick} command. Default values can be set
+using \textbf{nitpick\_\allowbreak params}. For example:
+
+\prew
+\textbf{nitpick\_params} [\textit{verbose}, \,\textit{timeout} = 60$\,s$]
+\postw
+
+The options are categorized as follows:\ mode of operation
+(\S\ref{mode-of-operation}), scope of search (\S\ref{scope-of-search}), output
+format (\S\ref{output-format}), automatic counterexample checks
+(\S\ref{authentication}), optimizations
+(\S\ref{optimizations}), and timeouts (\S\ref{timeouts}).
+
+The number of options can be overwhelming at first glance. Do not let that worry
+you: Nitpick's defaults have been chosen so that it almost always does the right
+thing, and the most important options have been covered in context in
+\S\ref{first-steps}.
+
+The descriptions below refer to the following syntactic quantities:
+
+\begin{enum}
+\item[$\bullet$] \qtybf{string}: A string.
+\item[$\bullet$] \qtybf{bool}: \textit{true} or \textit{false}.
+\item[$\bullet$] \qtybf{bool\_or\_smart}: \textit{true}, \textit{false}, or \textit{smart}.
+\item[$\bullet$] \qtybf{int}: An integer. Negative integers are prefixed with a hyphen.
+\item[$\bullet$] \qtybf{int\_or\_smart}: An integer or \textit{smart}.
+\item[$\bullet$] \qtybf{int\_range}: An integer (e.g., 3) or a range
+of nonnegative integers (e.g., $1$--$4$). The range symbol `--' can be entered as \texttt{-} (hyphen) or \texttt{\char`\\\char`\<midarrow\char`\>}.
+
+\item[$\bullet$] \qtybf{int\_seq}: A comma-separated sequence of ranges of integers (e.g.,~1{,}3{,}\allowbreak6--8).
+\item[$\bullet$] \qtybf{time}: An integer followed by $\textit{min}$ (minutes), $s$ (seconds), or \textit{ms}
+(milliseconds), or the keyword \textit{none} ($\infty$ years).
+\item[$\bullet$] \qtybf{const}: The name of a HOL constant.
+\item[$\bullet$] \qtybf{term}: A HOL term (e.g., ``$f~x$'').
+\item[$\bullet$] \qtybf{term\_list}: A space-separated list of HOL terms (e.g.,
+``$f~x$''~``$g~y$'').
+\item[$\bullet$] \qtybf{type}: A HOL type.
+\end{enum}
+
+Default values are indicated in square brackets. Boolean options have a negated
+counterpart (e.g., \textit{auto} vs.\ \textit{no\_auto}). When setting Boolean
+options, ``= \textit{true}'' may be omitted.
+
+\subsection{Mode of Operation}
+\label{mode-of-operation}
+
+\begin{enum}
+\opfalse{auto}{no\_auto}
+Specifies whether Nitpick should be run automatically on newly entered theorems.
+For automatic runs, \textit{user\_axioms} (\S\ref{mode-of-operation}) and
+\textit{assms} (\S\ref{mode-of-operation}) are implicitly enabled,
+\textit{blocking} (\S\ref{mode-of-operation}), \textit{verbose}
+(\S\ref{output-format}), and \textit{debug} (\S\ref{output-format}) are
+disabled, \textit{max\_potential} (\S\ref{output-format}) is taken to be 0, and
+\textit{auto\_timeout} (\S\ref{timeouts}) is used as the time limit instead of
+\textit{timeout} (\S\ref{timeouts}). The output is also more concise.
+
+\nopagebreak
+{\small See also \textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\optrue{blocking}{non\_blocking}
+Specifies whether the \textbf{nitpick} command should operate synchronously.
+The asynchronous (non-blocking) mode lets the user start proving the putative
+theorem while Nitpick looks for a counterexample, but it can also be more
+confusing. For technical reasons, automatic runs currently always block.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\optrue{falsify}{satisfy}
+Specifies whether Nitpick should look for falsifying examples (countermodels) or
+satisfying examples (models). This manual assumes throughout that
+\textit{falsify} is enabled.
+
+\opsmart{user\_axioms}{no\_user\_axioms}
+Specifies whether the user-defined axioms (specified using 
+\textbf{axiomatization} and \textbf{axioms}) should be considered. If the option
+is set to \textit{smart}, Nitpick performs an ad hoc axiom selection based on
+the constants that occur in the formula to falsify. The option is implicitly set
+to \textit{true} for automatic runs.
+
+\textbf{Warning:} If the option is set to \textit{true}, Nitpick might
+nonetheless ignore some polymorphic axioms. Counterexamples generated under
+these conditions are tagged as ``likely genuine.'' The \textit{debug}
+(\S\ref{output-format}) option can be used to find out which axioms were
+considered.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}), \textit{assms}
+(\S\ref{mode-of-operation}), and \textit{debug} (\S\ref{output-format}).}
+
+\optrue{assms}{no\_assms}
+Specifies whether the relevant assumptions in structured proof should be
+considered. The option is implicitly enabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation})
+and \textit{user\_axioms} (\S\ref{mode-of-operation}).}
+
+\opfalse{overlord}{no\_overlord}
+Specifies whether Nitpick should put its temporary files in
+\texttt{\$ISABELLE\_\allowbreak HOME\_\allowbreak USER}, which is useful for
+debugging Nitpick but also unsafe if several instances of the tool are run
+simultaneously.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}).}
+\end{enum}
+
+\subsection{Scope of Search}
+\label{scope-of-search}
+
+\begin{enum}
+\opu{card}{type}{int\_seq}
+Specifies the sequence of cardinalities to use for a given type. For
+\textit{nat} and \textit{int}, the cardinality fully specifies the subset used
+to approximate the type. For example:
+%
+$$\hbox{\begin{tabular}{@{}rll@{}}%
+\textit{card nat} = 4 & induces & $\{0,\, 1,\, 2,\, 3\}$ \\
+\textit{card int} = 4 & induces & $\{-1,\, 0,\, +1,\, +2\}$ \\
+\textit{card int} = 5 & induces & $\{-2,\, -1,\, 0,\, +1,\, +2\}.$%
+\end{tabular}}$$
+%
+In general:
+%
+$$\hbox{\begin{tabular}{@{}rll@{}}%
+\textit{card nat} = $K$ & induces & $\{0,\, \ldots,\, K - 1\}$ \\
+\textit{card int} = $K$ & induces & $\{-\lceil K/2 \rceil + 1,\, \ldots,\, +\lfloor K/2 \rfloor\}.$%
+\end{tabular}}$$
+%
+For free types, and often also for \textbf{typedecl}'d types, it usually makes
+sense to specify cardinalities as a range of the form \textit{$1$--$n$}.
+Although function and product types are normally mapped directly to the
+corresponding Kodkod concepts, setting
+the cardinality of such types is also allowed and implicitly enables ``boxing''
+for them, as explained in the description of the \textit{box}~\qty{type}
+and \textit{box} (\S\ref{scope-of-search}) options.
+
+\nopagebreak
+{\small See also \textit{mono} (\S\ref{scope-of-search}).}
+
+\opt{card}{int\_seq}{$\mathbf{1}$--$\mathbf{8}$}
+Specifies the default sequence of cardinalities to use. This can be overridden
+on a per-type basis using the \textit{card}~\qty{type} option described above.
+
+\opu{max}{const}{int\_seq}
+Specifies the sequence of maximum multiplicities to use for a given
+(co)in\-duc\-tive datatype constructor. A constructor's multiplicity is the
+number of distinct values that it can construct. Nonsensical values (e.g.,
+\textit{max}~[]~$=$~2) are silently repaired. This option is only available for
+datatypes equipped with several constructors.
+
+\ops{max}{int\_seq}
+Specifies the default sequence of maximum multiplicities to use for
+(co)in\-duc\-tive datatype constructors. This can be overridden on a per-constructor
+basis using the \textit{max}~\qty{const} option described above.
+
+\opusmart{wf}{const}{non\_wf}
+Specifies whether the specified (co)in\-duc\-tively defined predicate is
+well-founded. The option can take the following values:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{true}}: Tentatively treat the (co)in\-duc\-tive
+predicate as if it were well-founded. Since this is generally not sound when the
+predicate is not well-founded, the counterexamples are tagged as ``likely
+genuine.''
+
+\item[$\bullet$] \textbf{\textit{false}}: Treat the (co)in\-duc\-tive predicate
+as if it were not well-founded. The predicate is then unrolled as prescribed by
+the \textit{star\_linear\_preds}, \textit{iter}~\qty{const}, and \textit{iter}
+options.
+
+\item[$\bullet$] \textbf{\textit{smart}}: Try to prove that the inductive
+predicate is well-founded using Isabelle's \textit{lexicographic\_order} and
+\textit{sizechange} tactics. If this succeeds (or the predicate occurs with an
+appropriate polarity in the formula to falsify), use an efficient fixed point
+equation as specification of the predicate; otherwise, unroll the predicates
+according to the \textit{iter}~\qty{const} and \textit{iter} options.
+\end{enum}
+
+\nopagebreak
+{\small See also \textit{iter} (\S\ref{scope-of-search}),
+\textit{star\_linear\_preds} (\S\ref{optimizations}), and \textit{tac\_timeout}
+(\S\ref{timeouts}).}
+
+\opsmart{wf}{non\_wf}
+Specifies the default wellfoundedness setting to use. This can be overridden on
+a per-predicate basis using the \textit{wf}~\qty{const} option above.
+
+\opu{iter}{const}{int\_seq}
+Specifies the sequence of iteration counts to use when unrolling a given
+(co)in\-duc\-tive predicate. By default, unrolling is applied for inductive
+predicates that occur negatively and coinductive predicates that occur
+positively in the formula to falsify and that cannot be proved to be
+well-founded, but this behavior is influenced by the \textit{wf} option. The
+iteration counts are automatically bounded by the cardinality of the predicate's
+domain.
+
+{\small See also \textit{wf} (\S\ref{scope-of-search}) and
+\textit{star\_linear\_preds} (\S\ref{optimizations}).}
+
+\opt{iter}{int\_seq}{$\mathbf{1{,}2{,}4{,}8{,}12{,}16{,}24{,}32}$}
+Specifies the sequence of iteration counts to use when unrolling (co)in\-duc\-tive
+predicates. This can be overridden on a per-predicate basis using the
+\textit{iter} \qty{const} option above.
+
+\opt{bisim\_depth}{int\_seq}{$\mathbf{7}$}
+Specifies the sequence of iteration counts to use when unrolling the
+bisimilarity predicate generated by Nitpick for coinductive datatypes. A value
+of $-1$ means that no predicate is generated, in which case Nitpick performs an
+after-the-fact check to see if the known coinductive datatype values are
+bidissimilar. If two values are found to be bisimilar, the counterexample is
+tagged as ``likely genuine.'' The iteration counts are automatically bounded by
+the sum of the cardinalities of the coinductive datatypes occurring in the
+formula to falsify.
+
+\opusmart{box}{type}{dont\_box}
+Specifies whether Nitpick should attempt to wrap (``box'') a given function or
+product type in an isomorphic datatype internally. Boxing is an effective mean
+to reduce the search space and speed up Nitpick, because the isomorphic datatype
+is approximated by a subset of the possible function or pair values;
+like other drastic optimizations, it can also prevent the discovery of
+counterexamples. The option can take the following values:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{true}}: Box the specified type whenever
+practicable.
+\item[$\bullet$] \textbf{\textit{false}}: Never box the type.
+\item[$\bullet$] \textbf{\textit{smart}}: Box the type only in contexts where it
+is likely to help. For example, $n$-tuples where $n > 2$ and arguments to
+higher-order functions are good candidates for boxing.
+\end{enum}
+
+Setting the \textit{card}~\qty{type} option for a function or product type
+implicitly enables boxing for that type.
+
+\nopagebreak
+{\small See also \textit{verbose} (\S\ref{output-format})
+and \textit{debug} (\S\ref{output-format}).}
+
+\opsmart{box}{dont\_box}
+Specifies the default boxing setting to use. This can be overridden on a
+per-type basis using the \textit{box}~\qty{type} option described above.
+
+\opusmart{mono}{type}{non\_mono}
+Specifies whether the specified type should be considered monotonic when
+enumerating scopes. If the option is set to \textit{smart}, Nitpick performs a
+monotonicity check on the type. Setting this option to \textit{true} can reduce
+the number of scopes tried, but it also diminishes the theoretical chance of
+finding a counterexample, as demonstrated in \S\ref{scope-monotonicity}.
+
+\nopagebreak
+{\small See also \textit{card} (\S\ref{scope-of-search}),
+\textit{coalesce\_type\_vars} (\S\ref{scope-of-search}), and \textit{verbose}
+(\S\ref{output-format}).}
+
+\opsmart{mono}{non\_box}
+Specifies the default monotonicity setting to use. This can be overridden on a
+per-type basis using the \textit{mono}~\qty{type} option described above.
+
+\opfalse{coalesce\_type\_vars}{dont\_coalesce\_type\_vars}
+Specifies whether type variables with the same sort constraints should be
+merged. Setting this option to \textit{true} can reduce the number of scopes
+tried and the size of the generated Kodkod formulas, but it also diminishes the
+theoretical chance of finding a counterexample.
+
+{\small See also \textit{mono} (\S\ref{scope-of-search}).}
+\end{enum}
+
+\subsection{Output Format}
+\label{output-format}
+
+\begin{enum}
+\opfalse{verbose}{quiet}
+Specifies whether the \textbf{nitpick} command should explain what it does. This
+option is useful to determine which scopes are tried or which SAT solver is
+used. This option is implicitly disabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\opfalse{debug}{no\_debug}
+Specifies whether Nitpick should display additional debugging information beyond
+what \textit{verbose} already displays. Enabling \textit{debug} also enables
+\textit{verbose} and \textit{show\_all} behind the scenes. The \textit{debug}
+option is implicitly disabled for automatic runs.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}), \textit{overlord}
+(\S\ref{mode-of-operation}), and \textit{batch\_size} (\S\ref{optimizations}).}
+
+\optrue{show\_skolems}{hide\_skolem}
+Specifies whether the values of Skolem constants should be displayed as part of
+counterexamples. Skolem constants correspond to bound variables in the original
+formula and usually help us to understand why the counterexample falsifies the
+formula.
+
+\nopagebreak
+{\small See also \textit{skolemize} (\S\ref{optimizations}).}
+
+\opfalse{show\_datatypes}{hide\_datatypes}
+Specifies whether the subsets used to approximate (co)in\-duc\-tive datatypes should
+be displayed as part of counterexamples. Such subsets are sometimes helpful when
+investigating whether a potential counterexample is genuine or spurious, but
+their potential for clutter is real.
+
+\opfalse{show\_consts}{hide\_consts}
+Specifies whether the values of constants occurring in the formula (including
+its axioms) should be displayed along with any counterexample. These values are
+sometimes helpful when investigating why a counterexample is
+genuine, but they can clutter the output.
+
+\opfalse{show\_all}{dont\_show\_all}
+Enabling this option effectively enables \textit{show\_skolems},
+\textit{show\_datatypes}, and \textit{show\_consts}.
+
+\opt{max\_potential}{int}{$\mathbf{1}$}
+Specifies the maximum number of potential counterexamples to display. Setting
+this option to 0 speeds up the search for a genuine counterexample. This option
+is implicitly set to 0 for automatic runs. If you set this option to a value
+greater than 1, you will need an incremental SAT solver: For efficiency, it is
+recommended to install the JNI version of MiniSat and set \textit{sat\_solver} =
+\textit{MiniSatJNI}. Also be aware that many of the counterexamples may look
+identical, unless the \textit{show\_all} (\S\ref{output-format}) option is
+enabled.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}),
+\textit{check\_potential} (\S\ref{authentication}), and
+\textit{sat\_solver} (\S\ref{optimizations}).}
+
+\opt{max\_genuine}{int}{$\mathbf{1}$}
+Specifies the maximum number of genuine counterexamples to display. If you set
+this option to a value greater than 1, you will need an incremental SAT solver:
+For efficiency, it is recommended to install the JNI version of MiniSat and set
+\textit{sat\_solver} = \textit{MiniSatJNI}. Also be aware that many of the
+counterexamples may look identical, unless the \textit{show\_all}
+(\S\ref{output-format}) option is enabled.
+
+\nopagebreak
+{\small See also \textit{check\_genuine} (\S\ref{authentication}) and
+\textit{sat\_solver} (\S\ref{optimizations}).}
+
+\ops{eval}{term\_list}
+Specifies the list of terms whose values should be displayed along with
+counterexamples. This option suffers from an ``observer effect'': Nitpick might
+find different counterexamples for different values of this option.
+
+\opu{format}{term}{int\_seq}
+Specifies how to uncurry the value displayed for a variable or constant.
+Uncurrying sometimes increases the readability of the output for high-arity
+functions. For example, given the variable $y \mathbin{\Colon} {'a}\Rightarrow
+{'b}\Rightarrow {'c}\Rightarrow {'d}\Rightarrow {'e}\Rightarrow {'f}\Rightarrow
+{'g}$, setting \textit{format}~$y$ = 3 tells Nitpick to group the last three
+arguments, as if the type had been ${'a}\Rightarrow {'b}\Rightarrow
+{'c}\Rightarrow {'d}\times {'e}\times {'f}\Rightarrow {'g}$. In general, a list
+of values $n_1,\ldots,n_k$ tells Nitpick to show the last $n_k$ arguments as an
+$n_k$-tuple, the previous $n_{k-1}$ arguments as an $n_{k-1}$-tuple, and so on;
+arguments that are not accounted for are left alone, as if the specification had
+been $1,\ldots,1,n_1,\ldots,n_k$.
+
+\nopagebreak
+{\small See also \textit{uncurry} (\S\ref{optimizations}).}
+
+\opt{format}{int\_seq}{$\mathbf{1}$}
+Specifies the default format to use. Irrespective of the default format, the
+extra arguments to a Skolem constant corresponding to the outer bound variables
+are kept separated from the remaining arguments, the \textbf{for} arguments of
+an inductive definitions are kept separated from the remaining arguments, and
+the iteration counter of an unrolled inductive definition is shown alone. The
+default format can be overridden on a per-variable or per-constant basis using
+the \textit{format}~\qty{term} option described above.
+\end{enum}
+
+%% MARK: Authentication
+\subsection{Authentication}
+\label{authentication}
+
+\begin{enum}
+\opfalse{check\_potential}{trust\_potential}
+Specifies whether potential counterexamples should be given to Isabelle's
+\textit{auto} tactic to assess their validity. If a potential counterexample is
+shown to be genuine, Nitpick displays a message to this effect and terminates.
+
+\nopagebreak
+{\small See also \textit{max\_potential} (\S\ref{output-format}) and
+\textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\opfalse{check\_genuine}{trust\_genuine}
+Specifies whether genuine and likely genuine counterexamples should be given to
+Isabelle's \textit{auto} tactic to assess their validity. If a ``genuine''
+counterexample is shown to be spurious, the user is kindly asked to send a bug
+report to the author at
+\texttt{blan{\color{white}nospam}\kern-\wd\boxA{}chette@in.tum.de}.
+
+\nopagebreak
+{\small See also \textit{max\_genuine} (\S\ref{output-format}) and
+\textit{auto\_timeout} (\S\ref{timeouts}).}
+
+\ops{expect}{string}
+Specifies the expected outcome, which must be one of the following:
+
+\begin{enum}
+\item[$\bullet$] \textbf{\textit{genuine}}: Nitpick found a genuine counterexample.
+\item[$\bullet$] \textbf{\textit{likely\_genuine}}: Nitpick found a ``likely
+genuine'' counterexample (i.e., a counterexample that is genuine unless
+it contradicts a missing axiom or a dangerous option was used inappropriately).
+\item[$\bullet$] \textbf{\textit{potential}}: Nitpick found a potential counterexample.
+\item[$\bullet$] \textbf{\textit{none}}: Nitpick found no counterexample.
+\item[$\bullet$] \textbf{\textit{unknown}}: Nitpick encountered some problem (e.g.,
+Kodkod ran out of memory).
+\end{enum}
+
+Nitpick emits an error if the actual outcome differs from the expected outcome.
+This option is useful for regression testing.
+\end{enum}
+
+\subsection{Optimizations}
+\label{optimizations}
+
+\def\cpp{C\nobreak\raisebox{.1ex}{+}\nobreak\raisebox{.1ex}{+}}
+
+\sloppy
+
+\begin{enum}
+\opt{sat\_solver}{string}{smart}
+Specifies which SAT solver to use. SAT solvers implemented in C or \cpp{} tend
+to be faster than their Java counterparts, but they can be more difficult to
+install. Also, if you set the \textit{max\_potential} (\S\ref{output-format}) or
+\textit{max\_genuine} (\S\ref{output-format}) option to a value greater than 1,
+you will need an incremental SAT solver, such as \textit{MiniSatJNI}
+(recommended) or \textit{SAT4J}.
+
+The supported solvers are listed below:
+
+\begin{enum}
+
+\item[$\bullet$] \textbf{\textit{MiniSat}}: MiniSat is an efficient solver
+written in \cpp{}. To use MiniSat, set the environment variable
+\texttt{MINISAT\_HOME} to the directory that contains the \texttt{minisat}
+executable. The \cpp{} sources and executables for MiniSat are available at
+\url{http://minisat.se/MiniSat.html}. Nitpick has been tested with versions 1.14
+and 2.0 beta (2007-07-21).
+
+\item[$\bullet$] \textbf{\textit{MiniSatJNI}}: The JNI (Java Native Interface)
+version of MiniSat is bundled in \texttt{nativesolver.\allowbreak tgz}, which
+you will find on Kodkod's web site \cite{kodkod-2009}. Unlike the standard
+version of MiniSat, the JNI version can be used incrementally.
+
+\item[$\bullet$] \textbf{\textit{PicoSAT}}: PicoSAT is an efficient solver
+written in C. It is bundled with Kodkodi and requires no further installation or
+configuration steps. Alternatively, you can install a standard version of
+PicoSAT and set the environment variable \texttt{PICOSAT\_HOME} to the directory
+that contains the \texttt{picosat} executable. The C sources for PicoSAT are
+available at \url{http://fmv.jku.at/picosat/} and are also bundled with Kodkodi.
+Nitpick has been tested with version 913.
+
+\item[$\bullet$] \textbf{\textit{zChaff}}: zChaff is an efficient solver written
+in \cpp{}. To use zChaff, set the environment variable \texttt{ZCHAFF\_HOME} to
+the directory that contains the \texttt{zchaff} executable. The \cpp{} sources
+and executables for zChaff are available at
+\url{http://www.princeton.edu/~chaff/zchaff.html}. Nitpick has been tested with
+versions 2004-05-13, 2004-11-15, and 2007-03-12.
+
+\item[$\bullet$] \textbf{\textit{zChaffJNI}}: The JNI version of zChaff is
+bundled in \texttt{native\-solver.\allowbreak tgz}, which you will find on
+Kodkod's web site \cite{kodkod-2009}.
+
+\item[$\bullet$] \textbf{\textit{RSat}}: RSat is an efficient solver written in
+\cpp{}. To use RSat, set the environment variable \texttt{RSAT\_HOME} to the
+directory that contains the \texttt{rsat} executable. The \cpp{} sources for
+RSat are available at \url{http://reasoning.cs.ucla.edu/rsat/}. Nitpick has been
+tested with version 2.01.
+
+\item[$\bullet$] \textbf{\textit{BerkMin}}: BerkMin561 is an efficient solver
+written in C. To use BerkMin, set the environment variable
+\texttt{BERKMIN\_HOME} to the directory that contains the \texttt{BerkMin561}
+executable. The BerkMin executables are available at
+\url{http://eigold.tripod.com/BerkMin.html}.
+
+\item[$\bullet$] \textbf{\textit{BerkMinAlloy}}: Variant of BerkMin that is
+included with Alloy 4 and calls itself ``sat56'' in its banner text. To use this
+version of BerkMin, set the environment variable
+\texttt{BERKMINALLOY\_HOME} to the directory that contains the \texttt{berkmin}
+executable.
+
+\item[$\bullet$] \textbf{\textit{Jerusat}}: Jerusat 1.3 is an efficient solver
+written in C. To use Jerusat, set the environment variable
+\texttt{JERUSAT\_HOME} to the directory that contains the \texttt{Jerusat1.3}
+executable. The C sources for Jerusat are available at
+\url{http://www.cs.tau.ac.il/~ale1/Jerusat1.3.tgz}.
+
+\item[$\bullet$] \textbf{\textit{SAT4J}}: SAT4J is a reasonably efficient solver
+written in Java that can be used incrementally. It is bundled with Kodkodi and
+requires no further installation or configuration steps. Do not attempt to
+install the official SAT4J packages, because their API is incompatible with
+Kodkod.
+
+\item[$\bullet$] \textbf{\textit{SAT4JLight}}: Variant of SAT4J that is
+optimized for small problems. It can also be used incrementally.
+
+\item[$\bullet$] \textbf{\textit{HaifaSat}}: HaifaSat 1.0 beta is an
+experimental solver written in \cpp. To use HaifaSat, set the environment
+variable \texttt{HAIFASAT\_\allowbreak HOME} to the directory that contains the
+\texttt{HaifaSat} executable. The \cpp{} sources for HaifaSat are available at
+\url{http://cs.technion.ac.il/~gershman/HaifaSat.htm}.
+
+\item[$\bullet$] \textbf{\textit{smart}}: If \textit{sat\_solver} is set to
+\textit{smart}, Nitpick selects the first solver among MiniSat, PicoSAT, zChaff,
+RSat, BerkMin, BerkMinAlloy, and Jerusat that is recognized by Isabelle. If none
+is found, it falls back on SAT4J, which should always be available. If
+\textit{verbose} is enabled, Nitpick displays which SAT solver was chosen.
+
+\end{enum}
+\fussy
+
+\opt{batch\_size}{int\_or\_smart}{smart}
+Specifies the maximum number of Kodkod problems that should be lumped together
+when invoking Kodkodi. Each problem corresponds to one scope. Lumping problems
+together ensures that Kodkodi is launched less often, but it makes the verbose
+output less readable and is sometimes detrimental to performance. If
+\textit{batch\_size} is set to \textit{smart}, the actual value used is 1 if
+\textit{debug} (\S\ref{output-format}) is set and 64 otherwise.
+
+\optrue{destroy\_constrs}{dont\_destroy\_constrs}
+Specifies whether formulas involving (co)in\-duc\-tive datatype constructors should
+be rewritten to use (automatically generated) discriminators and destructors.
+This optimization can drastically reduce the size of the Boolean formulas given
+to the SAT solver.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}).}
+
+\optrue{specialize}{dont\_specialize}
+Specifies whether functions invoked with static arguments should be specialized.
+This optimization can drastically reduce the search space, especially for
+higher-order functions.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}) and
+\textit{show\_consts} (\S\ref{output-format}).}
+
+\optrue{skolemize}{dont\_skolemize}
+Specifies whether the formula should be skolemized. For performance reasons,
+(positive) $\forall$-quanti\-fiers that occur in the scope of a higher-order
+(positive) $\exists$-quanti\-fier are left unchanged.
+
+\nopagebreak
+{\small See also \textit{debug} (\S\ref{output-format}) and
+\textit{show\_skolems} (\S\ref{output-format}).}
+
+\optrue{star\_linear\_preds}{dont\_star\_linear\_preds}
+Specifies whether Nitpick should use Kodkod's transitive closure operator to
+encode non-well-founded ``linear inductive predicates,'' i.e., inductive
+predicates for which each the predicate occurs in at most one assumption of each
+introduction rule. Using the reflexive transitive closure is in principle
+equivalent to setting \textit{iter} to the cardinality of the predicate's
+domain, but it is usually more efficient.
+
+{\small See also \textit{wf} (\S\ref{scope-of-search}), \textit{debug}
+(\S\ref{output-format}), and \textit{iter} (\S\ref{scope-of-search}).}
+
+\optrue{uncurry}{dont\_uncurry}
+Specifies whether Nitpick should uncurry functions. Uncurrying has on its own no
+tangible effect on efficiency, but it creates opportunities for the boxing 
+optimization.
+
+\nopagebreak
+{\small See also \textit{box} (\S\ref{scope-of-search}), \textit{debug}
+(\S\ref{output-format}), and \textit{format} (\S\ref{output-format}).}
+
+\optrue{fast\_descrs}{full\_descrs}
+Specifies whether Nitpick should optimize the definite and indefinite
+description operators (THE and SOME). The optimized versions usually help
+Nitpick generate more counterexamples or at least find them faster, but only the
+unoptimized versions are complete when all types occurring in the formula are
+finite.
+
+{\small See also \textit{debug} (\S\ref{output-format}).}
+
+\optrue{peephole\_optim}{no\_peephole\_optim}
+Specifies whether Nitpick should simplify the generated Kodkod formulas using a
+peephole optimizer. These optimizations can make a significant difference.
+Unless you are tracking down a bug in Nitpick or distrust the peephole
+optimizer, you should leave this option enabled.
+
+\opt{sym\_break}{int}{20}
+Specifies an upper bound on the number of relations for which Kodkod generates
+symmetry breaking predicates. According to the Kodkod documentation
+\cite{kodkod-2009-options}, ``in general, the higher this value, the more
+symmetries will be broken, and the faster the formula will be solved. But,
+setting the value too high may have the opposite effect and slow down the
+solving.''
+
+\opt{sharing\_depth}{int}{3}
+Specifies the depth to which Kodkod should check circuits for equivalence during
+the translation to SAT. The default of 3 is the same as in Alloy. The minimum
+allowed depth is 1. Increasing the sharing may result in a smaller SAT problem,
+but can also slow down Kodkod.
+
+\opfalse{flatten\_props}{dont\_flatten\_props}
+Specifies whether Kodkod should try to eliminate intermediate Boolean variables.
+Although this might sound like a good idea, in practice it can drastically slow
+down Kodkod.
+
+\opt{max\_threads}{int}{0}
+Specifies the maximum number of threads to use in Kodkod. If this option is set
+to 0, Kodkod will compute an appropriate value based on the number of processor
+cores available.
+
+\nopagebreak
+{\small See also \textit{batch\_size} (\S\ref{optimizations}) and
+\textit{timeout} (\S\ref{timeouts}).}
+\end{enum}
+
+\subsection{Timeouts}
+\label{timeouts}
+
+\begin{enum}
+\opt{timeout}{time}{$\mathbf{30}$ s}
+Specifies the maximum amount of time that the \textbf{nitpick} command should
+spend looking for a counterexample. Nitpick tries to honor this constraint as
+well as it can but offers no guarantees. For automatic runs,
+\textit{auto\_timeout} is used instead.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation})
+and \textit{max\_threads} (\S\ref{optimizations}).}
+
+\opt{auto\_timeout}{time}{$\mathbf{5}$ s}
+Specifies the maximum amount of time that Nitpick should use to find a
+counterexample when running automatically. Nitpick tries to honor this
+constraint as well as it can but offers no guarantees.
+
+\nopagebreak
+{\small See also \textit{auto} (\S\ref{mode-of-operation}).}
+
+\opt{tac\_timeout}{time}{$\mathbf{500}$ ms}
+Specifies the maximum amount of time that the \textit{auto} tactic should use
+when checking a counterexample, and similarly that \textit{lexicographic\_order}
+and \textit{sizechange} should use when checking whether a (co)in\-duc\-tive
+predicate is well-founded. Nitpick tries to honor this constraint as well as it
+can but offers no guarantees.
+
+\nopagebreak
+{\small See also \textit{wf} (\S\ref{scope-of-search}),
+\textit{check\_potential} (\S\ref{authentication}),
+and \textit{check\_genuine} (\S\ref{authentication}).}
+\end{enum}
+
+\section{Attribute Reference}
+\label{attribute-reference}
+
+Nitpick needs to consider the definitions of all constants occurring in a
+formula in order to falsify it. For constants introduced using the
+\textbf{definition} command, the definition is simply the associated
+\textit{\_def} axiom. In contrast, instead of using the internal representation
+of functions synthesized by Isabelle's \textbf{primrec}, \textbf{function}, and
+\textbf{nominal\_primrec} packages, Nitpick relies on the more natural
+equational specification entered by the user.
+
+Behind the scenes, Isabelle's built-in packages and theories rely on the
+following attributes to affect Nitpick's behavior:
+
+\begin{itemize}
+\flushitem{\textit{nitpick\_def}}
+
+\nopagebreak
+This attribute specifies an alternative definition of a constant. The
+alternative definition should be logically equivalent to the constant's actual
+axiomatic definition and should be of the form
+
+\qquad $c~{?}x_1~\ldots~{?}x_n \,\equiv\, t$,
+
+where ${?}x_1, \ldots, {?}x_n$ are distinct variables and $c$ does not occur in
+$t$.
+
+\flushitem{\textit{nitpick\_simp}}
+
+\nopagebreak
+This attribute specifies the equations that constitute the specification of a
+constant. For functions defined using the \textbf{primrec}, \textbf{function},
+and \textbf{nominal\_\allowbreak primrec} packages, this corresponds to the
+\textit{simps} rules. The equations must be of the form
+
+\qquad $c~t_1~\ldots\ t_n \,=\, u.$
+
+\flushitem{\textit{nitpick\_psimp}}
+
+\nopagebreak
+This attribute specifies the equations that constitute the partial specification
+of a constant. For functions defined using the \textbf{function} package, this
+corresponds to the \textit{psimps} rules. The conditional equations must be of
+the form
+
+\qquad $\lbrakk P_1;\> \ldots;\> P_m\rbrakk \,\Longrightarrow\, c\ t_1\ \ldots\ t_n \,=\, u$.
+
+\flushitem{\textit{nitpick\_intro}}
+
+\nopagebreak
+This attribute specifies the introduction rules of a (co)in\-duc\-tive predicate.
+For predicates defined using the \textbf{inductive} or \textbf{coinductive}
+command, this corresponds to the \textit{intros} rules. The introduction rules
+must be of the form
+
+\qquad $\lbrakk P_1;\> \ldots;\> P_m;\> M~(c\ t_{11}\ \ldots\ t_{1n});\>
+\ldots;\> M~(c\ t_{k1}\ \ldots\ t_{kn})\rbrakk \,\Longrightarrow\, c\ u_1\
+\ldots\ u_n$,
+
+where the $P_i$'s are side conditions that do not involve $c$ and $M$ is an
+optional monotonic operator. The order of the assumptions is irrelevant.
+
+\end{itemize}
+
+When faced with a constant, Nitpick proceeds as follows:
+
+\begin{enum}
+\item[1.] If the \textit{nitpick\_simp} set associated with the constant
+is not empty, Nitpick uses these rules as the specification of the constant.
+
+\item[2.] Otherwise, if the \textit{nitpick\_psimp} set associated with
+the constant is not empty, it uses these rules as the specification of the
+constant.
+
+\item[3.] Otherwise, it looks up the definition of the constant:
+
+\begin{enum}
+\item[1.] If the \textit{nitpick\_def} set associated with the constant
+is not empty, it uses the latest rule added to the set as the definition of the
+constant; otherwise it uses the actual definition axiom.
+\item[2.] If the definition is of the form
+
+\qquad $c~{?}x_1~\ldots~{?}x_m \,\equiv\, \lambda y_1~\ldots~y_n.\; \textit{lfp}~(\lambda f.\; t)$,
+
+then Nitpick assumes that the definition was made using an inductive package and
+based on the introduction rules marked with \textit{nitpick\_\allowbreak
+ind\_\allowbreak intros} tries to determine whether the definition is
+well-founded.
+\end{enum}
+\end{enum}
+
+As an illustration, consider the inductive definition
+
+\prew
+\textbf{inductive}~\textit{odd}~\textbf{where} \\
+``\textit{odd}~1'' $\,\mid$ \\
+``\textit{odd}~$n\,\Longrightarrow\, \textit{odd}~(\textit{Suc}~(\textit{Suc}~n))$''
+\postw
+
+Isabelle automatically attaches the \textit{nitpick\_intro} attribute to
+the above rules. Nitpick then uses the \textit{lfp}-based definition in
+conjunction with these rules. To override this, we can specify an alternative
+definition as follows:
+
+\prew
+\textbf{lemma} $\mathit{odd\_def}'$ [\textit{nitpick\_def}]: ``$\textit{odd}~n \,\equiv\, n~\textrm{mod}~2 = 1$''
+\postw
+
+Nitpick then expands all occurrences of $\mathit{odd}~n$ to $n~\textrm{mod}~2
+= 1$. Alternatively, we can specify an equational specification of the constant:
+
+\prew
+\textbf{lemma} $\mathit{odd\_simp}'$ [\textit{nitpick\_simp}]: ``$\textit{odd}~n = (n~\textrm{mod}~2 = 1)$''
+\postw
+
+Such tweaks should be done with great care, because Nitpick will assume that the
+constant is completely defined by its equational specification. For example, if
+you make ``$\textit{odd}~(2 * k + 1)$'' a \textit{nitpick\_simp} rule and neglect to provide rules to handle the $2 * k$ case, Nitpick will define
+$\textit{odd}~n$ arbitrarily for even values of $n$. The \textit{debug}
+(\S\ref{output-format}) option is extremely useful to understand what is going
+on when experimenting with \textit{nitpick\_} attributes.
+
+\section{Standard ML Interface}
+\label{standard-ml-interface}
+
+Nitpick provides a rich Standard ML interface used mainly for internal purposes
+and debugging. Among the most interesting functions exported by Nitpick are
+those that let you invoke the tool programmatically and those that let you
+register and unregister custom coinductive datatypes.
+
+\subsection{Invocation of Nitpick}
+\label{invocation-of-nitpick}
+
+The \textit{Nitpick} structure offers the following functions for invoking your
+favorite counterexample generator:
+
+\prew
+$\textbf{val}\,~\textit{pick\_nits\_in\_term} : \\
+\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{term~list} \rightarrow \textit{term} \\
+\hbox{}\quad{\rightarrow}\; \textit{string} * \textit{Proof.state}$ \\
+$\textbf{val}\,~\textit{pick\_nits\_in\_subgoal} : \\
+\hbox{}\quad\textit{Proof.state} \rightarrow \textit{params} \rightarrow \textit{bool} \rightarrow \textit{int} \rightarrow \textit{string} * \textit{Proof.state}$
+\postw
+
+The return value is a new proof state paired with an outcome string
+(``genuine'', ``likely\_genuine'', ``potential'', ``none'', or ``unknown''). The
+\textit{params} type is a large record that lets you set Nitpick's options. The
+current default options can be retrieved by calling the following function
+defined in the \textit{NitpickIsar} structure:
+
+\prew
+$\textbf{val}\,~\textit{default\_params} :\,
+\textit{theory} \rightarrow (\textit{string} * \textit{string})~\textit{list} \rightarrow \textit{params}$
+\postw
+
+The second argument lets you override option values before they are parsed and
+put into a \textit{params} record. Here is an example:
+
+\prew
+$\textbf{val}\,~\textit{params} = \textit{NitpickIsar.default\_params}~\textit{thy}~[(\textrm{``}\textrm{timeout}\textrm{''},\, \textrm{``}\textrm{none}\textrm{''})]$ \\
+$\textbf{val}\,~(\textit{outcome},\, \textit{state}') = \textit{Nitpick.pick\_nits\_in\_subgoal}~\begin{aligned}[t]
+& \textit{state}~\textit{params}~\textit{false} \\[-2pt]
+& \textit{subgoal}\end{aligned}$
+\postw
+
+\subsection{Registration of Coinductive Datatypes}
+\label{registration-of-coinductive-datatypes}
+
+\let\antiq=\textrm
+
+If you have defined a custom coinductive datatype, you can tell Nitpick about
+it, so that it can use an efficient Kodkod axiomatization similar to the one it
+uses for lazy lists. The interface for registering and unregistering coinductive
+datatypes consists of the following pair of functions defined in the
+\textit{Nitpick} structure:
+
+\prew
+$\textbf{val}\,~\textit{register\_codatatype} :\,
+\textit{typ} \rightarrow \textit{string} \rightarrow \textit{styp~list} \rightarrow \textit{theory} \rightarrow \textit{theory}$ \\
+$\textbf{val}\,~\textit{unregister\_codatatype} :\,
+\textit{typ} \rightarrow \textit{theory} \rightarrow \textit{theory}$
+\postw
+
+The type $'a~\textit{llist}$ of lazy lists is already registered; had it
+not been, you could have told Nitpick about it by adding the following line
+to your theory file:
+
+\prew
+$\textbf{setup}~\,\{{*}\,~\!\begin{aligned}[t]
+& \textit{Nitpick.register\_codatatype} \\[-2pt]
+& \qquad @\{\antiq{typ}~``\kern1pt'a~\textit{llist}\textrm{''}\}~@\{\antiq{const\_name}~ \textit{llist\_case}\} \\[-2pt] %% TYPESETTING
+& \qquad (\textit{map}~\textit{dest\_Const}~[@\{\antiq{term}~\textit{LNil}\},\, @\{\antiq{term}~\textit{LCons}\}])\,\ {*}\}\end{aligned}$
+\postw
+
+The \textit{register\_codatatype} function takes a coinductive type, its case
+function, and the list of its constructors. The case function must take its
+arguments in the order that the constructors are listed. If no case function
+with the correct signature is available, simply pass the empty string.
+
+On the other hand, if your goal is to cripple Nitpick, add the following line to
+your theory file and try to check a few conjectures about lazy lists:
+
+\prew
+$\textbf{setup}~\,\{{*}\,~\textit{Nitpick.unregister\_codatatype}~@\{\antiq{typ}~``
+\kern1pt'a~\textit{list}\textrm{''}\}\ \,{*}\}$
+\postw
+
+\section{Known Bugs and Limitations}
+\label{known-bugs-and-limitations}
+
+Here are the known bugs and limitations in Nitpick at the time of writing:
+
+\begin{enum}
+\item[$\bullet$] Underspecified functions defined using the \textbf{primrec},
+\textbf{function}, or \textbf{nominal\_\allowbreak primrec} packages can lead
+Nitpick to generate spurious counterexamples for theorems that refer to values
+for which the function is not defined. For example:
+
+\prew
+\textbf{primrec} \textit{prec} \textbf{where} \\
+``$\textit{prec}~(\textit{Suc}~n) = n$'' \\[2\smallskipamount]
+\textbf{lemma} ``$\textit{prec}~0 = \undef$'' \\
+\textbf{nitpick} \\[2\smallskipamount]
+\quad{\slshape Nitpick found a counterexample for \textit{card nat}~= 2: 
+\nopagebreak
+\\[2\smallskipamount]
+\hbox{}\qquad Empty assignment} \nopagebreak\\[2\smallskipamount]
+\textbf{by}~(\textit{auto simp}: \textit{prec\_def})
+\postw
+
+Such theorems are considered bad style because they rely on the internal
+representation of functions synthesized by Isabelle, which is an implementation
+detail.
+
+\item[$\bullet$] Nitpick produces spurious counterexamples when invoked after a
+\textbf{guess} command in a structured proof.
+
+\item[$\bullet$] The \textit{nitpick\_} attributes and the
+\textit{Nitpick.register\_} functions can cause havoc if used improperly.
+
+\item[$\bullet$] Local definitions are not supported and result in an error.
+
+\item[$\bullet$] All constants and types whose names start with
+\textit{Nitpick}{.} are reserved for internal use.
+\end{enum}
+
+\let\em=\sl
+\bibliography{../manual}{}
+\bibliographystyle{abbrv}
+
+\end{document}
--- a/doc-src/TutorialI/Misc/Itrev.thy	Tue Oct 27 12:59:57 2009 +0000
+++ b/doc-src/TutorialI/Misc/Itrev.thy	Tue Oct 27 14:46:03 2009 +0000
@@ -2,7 +2,7 @@
 theory Itrev
 imports Main
 begin
-ML"Unsynchronized.reset NameSpace.unique_names"
+ML"Unsynchronized.reset unique_names"
 (*>*)
 
 section{*Induction Heuristics*}
@@ -141,6 +141,6 @@
 \index{induction heuristics|)}
 *}
 (*<*)
-ML"Unsynchronized.set NameSpace.unique_names"
+ML"Unsynchronized.set unique_names"
 end
 (*>*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/doc-src/gfx/isabelle_nitpick.eps	Tue Oct 27 14:46:03 2009 +0000
@@ -0,0 +1,6488 @@
+%!PS-Adobe-2.0 EPSF-1.2
+%%Title: isabelle_any
+%%Creator: FreeHand 5.5
+%%CreationDate: 24.09.1998 21:04 Uhr
+%%BoundingBox: 0 0 202 178
+%%FHPathName:MacSystem:Home:Markus:TUM:Isabelle Logo:export:isabelle_any
+%ALDOriginalFile:MacSystem:Home:Markus:TUM:Isabelle Logo:export:isabelle_any
+%ALDBoundingBox: -153 -386 442 456
+%%FHPageNum:1
+%%DocumentSuppliedResources: procset Altsys_header 4 0
+%%ColorUsage: Color
+%%DocumentProcessColors: Cyan Magenta Yellow Black
+%%DocumentNeededResources: font Symbol
+%%+ font ZapfHumanist601BT-Bold
+%%DocumentFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
+%%DocumentNeededFonts: Symbol
+%%+ ZapfHumanist601BT-Bold
+%%EndComments
+%!PS-AdobeFont-1.0: ZapfHumanist601BT-Bold 003.001
+%%CreationDate: Mon Jun 22 16:09:28 1992
+%%VMusage: 35200 38400   
+% Bitstream Type 1 Font Program
+% Copyright 1990-1992 as an unpublished work by Bitstream Inc., Cambridge, MA.
+% All rights reserved.
+% Confidential and proprietary to Bitstream Inc.
+% U.S. GOVERNMENT RESTRICTED RIGHTS
+% This software typeface product is provided with RESTRICTED RIGHTS. Use,
+% duplication or disclosure by the Government is subject to restrictions
+% as set forth in the license agreement and in FAR 52.227-19 (c) (2) (May, 1987),
+% when applicable, or the applicable provisions of the DOD FAR supplement
+% 252.227-7013 subdivision (a) (15) (April, 1988) or subdivision (a) (17)
+% (April, 1988).  Contractor/manufacturer is Bitstream Inc.,
+% 215 First Street, Cambridge, MA 02142.
+% Bitstream is a registered trademark of Bitstream Inc.
+11 dict begin
+/FontInfo 9 dict dup begin
+  /version (003.001) readonly def
+  /Notice (Copyright 1990-1992 as an unpublished work by Bitstream Inc.  All rights reserved.  Confidential.) readonly def
+  /FullName (Zapf Humanist 601 Bold) readonly def
+  /FamilyName (Zapf Humanist 601) readonly def
+  /Weight (Bold) readonly def
+  /ItalicAngle 0 def
+  /isFixedPitch false def
+  /UnderlinePosition -136 def
+  /UnderlineThickness 85 def
+end readonly def
+/FontName /ZapfHumanist601BT-Bold def
+/PaintType 0 def
+/FontType 1 def
+/FontMatrix [0.001 0 0 0.001 0 0] readonly def
+/Encoding StandardEncoding def
+/FontBBox {-167 -275 1170 962} readonly def
+/UniqueID 15530396 def
+currentdict end
+currentfile eexec
+a2951840838a4133839ca9d22e2b99f2b61c767cd675080aacfcb24e19cd
+1336739bb64994c56737090b4cec92c9945ff0745ef7ffc61bb0a9a3b849
+e7e98740e56c0b5af787559cc6956ab31e33cf8553d55c0b0e818ef5ec6b
+f48162eac42e7380ca921dae1c82b38fd6bcf2001abb5d001a56157094cf
+e27d8f4eac9693e88372d20358b47e0c3876558ebf757a1fbc5c1cddf62b
+3c57bf727ef1c4879422c142a084d1c7462ac293e097fabe3a3ecfcd8271
+f259833bac7912707218ec9a3063bf7385e02d8c1058ac06df00b33b8c01
+8768b278010eb4dd58c7ba59321899741cb7215d8a55bee8d3398c887f02
+e1f4869387f89141de693fcb429c7884c22dcdeddcaa62b7f5060249dfab
+cfc351201f7d188b6ed68a228abda4d33b3d269ac09cde172bc045e67449
+c0f25d224efbe8c9f9d2968a01edbfb039123c365ed0db58ad38aabe015b
+8881191dd23092f6d53d5c1cd68ebd038e098d32cb24b433b7d5d89c28ee
+05ea0b6070bb785a2974b5a160ee4cf8b6d8c73445d36720af0530441cd9
+61bc0c367f1af1ec1c5ab7255ddda153c1868aba58cd5b44835535d85326
+5d7fed5ff7118adb5d5b76cc3b72e5ff27e21eb857261b3afb7688fca12d
+1663b0d8bdc1dd47a84b65b47d3e76d3b8fa8b319f17e1bb22b45a7482fd
+f9ad1b6129e09ae47f15cd2447484cd2d64f59ab0f2f876c81e7d87ccdf9
+005aa8fc093d02db51a075d571e925f2d309a1c535a1e59d34215c6cd33e
+3c38997b4956461f376399901a8d0943dca6a335baac93fc8482c0659f04
+329c6f040b35828ea6dd1bd1858f2a9be4ef77731b5b75a1c536c6bc9479
+0821e5d88f6e2981835dbfd65ec254ebcf2cf49c917d121cd3bbb476a12b
+69c15f17d9c17bb15ad1e7d31d2afcf58c8f0ad526d68615a0f1ac3b1d1c
+d3beafeea3cf56c8f8a66367c70df9159f0b1b3157ccfd010045c4718e0e
+625c0891e85790c9b97b85517c74c9d55eaca31a01cddc64898bf0eeadf3
+53391a185e507dcb0a6f52661a56357ac818dfc740a540aadf02f4e7a79d
+8008a77cd30abde337025b01217d6a68c306abe145b7260c3478fa5f366f
+b2d37259ead8a8ec2db2f09ae0eb3a682d27b0d73a60935f80254c24426a
+003a87a29a4370cbf1b2ef1e19ad8466ec725fd5b463d06011a5e0da2258
+ff6c1483c4532bc21f2ed9b99b929b2800ddefc1a98d12ba085adc210bac
+e0274b69e24d16af015a51ca73edf779a7534a887aa780337ad966839881
+edc22ba72038aa1a96a6deba24ad676795da711b92f8cf5f54cb4322ec04
+40ef9e15b11e3005f3ff69376ecb29bb66e8fc1b685f2b05fb162fcb35aa
+d7eb2a8ec39b97ab1ff05ef02f8dbbc12085a5cd252cc4010fab7f63dfd5
+7fa1be86f724d37db5faef17ae8e8e537444e8e9db917b270344183473af
+7f47d5703a160d8ef1e772438620d3336b2fbcf6433612e4b5e64fae0329
+8a3c4010c17d93f13ba66d549c69dd58c7d26ddc90285fed831918563a16
+2a7ac2511e2f18c9eb3df905a9dcba65a31cc1c39f07458abb11b4c60346
+aea19070e126982f1dde336e79be0ecd69a8afbe2493d064d4d2ff38788b
+b3038125961302db9761403c3b8019ec641e107425002205a77ae2ae0f4f
+7550d623dd03f0ec0199f42a9a8b89514e2e21baca9b3c8c96ca48cbf9dc
+ee6d6241d713e014b49e83ad85e62a6b2f70b58e4cc72d41ea6fcbdd3b5c
+890c8af0d24200658773b1628c6cc9aaaabb08865ee4c7ff2c513ad7aa23
+155a321213fa94731683a3e282a0e60aa3c87aade3da231465bdd9097f2c
+89a1af8e5b9649143f2d9482546501ea97e8bea2f5d5eea97d4f19bb6835
+3138d3babb2461c08d537491aaede1f23d734c6f099eb5bef6e2ffaaf138
+e5ab71b8b41599091037e440127a4eaedf208c20c8a2fc62eadab191d1ab
+4d5531f826aa6b9fff2797a7f54673e0a3fae09a93a0dfafb8b11d60dc69
+5acf9b7e1a47c31d0b5a0b85b7b50cddff5ac831651d9c7469c2139c7a89
+7d2f868f36c65156921803eccfdbdd1618595ab6d2a9230ef523a1b5ee51
+f2a0d200fc0e94aff7f546593ff2a3eb865d129895af01b8ab6e4616fe20
+9123b6e2b7e0817adc3cdb78ae8b0b1d75f2986ebd8fb24c4de92ac9e8c3
+6afa520636bcad2e6a03d11c268d97fa578561f6e7523e042c4cc73a0eac
+7a841907450e83d8e7a8de4db5085f6e8b25dc85b59e018380f4b9523a7f
+02cbeec989f0221b7681ec427519062b429dcd8fc2e4f81173519f88e2e4
+3798b90a84060920f6ae789afd6a9182e7fec87cd2d4235d37a65c3f3bcc
+c742c89cbe5f3e2ba6c4f40ebba162e12569d20684cc167685285a087e7a
+0a995fe1939bf25c09553512ba2cf77ef21d2ef8da1c73ba6e5826f4099e
+27d8bc7b3545fc592b75228e70127c15a382774357457cd4586d80dc0bd6
+065aee32acfd5c0523303cece85a3dbf46853b917618c0330146f527c15b
+dbb9f6526964368b2b8593eed1551dad75659565d54c6a0a52da7a8e366f
+dd009ef853491c0fb995e19933cba1dbdc8902721c3ea6017ffdd5851cb8
+3c8bada46075ac121afe13a70e87529e40693157adcc999ed4657e017adf
+f7dbac4bc0d204f204c6f47b769aaf714f9ec1d25226f24d0a1b53e28ac5
+374ab99755852c1431b2486df5fd637e2005a25303345a1c95a15a1189ba
+f6f6883de1ad46d48427b137c2003d210ab2b2f5680f2633939f289d7553
+eb943adf8127f1c3ee7d6453b5566393700ad74ab86eb9a89f8b0380af55
+6b62f51b7dbd0c5dcc9a9fb658944d7ad5845d58dedc2d38200d0ef7cb0f
+76041dc104ef3ab89c1dc2f6a75635d48051c8a7dd9f5e60253a53957ec8
+9d1266566d7ed20d79dfc2807b397d7cf056bdaccdb72528a88aa4987682
+c909b2fe1e35a71c2f29e89a2bf32173967e79610367ce4574ba6a1cc031
+cfb176fc0313f74f91a866ef9954b95b29caf917a6b919586f54d23cb7ce
+23305886ae7760ebd6263df0d3c511ac7afc361df78bc2621f66d3268b99
+078fa59124f0eb9476496c938eb4584e87455dc6f2faa999e938460b31c6
+28021c652acfa12d4556aa4302bbcd043e60389480b796c3fc0b2e51b81e
+c2afa4a34335318a1c5a842dcaa120df414acba2e79ab5cc61c99e98108c
+5cb907a96b30d731131782f9df79aabfc16a20ace8852d047497982e11c8
+26321addf679de8a96a2d18743f6f2c3b2bc397370b10ad273fcfb76b48b
+9dad27cf89ca2c370149cd48ab956e9bbce01cbf8e1f0c661b99cf19b36e
+87b6165dd85ae3f3674525e17d85971093e110520d17f2d6253611e35ec9
+e17000e48e2926454c1e8eb4098e0115b49536f2c33505eb5e574f7a414b
+e176398c5ddf6d846ea5ddf2a5e94c0422e0115c57a8c9e56bf8ba962c82
+698c96bd6138baaca7347e44352cc62df4eeba364954ad921a5a43280980
+264df4a7fb29d005423179f7bd1d98b4280d62ce23c927551f1ffc2b8f17
+0a9c23656c0c91b640cdcfdbd88089ffb28d3ac68bad25dbbed82c083696
+1f9f86a6183cc1061ffdb32279796569d05b31c946955402d0be1fb9f2bf
+304d1ad8e1e357be49e6e2ee67f7f1e7bc699d46a5f7853fe659ba2e1930
+0d3e3ea658b9862701dcab08fdd23bf1d751777f25efbe9e02d12b5612b3
+c3fc2275190346b94ec4024e4ade08e54d75c0b4c48f4956b9182e8ce997
+74b54da4a9318c099d89f1ce3b6803a95f48b9fb8b845372be25e54478e8
+49e4707ea03a36e134efa661e4e6250d89649ae074cfd9d6b9e2071c1099
+3b8a5a5ebc3e1cb228c97565aef7f254e3f90af8a3dd281c83792755719d
+c6a5b3bab4aa6be5afe9624050eee8dfb13b018f4088c932cd48ace38dfe
+b1b4218dba8f7fada6628076acf1b54db0c95d4fb12232f1fa9d1ba848f9
+fe80c65b75d6946c00fe78839142c5302707d9269b24565dbcc551aca060
+b4d0f99b961dd3cc795a982063ac42e9fc81fc98add42744a9f92e74b00d
+637ee4606ea2099b6c763493c3159f8e52a90dafca682010c0e92bc9038a
+10abb066c75c8d97f7ad6fb1a37136e52cf2093c4fa485fe12adad10e4d0
+83b78b023628ddc5326cbf8392516027a9f3de4945f93488e4a1997efd2a
+22c2c136dbac1bdb829e082beac48cdd06dcb17bacf09451c7b636bd49a8
+fc60cb1d2292250bea78e1dd276725ab4c526b66ddabf4e1b2bf0a2571df
+2490df70735f5da321fac74fe4fab54444e53dace9832cff38a70c58104a
+4f0c0545dcf7a1a9ecb54e0e32d6d8195d30b2c98a567741fcf325a4ddeb
+244a1a35676e246ddc835fac13b569f35f22ec93191eca3efbe17ff9a950
+d08f863710b2bbecec969068c498eb2338b68f3fc3f5447449fe4de2b065
+e068ecd9255d369b2bb6c4b0b7423774bed69294758aca2bdb1a8d5bf618
+d3fa09462f7838e8a79b7a53bebe6dacb0a1561eaa074bc6f069f6a06fb2
+c4a5cb13e2172bce9be659a82665da5cded73da84322bb16aa6e19ac1958
+7515cb5d2b65e65e803f76700ce5efd3df7fe4ed431fae0e8e286b1d5056
+a0d18df926b2be7a93c503ab903abd4788680a6201fdc299f2cb5d6a9b6e
+2048109c8d1fb633a54128938594b2cce86a7e0185e7d59e6536584039ec
+9e30ff7be6ddba9fdba82de7415fdc47de84d97afb1aa3ba495bd91dee9d
+f3b21ee1164987dd8510925087cd0919f1085cba6e4dd3c7384d26667f94
+ad7f736a60d8bd76dfaa4b53c23536fc309ff2317c48ee0107ff2ca4d1b3
+f78c5a27b901c931128bdb636094ef0cd543a5b62b7dbe10ed83aed5780c
+a16067a4a7e8b7c5bf8a8e822149bc1b5bcdabe13a7f6aa6eaeff24a42f4
+a58a2b70f545103540169137fda9abb589f734b6776cb50402d6123ce802
+10dce05e3697a98c9411cf60a02c278c91e03d540b936cd00c668960e357
+1aeaf4d94cfb496b259ec0d8fdba9199fb46634ff177bc8d310ea1314eef
+d46c927a981c58e88743ed4e07d80fe841edee812e3053412bf2e710146c
+b25dec8ea70c38bb1f6e4db3c2e8ba521963c1584eeb60ea1e9555058f13
+e98307c13cbd15c26b611f543149b1ddf88dd6296ae703f58daeb67f1b03
+ab5b24c72d5770cb9d8ed242c4faaad1dd940ada00e98ff3a61799d13355
+aba916910aa9a6e5ee8af438d0ba8235346fcd139b9d2cb7db7bd3f298a3
+94ff0aff3b9042f32a004e042c346a5ea35917f229848a9c5a32909b0090
+4aa715640277a6ada99f8b2927fda22899ff1347f42bac73e2bd4bbf3945
+55fd7dd30d5c6dadf5c259fdb2455d8c607de1c5da588e20159f18e4e8da
+b714e532d888a0386c52c2b85964251af003ac9d10c0c8b9b3465e1dde48
+2e74a29e17a7cf6c9a43b5af1646f0b8508f98e9a1279ec3908073d89dcb
+aa093e8dd1004c1ecccce0803095b0069d4be7a1eb14b02efc37d137dfe3
+f0190bc9628069abc257f45d0e050e60c7f5281277937dd986fcd5b94a2b
+845a1a75addd74a142800f18ef408c08a2c2ad16a93298f148c0ae7d2990
+ded147f92f053809a60d4f992a227167aad5b5eb2bbe8a4a77dc77a08b72
+6acb34422e2532eec7e274e4a42d71ee584f5f3df5a3a5b379974ede73ab
+5f1b0a2dbfcc8cfac4747ca26eb6030dc2f85a104b754432977850c093b9
+97ed90af711b544ff682e7b1eac82b2b7b44014b09c17ecf084c994a095d
+9eeef5391305caf093b62ac9916f982a436d521fcf4d75c5b8e4d92266fd
+e99a58aa39d7693ecd1796b8851761d64bbca39a6d5a0b4533ae47123327
+f98d0ad0e8b36625cc3647b55459552906d8a1d5766845ffac101980efcf
+79657e365510be5db557cefef21193ca3cf3dad175ee2e7ae91d174fdc06
+2ff5c51ffe2f021122e96df042019d3a1883e662537ec1b69c11fbb6e750
+0132eabf5803c816153ecbff60ca3b3b39708c26cb1751afb2e65d8e5f4a
+c4397a88fb1f112672fcdd24e4ba545c5b2a7968c17b62f8e2530a8acbff
+cfca82c64b7abcab84e2c4a0a7ced67b15669301fe9ff2c756e70ff7ce33
+497be6acc4ac5617e1f043bd8a87416299a39bf17fc31c02d72d75fdc2a1
+e60669fa4d5e4a49d9afea2f53f4626680e9c0dfca223529efa415c4343a
+b6067aa800c484457ea050eaaa5d3fafeedd0eec72f327e02c6b3912b5a8
+c404de4839c9c4a99da42681cde43316606a34c7d2f02269de1aab776857
+e668f35946af4d618d36d444bdc02b1f63ea25b6260b4fb606ac8575b5c9
+782a5de4037350d5753b1537537ccb008c454eeb264e6cd4727c999e240e
+0ac89e95a896b67d54910a3531345f64198ad394b5ceb52881f1dd9e6beb
+95862dc188d45b3e46aacb5fe40097947dab9bc3c1ee46bfc9b1b3ed6167
+efd0d65ceb043d7b24c1456676e4baa47b1209a315f199bb3a91f4374cd9
+cc0b40d3f09f19f8dd8a46915eee55eeeeb3c7b8f437106ee491ef0f4ff9
+2c5c6f779e0fbe7bd5293964bb645ca362b106abeb773571d9ae83b786a3
+d5a4ea3ea970daadc46cc5e6037f76fd20e0fffc47cf4e7af9522b91f96b
+3297720fd45d9bc2200622ad2ca9445556c8a8202b1991bc63da360d021d
+55be2528e043f803e08da99b91ab9cfc5e65b2655d78206b4aecd445a7b0
+1caa0d06b0a55e8f04b70b60b04a860c8e1ab439f4910051e3f7441b47c7
+8aa3ab8519f181a9e833f3242fa58d02ed76bf0031f71f9def8484ecced8
+b6e41aca56176b6b32a2443d12492c8a0f5ba8a3e227219dfd1dd23fcb48
+fcfd255dbbf3e198874e607399db8d8498e719f00e9ed8bdd96c88817606
+357a0063c23854e64ad4e59ddd5060845b2c4cddd00c40081458f8ee02c7
+303c11747bd104440046bf2d09794fca2c4beb23ed1b66d9ccb9a4dd57ad
+a24943461ecc00704c916bdc621bfddb17913dfb0f3513b65f3ab015786a
+caa51ee9546bc8ddf87e2e104137e35ddf8f8d23724e9a53824169bc7cfa
+99562656e6f1c888d4dbff0b269c5d1e733e5f212d91297610201eb43249
+35e336dd0052738db2d64f3e89429903bb5c1810009cf766e9a06223dd2f
+219b706394a121dc029af55c6ada9052af59682ef7c51e121cf16f0319ac
+0aa9512ef900c548d673fe361da19052808797e958209072e145d46ec8cc
+a89fafd76630eff30ae979973bdf0f8c9e469d8edd3b1c93731c72f976b7
+d81142bc15c376403f967affaa5f482efd57c6f91970729d16db851f0ed3
+ea7d82f409307b5b436886c1beda94a1fa3ab1b60686f6574c844fb2c0b3
+a07174dc4f27b4fed2f8bd4d5436be4b343e5efdf0400d235bd910255341
+a20770804a26f8437e9bce6da8e9f8258a343c7aee291f1510be306ae67a
+ab1d7696453530c02fd153bbe49dbf62baad6146029cbd1656cdb76c952c
+b93edfee76fe33832930be59636bb947e8ad285f20f663cccf484fba97d6
+7446c7b6c6f5857428bb1737d9ae801df75d9cb4d7bd59ef7a4cbadde928
+38f15d232005585d2e40483d2d3e08cc8f398bb43afedb84343c3ba3835d
+0ba82a86dce859cf655f85e63e41365e0dbefcf511b9a27a2b6e66b2ad3a
+c657902842287a317e46ceaa93b5088f09d53a65815b44538af90ad3b06b
+4e5e2dc509f02e30a01e05201c67d4d39582bbe64e20b669f5fd787909a3
+30fc50a95b31426bbb57a4fbf9feacdc31f98bcf50da7e50c2bfc169c6fd
+ccf213cdb878653bcea372968ea6e31fd30dd55434cc91c0af22179ce669
+a05493f195e12432c6173ae2ac3c94fb83f38210014a9f969ea2b44e99f5
+e5a7317e848d429ad62167a4fc5001149676c0c28cdf59b8d1c5a582f516
+3eee855312777fee6dacbf993f5c058f355dbde6552dc960d336eee445dd
+11d53fd21b745d1e5ec317efbbef25e070d0a36797a6081c356ac2328e64
+e5c55fbc81dc75d9c1575548ece74b8307eef485aa8e28859a2e0435c831
+23a600efb323c362fe9f02407a5411c41a69566cd50add324b63ab939980
+b9d7a929ae4887163cfa7acbfc9fabaab8987a1f6906b9881491cd055b94
+485c968479dbb05b34ed0cd6844729a692978c6928c3392e33e8324ded88
+814cacdac8128e1425c0091a13558100d7cdbed5992795d94d39c32f32dc
+621ab6f3b75187a66741f61d6a9c91d791b1cfc3d0e94d4a76302e0c3f2e
+cbdc51f14f3251aa5c8bb989f0e13ee500b7b7f2f1e52ca970ad8a7b4b99
+57e93126254297380d67179deb8ff1e99d5cdf7a35c5bb9fa7b402e63234
+78640344e1f10c378ad23c5cd1aa18e1e0b308db70d3a624a455f8e291a2
+ee102ad10776208c2d546cb76d89ca8103a8b95f8acc2d2bdc9791324915
+6c9e05429091071f0c5b76d82c8d1c8a69d840fd460922cd2090624bc218
+0c9391005926a25042a55e322060807363462e1cdeab309033124ba3a884
+1db13f39edae04ec52cde9dbde64ddda1ad805141d4230ec76bd81fd98d7
+0d90fa1aaa26ea551bf687ddd6cdcf3de5a446b266c68434f07d9c0b382d
+5816c4e22f22cc03ff78064c6dffb12315c6bcbbf5dc510f5aaabf23471a
+234efceeb4aa2f9af9ea787c014c5587ef162fc5b35e8f4c23b168c6e247
+41d33dcc11d2a56d3ba9d8eed6e79aebf9f0faf1a3aeb89d792d69041f0b
+b8fadfc0aa090effc6ae5e2f13cdbf54b5bed69b039eef2627769613b6f1
+aefe9b66747fe8feaf7455796740f411a770d4a1764f0483719584880f45
+430e38d3af184145892a08b2add234a3f3ee4ccfc9f6995c02392adafccd
+722f366d748cfe9373fbf5f878ed47e9d221fd156bb28369df9e7d2b79da
+76120d135ebaf36cff93beb7e313c2b2de7477176fc19609a1b906c995cd
+defef08899265b6b8aefb44da1aadefd1c523dce5ca1b84c0c652b3009fd
+057789892d4d31764f181754b2e0a62c465587585509989a219711a5e4e2
+5b3b340ca8fdd3f04fef204b1b722b2f6c2ccb00c3cf1a94ba9bdfbfeda9
+e2a062c6f1ced3b8aae5dae32ade1fca1001f98d0ad0e8b36625cc3647b5
+5459552906d8a788eb8bc734ccb65fe9582c71df94fd95d22c5323de235c
+28220fb9a2ccb37362174d8cd5922c9e5a87b51d0668555100a33e33750e
+f1f795cbed962494a994be7ce8cf71fc58ff4204551b1615ed27cf088171
+fd000b72462b67935961e7c6c3a05bfd67b9ba094ea2c16fdf486da912e1
+e97bfd1c17934535e551cede20c001b5d2adb2be4cbad7d6ba0bdeae4b1a
+a739f90293e67ecbdeea4d35825e092697fb05b215083e3f3d6be260790e
+2a175fd44eb1c4c16759504827a6eb58a838c4d65fec6eef108495577019
+15740cac164111892e8d1cc447cd208e243a89ab847d8ebf4fb98bff49e7
+a3453facf3b0e8cb67590f390173ddba68324531d2e426aed152e12301d7
+538c1f3c0048a9cc00c009a1a9138460082123209c1e007266fbf236eb72
+21f87d4ca38a0b699e84ca230ffb5095f90a6528bf2a9118f95ac9ab8d2d
+ed9eed9b8b27be894b717469758c8d94fa89acc64f530f432d0e5f16c922
+36d6a63410f099c9e909450fd731d698ef658d8ffc1de14817b850814f68
+1a4a9be5cc7a71c381974c249f0b209bfdc2e97f9540c96f57bb4d283622
+00969b82011315289e6a025b137030a0af3b4b42b00fed7cec49df43c59e
+3b2495a036dd1b17a8e6adae63bfbbd48807c44b5bbf71813355e1b0e58e
+22b6fb88005fc55565be49c17244901b73ef02fc4eb7669be5af22d89c0d
+dff0fc6821d810d13e5821d48d4a71d7e463d5b60bc279d0dcf5f8da3a95
+905b56d6f2be95e6d4243b1048e3b662e62401ffaa3bc3f5f90b0854b8a3
+8c38039f61fcb359b06bbb7d59e3b39a295dccd6db9a8b83a6f64ef8dc94
+a77123dd164cfd1c46f1ee51aa19c3d6e7db92a298d10159f2b5eff2caf9
+dc93a6d267fb65bd900d6adf0c6be598050b6d3a9b3a322ab3c9e880d774
+1f58016ff97e5f606b5dbd72ba99252c669209bb556dd5be84fdd7c1ce92
+8a3b3d3aab8d37e6b740227563bb4d60f6bb04052356e1a48d2079feca44
+7ea17fd06f208426d045dee660d1d6460455f8d20dbc5ae64550bbdf60d7
+27d96cc9afef842a8c8c78ea2257e6c6d0d207c80cfe399e8874c693274e
+d2c2022d303ca50a70624b07434fb85040a76a823f446c7454dab4f9c05f
+10274eb5ba164aa3649d1bc90694316ba5cb3e7df4442e777124cff7ebef
+53df2320a0c441ab61666493cb43da46d5711c21699de85bc74359444da2
+e3e397d4c16234f81531505b621aa242a6698886f82b447104b1f1062f60
+b5c87cea9151bb3c627bfa4532b06fd147c556ed8d61ae30a8719dfb8705
+f8a6c74368381403640cc57026d3790c49e2bbd1c0e48285ec6ba44de678
+e3a1394d659c412f09644b83ee1a333a1f51ad8deb4e6d77b3b226ac2c4f
+fe653411a7976ae7c4a3cb7df309788da6b483f8a7bab4a6990db74362f5
+bc41d545a320389b2599fd726e426ed9fa2916ece67b058f6a269544e517
+128bda38d117f402409d0d8f8c88ed509aa2ba882e0c579b45af4be80770
+22d7269684eaf0f9afc3054316da6611e3fd260d67fb6fe52c9ade5dda24
+a0050a819ed21342aac9d25194778beb3145f56a66980f620998923521ea
+3f957b6ed0c5470734af9f416a16427dd03eff9a0e023452097d4ef936d5
+49a90823cef6de340a1ee02a52851b310cbcf41ae274947a62f9d1d8702a
+669023e3caf967204a340694b45fecbda4bf9552f6bdc62d43b3b2c3d571
+9983c182453e22ee34241ab908e667115f7988174684cd70084aefc55caa
+f5352a88e9dac45d1ea0e032af61fe9a9118a3931b2050fc6db66ab96a39
+74353b597f34dfd9f72150de23285eda5e555a607d198c291965a7233715
+3f4946a57af0b440ff8567b01a6f46c6d32fea5f8bf57d89dccbab7da882
+ee6c9260e89443b1d7db099477492bd0468850df3db668d741123e7ebe3d
+c21748ab4c5cbeb5de33b8963aecafe76bba0c4f6ed8e8263a116ed85e58
+fb71ec4ab0071301be7c7d3afd5fa6ad46c0232807bb7fe129e44bfd16e9
+fd0c8bb5e7cdd86a78b5fb0669093c22eda9151d85b6f58a9c8ead3727c0
+09850bd31a8b4a873d0a506240bb2aeccb8dcb6369532f21d9b967aa8443
+fd6d77cb2d65c4678a5fad188db85940f0a187aa1031dcf5b8e0d0cbfb6d
+b3b96fedec5b249b7a69de9b42dfa605bd622de7a220cce9b66e9f3394d6
+13487dc5e82c1e619079cd057b1e19ac05ebdfd7c8bf01c6c66fab49e0b6
+613df9e42beae2f7b9407a2bff8896d8035cea0fd5c11bc5889cb3d90876
+61766138d2625f42d0244adca65d1bc73989328c0eea0b97c7c766285ab3
+351ce2b183f774488a8806c33178090a3808f0ce5e339b87cf7add933301
+ca486742831ca751f0626864ce13172829a8419af5c78794a0eaa17b5bcd
+fcb684f7d4bb7af15deb432e44dc7dedf56eb8bea08b46f1e8123a49a349
+a7cbccf833a528f5e22d2d463040e09b91e543a2f33077b3e7b9ecc64f14
+306186cdae1fc317a6ced7e9b4d51a10bbbcf2fadff876b4d9082e3f4aef
+dfef230e4232572f4fa33a6e065f6895aa2ea96c5659cb579b023179f0fe
+de7ba64bbd9362a7b2b8c4eaec254915629e81d01c839096339b99bc9e25
+84536955feaa52fa20666f65bafd9b2e69c3e8c15d24fa407e7d881679b1
+789a0e2a695d13553c92c0214c9b7562cd6a9a3d77c8b0c2196cef76dc51
+d855c1dac37f96eae4cc7bf07e17dc7c08333d7af33c8b2965ea1f23446b
+3c96c52b30ea628ad572694d145b58a606f90b278290297aa372cff56b6f
+56f4aad6612eb7c7bd07db4f7d1a70d8044d16d0b5c1605ee02a852ffdb4
+450147b3f9b87d72dc431b34fcdc899462dcc1b6bb6ab1758b6a589e91e5
+8f5196251d00133b43749b7a11fb67a22664c5e38e336dbdeb5509c2d9d6
+2642c07275949df0e2db59314ae0fb34641fc171d3fe1289f919136d853c
+d9048ee9db50c699c49e27a8df199590bbc65b23b55bb387eed0c73f2db5
+1cb091f8c22af83103f214199e371f7de1df23f757817200be30610004df
+81fe8ed6eba79e856fca21a126ca326ad2f313c16e15754663ad6a065e08
+4050ff005fc899d6e233691b918a093b5f1ffda8839ab23ae66b1bb7b953
+0a7f896ec55de6fb9faf1b49656ff2e57488cd7f1c44114c75f9d571461f
+767a6040ffa14e9fb43096f164d60ca530d7cca76d526d1999ac1b52a793
+28651112a65db1f2564ecf90ea6bf2c9ecf515640719c3fb5e36cfc58591
+e227793f39b9d3a9025cb10f324a95c29c488724aa74812366ff0b118fc7
+19f9fd0f202a040be47ec99b46b4dfc3d2a17902a5779c8d52b27231a1bb
+5cd794c838daddc3e6824ca8297ba669a818c239b389400faf17aa04b802
+f763029edb9784dfdc42f223e6496a938e613463bf9bbbd59d63300a9ad7
+4e71865cac4b4e81a5864388c3886e70799c8989188341f7d17cb514cd99
+3b211883f171ec6402cc361885f4f4b110757bb3e52941a94bfaebb2faa0
+3e32eb72e25e31abdde82c2a9015478afa0f434ae3f8b97a4bef598d6eda
+44ffe1915c26ee0e8339d2d45a6a080550f538ded5542c8b96ca2f596979
+8bb6223e460e857516ab5a3323136ee8fc4b0556a7c39d0cf7acb45e48be
+4ae9db325e4750b73289e36a61b301795bdb2ca2a8b933be1c09fd0cd2cb
+8677df171d36ef1519a2269b21e4103b2ee151c513df3e10b2a216d6fb22
+18bf2005fa7e0f0563ad96661a7f55e1b5b991f8ca285651b2683c6a7c9d
+2d1941374989b06f2e9b42a6af60193dc758dd8e9fcfc7c1aa06eab47e81
+bd79660666defac0c6b9e484df9c17a61ce7a61ef73150e8cd406af6da17
+4d9c2392cc420eddda40f975ffbeacad8ce1b4e14bee29ba8552ff03376f
+c034784b38dc1d0ab7bc53943d2545b03d39797af8d58d6dffce56a353d9
+bebc833f04db321ca8642bbb7fcc63ed2349ffa08a33a5d0d78f4fd2c5ea
+4258e4671e362036f1f67fcef9d878ae2c203fd9c05200c59cc98633e65a
+99d912ec51d6f74500d5358b70e799a6817f59adfc43365d7bba1fd6766c
+5c8e76248daf3f01e7a8950fe875d657397797a45e7f99a92887300b6806
+b86db61e03c4c09d6cf507800aeead874a94e6f665746752937214302045
+0b19cfa8db69230517183a03a16e5503882ea1e419c333d3e3b73cef6762
+873ac06bec34c3f736494483442619f5bbadd86f128a5a40b854051893ea
+8d31dd6656777ad4ac2572d17c6fb21385b053495d1270e65d78334a4115
+2787ea89b86f97e72718905a11e9c5664837701a3c1c65ccaf26aebe8dab
+c1207d5da2079c37883d9235708f370203b3b2a8ec3a5bb35fab93dae115
+aef626dc44b67ca56fac18caf1c22e6fbab93564829a75776630b9c42513
+721ca0fbb0b402f4d1db8f701d2b29fa60162feaa8a167eb3113c6f57036
+e8361357913eb24dd38dc6d3bf4c3176a07ffc75cecf8e5940a310f79a8e
+f590844383d631796ade04a91144d073a9413cff34fb454f1fd75cfbe5e6
+525c3bd36ddab80138f6c19aad7417d47df1f1e0fc958fb190a8205b5321
+7c43a4dcb0599be404473d6faebe7240dc402a0e0caa21b56a601b154524
+f44988e5074c71ae8e1948bb2a2ce72fc24cf3b1813cf7408a6b097aff22
+f9d285134d09b7053464259531eb7b270cd5f39f81bbf41a36420f61e5f6
+b429036bbf20e27af1a437becd74c5bbc25ee2519402454fc94d430636e1
+736fe65a643d9b9d21c9a54eac5a8fed51ff60a47b85a0e9423e330e00cf
+220c23e056d20aec2fca3e6bc7a61a8366eb940c9bc99fb90e8704e27655
+20335a983eccc7e20b13745c4b4f30a842f1ba64745718c152697c688c73
+6cffcf5cc8eb5756201560413117a45ad3d264291cd51404f98448d31474
+d47d17d201def12867ba679f0e2605de8f3e8135ed0234890cffa68848f0
+6de427741b34c2ea654251ae8450a152538eb806ace3ecfe86d8c4a137ec
+c98c6d6cbdc191a5f8f5b5972c70b4896960037b6d4c7c63586a52d5eb59
+47af8c192eb980d0801fa670bb1d08740819f9da1dd9e153010bf9580a1d
+0925d8327ea1b88db8d934f40266ddf93e5ea137f267847d826cd7999b33
+c795d0ac05abe2ec1770dd98eea67912f1939118defc9b379e237d6477bc
+91ad08e0046b0836fafa1272b0213dce990c90815f5b30d0eb103ac9539c
+2f7bd2280264cd95b4be84cbc5139a7628ed211905dcb92cbc3180ac9e6b
+b9ecc3cb08608b2395827d5729781dea49d328ba0c1b4cf2cec9f6bbc822
+1f2bbbb9d88f9e7682b9ecc06b9705faa8a90a51678183db1e24cc2c4307
+e16b3c20f08f179ec69df7a8c4261427f5886f9179c493bf2d0ef36640d7
+79925585724aba69df6d1b4f0bd2a356eedfd74a88bea667b102420c2300
+ec420e99b9ce8be1472b617e1255a7f43a0b52f11657f1a4dbb624a24886
+9604fe2062b98f5787d010723e520a4f42a0c3943e151ee627f3d5db90e0
+7747e1a88a53c4784c8d2b042b9c23c9e436d7d88343171161a364cd8961
+37a19582a00d774ef01c7c3fc9e9c7be5074c858d2bacd707a6a4f322027
+137d6ca0421ed9f9c7e7229e867678e5272cfc7156a419e893404ad7dabf
+a5d8b6fd0787cb4fe1a901c34dd931f1b64f0c470ff807005fb66350d0ea
+eb84ebef2c2399cd14a4454ea5004bddd99988b39c4134b92121ec77faee
+55cc716eecc58b594b39c41dcab308efa4458ed71943ec5805dcd0194ddc
+1ba04a5d3d42d07ac62a907ea25cd2a7e77aba470324d41dc1a3fe088388
+787b3312f472cb4f23a414fa5f7c7a0cc5d121d7642b5b3f0cf7ca2173af
+3f878f374938251feb3ce5ddd2d7703fc79a130978ac516daf70ae903799
+28bea3a4296f48725d578d2e8fb0f932e398404fa8a242024bc011c0ae81
+7b92bb104712253a5d89c543a744332069e33ca08bd133211d233ef799f2
+fed6a20a9073021e505def8b79e1279dacc062cfd4dddc2e8e0a7fda5dd6
+bb5a745f99cccb7ec1df532308da3da0f236c74639c280ea649b2f7ec27d
+24221470b642567f3b2e1cd0b3ffa65c5ac986b557aa9b444bf470380435
+abae9b51c6da7ff753810ca7938d8a1c47d2b41fafd236cb5998f3ef365e
+1f700bb257679ba3a82e235a3e97a667a6ad94412839c96dcd49dd86ccbb
+6df8ad01756b311e9fd57ccd2eb2f19f035e214804e2b77769319a5389c2
+35f3ca2a73c616c9ef0984abcba167d7d652b330c68f4f6378aba69628b4
+2d59eaa2a7e4c782f6eb96f6758d17d35650b15cb5de9bf973b3b6f67c1d
+f3285be8322fc2b44359640a3ba5d6d7b96142583a00a9a0ef84fbf14046
+09ad55b2aefe8c5c8f58ed21623bf765f81dbb6cca6d2a51fb7730a14839
+392cad6b47f5e03448350ab36a37d9ff2b9dab69be5196511072b10cc91f
+2e6b5160b2b1bd112e6c02d14063a9bb46977b0d4bc79b921fd942f916c9
+c5708e0d133c8309de2f6ee0b1afc996c889c36de20fbbbfd32878f477cd
+7735c7c3fa59e9c46e654ea20b4381d9f6c6431082e6918d532bcd539284
+af0333a783c9e7fd4fa1e4da5ce8fea2ea4037644a24532d65fa5c1ee982
+89e4b9abaf71a35d308a9b8c337f70babc5fc8dbb0327143707ca5b675c5
+2d3cf09f7a4f667fcda03d8c82d157e661517787ce6bfb35ea772de13c66
+2bd24b74ff9ab0fbcf6635d8e06b54b5b3125d17ae13d175cb7922338ec8
+9d1159fea2110995ce48f7d2b094f06d11d59b3a64a44a83d48c78855e47
+21243e82d9858401b094a236fa0a90d61863931c30d13b9bf33a35ac0d11
+a999f2b4dfba6fc187f8c235a5217d777a5a97112e7db6a8a4b06b07d9c9
+f41820e233c8b58b9e47ac56ad1ddcc0b35dd03976bc776c6ac3692ec0ca
+f8c75ea7825bc84156468ca7b269d890ec9d4a365b0b31d2f6530185d5e0
+2acc3ce14eea55ebb5667067825a8682e135d23c78863d32065ddcf1a755
+e0de6dea7220d1a28416b96db40b1e9f159aeb070c9a9515f301f162b0cf
+e32c6c89287de6e2b40458e3393826189a10af8517ff5a10c41c9d05d999
+aa9305a2ee8e7fe46076bc9c5722ee0a140a144ae383e84a8abe70af5d29
+96a0a896cd499caa0ed7867e7c3aac563763216e7769d12218b584d853ec
+01db93ca22d0c8d6b286b20b6b26d6ef19f2cebe7030ecaa68d069fac7a0
+09d61770b5e8f83024a99142f59d88297cb8d093992c3c6c11b043b151e8
+20df640407d8bc829bfc196bf2901e63c6f16102d03ffb7c54a7a560f5f9
+5cf8379f4a2eccdcb604bd553e6157b4381940d1b3c768dbfbf2618812f5
+7fbe744b3d8ad680dd9223d8bf2412ecbb614d05b485e3b4669d22b417f5
+02cce2d705c208b15fa83b5be77ccfc1c840f385a58ae49fbe6ab4e53912
+473630e0cfecefab95ebc632a2b10a2103bfe801ca0302542080cfb4cf4d
+4c241b1a6c8d28114516e3f1bf39dc02db73e6d9a797279acfd79b02a71b
+ae34860dd0e11b18954129f8dd57c039bb7063a4c92f0f6a1e25f4ae59d6
+6c1cc6b73a79d6a56f7f2a8a64d571caa8a760f4f485d770d000ddf393ba
+784bb27b781c47678dd78ae9b5d5e8b57d163c42c7a55e4aae22061686bf
+aebcede728ff2f65e75955585208c176d100912836b5200a79062d4f09b1
+ba9465b0e937e289160ec543a4cedbbe0cdb5ecfbb4838138ee9e1ac757d
+3c5f04fb6b510b389e2f521759e403bfc8ec6bd79e2d40bdd81901c10dd7
+4620acaac9108940daf03af23f09d3c8b785db562b05e597056406557857
+e96fc8bea53c2c2ccd0ea6572abb0acacfe29e737173d665ab6dc2995f60
+807aaa4073a183aed23c26c67eb137c937999fafc63b66a021125e4ee5c1
+a745ad1fff2bd828dcef392052965ce0e9af7a2c88d730fef69da91083fd
+83d9fe9f73d42a8dbdcaba85b0fa93b210dbf49cdcbf5d4b69e07375fab1
+a39038cc51f66f0b10eebe0cc61f697f7025d9755830b2d65f1ad0db91ef
+ebbfb578053de329935bb28d6ed6c12f748a2f70458990f04d56c35557e3
+8bc5d2e5de7f52bcf00c3bcce091aaa8852d53ac686f8f407baf3f7c8968
+69f3b62f44a5e2291aff9d30d7b5c663658a41add74562dbb0f1062f564a
+9b907846291700151de04c1a55cb945eaa2e7a709218ec56d1becce1c0b7
+dc41d5f016ae8080c3b07311590a0def35337fc3c844c0ccd04926be9fec
+509b1255ef12f368d20601b1ac8c68b0a935f987a21de0f8191604e921ea
+0c04b00dc188fd73499852dbcccd4119ef799472b353be7f7dcc904ddfdb
+920839f3d4a13bb1796f2dc886f31217845f8d7a543aabbc720311fd0e6d
+a31ad3daa06d5e7e6270a34304f35ef170a7abe733428e96b0522fddbb5d
+eb35aacec147067fe066c9ef145246fa3d444d176c274b91fddb8a7bd7ff
+7cc7693c25895bf931eb321dc9d79f662a17691f9bd1662fecbcecf6d1f9
+cd8ddcda56d19811f05fa48bcb492feb355b0ec7c04d6046549c56f7799c
+2cd0d9dade8809de7d510702e525ad9cc82c41b4fb36218e3d72e905c507
+159076a9c0e4a008ccca17bd594c69f5eee656426f865fc1988d677b72ce
+b710b29a0aa8f8337552ae30e93bf7c6e5d013555872dba4737dc5f08c0f
+efd428c66fc8da675373f13f89102688977e18e14dedd7f3b676256b0263
+b66b013617d9a026794b0d6040c23c5506a98530249633a6beec46117c96
+ec036eaf6439e25b8e57754af5ebaaf9b57880ad4fc93f002fb03e9fda21
+df4acb78296b0c49a5a852c134c3b10755177a0dbd6c54ea7a2b9bdac62b
+5d7f3da649df856478e4baf97899e0f891a96536c283f5c81200c51c6ab6
+77285450c7f7e96836b6da5660f6cb76782ddfc64b6fc348ebc3ba4a46f7
+19176296d8c5a31132b3fa7d935a5d777c1dc84d669d564cb4fd689a38ce
+680d0b3b130caea0be43864826d0d154019fd0d865f1c389cd367cb5248e
+24640eb6f66603e50581f6fb5aca6cfec1d6dbf4196da10a5e1ebb14e4ca
+0251c4c8412cc1673d6e7a9666b04b090567efa0b830d2362fd384cb0303
+8a40290597bdaffe429bb89fb66b9dfcfa92f39d92a8baba7266d144ac04
+f069093ebb3fcea961ba4497d3628ad207e0c8c4fac0e5f3f2a663a8d05d
+b6dc33b890ae13d84dce64b495d24cc749b121659373ca31cee09bff2e9e
+e5b62e89d5faa4482a75f341dd172500a54b98fc108a69a3ea94db696513
+d4c7691e0095ed3900cd4489ab008b5460b34ae8dedf3721c60de7086605
+6c391137cf23255c565bf11403bdeecf8bf39ad5e4317a4bb37003b2e7c1
+400c3b8ed7f63719bddf07908dc2decdb0f68e8ef722851c4420303f6de1
+b5efc9b2598732fd1f2cbe45a504bd7fbfdafeade3add7274a1e875aba3c
+4e0abfc6444944b79f95b5009560818f7a0599e5bab4405378fadfe084f1
+653e5a0166714047e8bd4e4cb116596d8089bae9147ec1d62cd94491af75
+a1743d58bafa11b63b447c954a8d7fe11d39d969feac8fa93c614f97807d
+ac62cb7a84a974a0fa555a2e3f0ef662706efcb828ef72e2ea83b29e212d
+f89ffecabcb08dbb7119203c4c5db823bf4e8b698b763fbd4d21e57940d9
+1754959d21f3f649d856ac6615eac692ebcbac555f772eb6ba3cece5ebfb
+cfcc2f3d8dcad7edc697df93aef762cd47cc3ba9e2cdd10940be676efe7a
+a3749170edb47b7562805e3f8bd978b18057c9110ff8d19b466ea238af32
+993e2d3021745b238021f824d887d2e01a7ff12fc6f084b35292f4864579
+406c0f61d0ac7cdf7e4770b424e2ccc22353e6c82bf8ff172973df267ded
+bdaabc2a742beea02e35b9b253f98de9ca131f802deee2905ca1a6dc4608
+19a59b4a4265c723007d0215fc8ac2a91ec5f86cd6aac1e370a297103c3a
+3cff58c7ae201cbaaa8a12c93e95e73974f9abcd678451b1db02ebb2e10c
+c5abfa573a2ea4219fd1851765649318bb556b728d432ec05a86e9894aad
+9cdca63d08642655801bb37f28b6e11b958e8e800c8d521ca4aa045fe9ab
+ac02dc015d18b1901d519181ef60227170a07f3328a6d5fe4c5aedb35fc1
+3dbe86564a9b1dd4c7ec648880360cdd1742ed4ac409450f1d9681cb5e46
+5edd1de2a2c7f8ed63436f98e849504ae71bb872683ae107ad5df3ca0b47
+a5b79513e02d7c540257d465ae4521cb3449d79c931e2ce8c5b0a0a4ac88
+cef7b9e5f92bf721ad51682d6b6f6c14747f78eaac1891fe29aed4eaf177
+e3d2fc655ae889c0c30a3575a76c52e95db2f6a4d8ffee9518391954b92d
+39dae4e97c4022031f8ab390b66ada6dc9ab2de4d1dddf26ac4032981a69
+08f73d34b4849ae28832cddc0dcd116a47d9262b0f93c24fbfdf8a78e6ae
+ae3357f3fb89530854257a9db773a1acf5271fc4ca04a06b46dbe661ca11
+9f45e0080cd129e1a7c23a33f1c48af960761b117d9d91fa5a0ed3e47865
+b774a322f7dddfda2960b91fa7ba20c8f9eb213251299ae328b28ef54b0f
+55fd54f8047c555e4045cbd70964e1c953e471408e4f25fe8ca7009bfe44
+0244b1e30dff518ea7ce5078027baba4e07ecf0ebecb497b4bd88f1ff72e
+b261f6dffec0ed895e237b5608d31ef479e8c9ae9003039a5fe67252ee39
+774e1501100c0fcf154f5c5c81c70539e03118ab91f4ce247f6132d46346
+bbbb126c09d7459c1977e6e367a0c83d14edf7dea081e5f795a7c831fd1b
+325b33674ec9c2b68029a0e600746329ea2e1b9bdd5cb2b140468e53c108
+8e8f2567425443f8146ec37101fa4dfccb0e032fff6cdfd76382463551b1
+ae8ca6cbff0e34a3f75ad400a9573217f8cbb00a6d59ff46e48421e97091
+cb17f53f20ebeb89609ea55ed6ba4101f2f3ceccbc7ade21202439ef91d8
+a9a783c22de7e6601b50c4342e094d0eff223494489fa92150425da1b432
+908423fb3f41e0b115ec1ba592a4f920d15610b9fb33f9912aba67912d05
+1ee00a13282c1909a3a56c4ed06f2f4d1739dc296b7492aad0446f87a416
+c6db4d42b504dec3a6756f3d0845ab2d2e151aa5fde12b31a9c3b5ae1cc9
+d97192bc048f00dead66940004281c4d5a92c20b1f77795cb4f98b8eaa7c
+be16f9b9d4a34a1a53e0a0deadb4fb4b20d9e8064d3412ea8d2ebd259b8f
+2f04bf4bf11a5ab7883c99943d762549c3d5866bb6ed85a0e862eafbcfc7
+03bf4b77cecc0d65bce4df33e0d65456397f231f8cbf66672457cf539817
+6aa5292fae24695009e55904a04588659a3a23fa11989b925705ab45f954
+6f862b0e176fddf75b70d9ef7389f750becbffae25d58a1252cc04a79e13
+fbb6a666fd87cec5562c3e14fd78ad05be28ff3871d6fceff5aa8965bb65
+67ec76d105a6348e915b27767f5010011e80e0e2f9c34742a4eeba369e66
+8faf086a45ac9bcdd76c758db01a78602412a4244c759ece0b963d9ea58b
+0efbf4376bf115288803a54cfcf78584c8af80da2a3324096463e3898285
+57de6c6354444b12a74d5e66053f6907c48522cae9e93bccdb4632131add
+52eb374213888125de71994c31dba481b70b2e4c1f10b865d58ef09fc9dd
+2ca7f69bd2855895256caa5dd6bf7d4d8b341d677c56ca08fd7ba37485b1
+444af8be0dcdb233a512088936ab4d7fc8c03139df396b7408747b142782
+d9406db0dcd31368d2f23ddef61b0da3c0704e9049ccf7f904548c3ca963
+76eadf1ccf77f94c157f5b84f74b0c43466134876a90c5fdc2c53af70c3f
+f5c2d13cb665fed9016454bac1a629361c8ea62f4b2399233e8587db6e75
+a9cde3530f20a68ec155d275a4aa6f63aa5cd115244643b54911c954feca
+d57be2a6c40f1bac38e393969617b066f7d94e8b18dd80fccd0168d4a385
+f2f1489d1dd41b68d47e5ec66ec568333d1f584e3dca90f1367a990630d0
+14355be7dc45378aa111c319838edd441f15e125f928e044640f25ffdcc5
+c116c3f6ce0d4d3195187b22200808366eca9b508ec45e664e562186efec
+a97b22835d384758849605a01973cd9ffc1657b124950c9d9fa3e18b1a20
+7156c4f96f08b87824373c2865845d17a0dda71b1d69f5331c5676d0648b
+ca80a7958a2aa034d7e1e9fafead9248e6e64f9ec327c60ae4f724e1fb95
+8a71e82ac3842768b27b506b5982311557432dc3f270ae6eab23a42fef70
+dd0d407a02cbadeb7b8b74a2523cf46a5f61e52b053c2007f75ae053a96d
+e00646662d027d93f950e516cddff40501c76cd0d7cf76c66b7bcd1998d2
+7a19f52635c8e27511324aabbb641dd524d11d48a946937b7fa0d89a5dbc
+4b582d921811b3fd84c2a432dacb67d684a77ac08845e078e2417c7d9e08
+bd555c5265024aeb55fef4579b46f8c5e79770432c5349d5a65a47ce9338
+e1b599328bb1dff2a838f732852f3debf4bb9b828f9274d03d7cf813b123
+687c5e78a26310d87870bfcb0a76bf32aa20e46f6b2826912e562f503aed
+11e427b7765cd2a68da2ec0609259ff14f57c07963d075e96f8bd2eab9a0
+dc32714dd8905f2627c6d6f33563436bda2d7fa9a976f88947b84c72f454
+bf0b66ca84470375d2ff252b4a2df52ab613d0c8ef0465ff1d809ca82025
+c2122a8f44c56ebfa25690bf6a05675ebb8634ddfd24c3734fe8cb32d6d6
+c69c72a4951cb959175770b4286d383e7a3f158450945c8a2ccf7e54fb19
+aa8d2d98a07f0c55f834f2728d89f82a598269750115a02287c4d415cdaa
+14e1d9e7032684002f90603c0108dd26b40fb569bb21cc63d0da7e9e1873
+9df0a9c85bc340d2b0940860d95571dc244628c59bab449f057e409e58ca
+cc3369f4baa8e53c6765a55620e78341dae06e5cdf2fa5e5ba58634b29ee
+ddfee7f78672e55f18a7debbc30862f278f83f4cc123ab591371f548fbf9
+bd24b3453b9b57051c2e67edff2104f3a05a9f0cb7efd81c1b1b0a2bbe95
+21854902526e5d4fa1b3be270811b972e8726623410cec7911c07f871428
+1caaead97c503714eaadb14ae5923f020093722df1b9d9c055d7d5f95af2
+a9fbc5ab6f6c2bd655f685534d7dc5fbb5ebded6ccdcf369bd83c644dc62
+84c2810495888e9d8f464a42228cdc231d5b561c6b210bc493fc1e7bfd66
+5a6c4055a6a629f571f4f05c15cb2104b4f9d0bd1b1f0ab8252da384eeae
+f5fd5c663ad7a2c29f65a48a30ed8de196f9eb8ea314c6e86989298146a5
+589f76f12664c8d008228b33144679d16ff564453b5e4e9f813191b6c99e
+2680e20a410949ac30691b1428a255b6185b7e3802e8511192e73c376f3d
+eb807ad2727fbb4b27538b3213da0746231b1c1b595a958466155835c537
+e0df4a0ef272d4c3f7f2ef011daed38bc58bb0fd7458e48060db98971bd4
+b24bc7bd0de92573a1c7a80a5fa2b34fbe50271dabeb83aaa4235cb7f63d
+6a6b399360df8b1235e4e9ab59698930044a98d5e083b5f5a5772309b390
+9e1ff2a252734b32fee3940f0e1ba61f54dd1d3f6ff0d57c9ae75a302d14
+b9dd9034279aaca80b6bd05c74bf3d968305a5046910871223a3ef8c77d8
+25d7e6d3d2809e76064c473d1cd7c05666040b6eba647e34588f49fd70a0
+3c937933a2272c938d2fd3aa8149f215bb48f3bb45090bcb9a6ace393a44
+f1a9bda2ad09a5f566b2e8887880afa45a603a63ffe7c188e3eae926a903
+4f1803368e773f42c7391dff1b9ce8599161515c549aca46aebae7db23ec
+8f09db0e0f590aab75e8eb890df354b37cd886bdc230369783a4f22ab51e
+0f623738681b0d3f0099c925b93bbb56411205d63f6c05647b3e460ab354
+1bf98c59f7f6c2ea8f29d8fe08df254d8a16aab686baf6856c4fed3ec96b
+0328738183dbc1eebb2a3d301b0390ed8bd128bd8e7801c89941485c3c86
+22b5f223cb07dca74f0e8643240044e8c376abbd8c82ff98c6dba9b6d244
+5b6cf4189d63c6acd6e45f07485a0fa55eff370da7e71c26469740a68627
+a3c297d2bf215121fb67815b7b9403aecca10d21e59fabcbe38f5ca66e7b
+551b22e28f2d1fd7303d15a42c45bf54b40ef7fc93060ae5164e54f91c55
+20bd303a98d0667a02a900813b260c0343021ac01872fd62cb6abebc7ad3
+a4456805159839ca4a3e35db586221169ded66f852e8974e3815d4d7659f
+6a9bb93585aaf264f06cb6da6a26e51683945224158ea69719b8e4e36eb1
+01333aac974db8f84b051724cf245fe7a4c86582b5dbb9a5d9318180e33b
+8d92c22c44b0d18f8ca34dfa4ee9693c1a26fedece01635fc5eac1fefa81
+32458254ad46dfdfd2be12a1e7f32f3728f286f1d5d4394424a073696b65
+e3c459aee9310752231fa703faf35e11796c4eeef698f4109ca8c46ee322
+5dc2e3e04fa787188e583321f8410b68b9624ff60679d3f25c13e5ea7506
+a3ce8d0bebb99d9a959ad92d8cf909988d9250b310629903d6bfcad4581a
+504b91b2c91889987f36d6fd0be1d0ee5aac00aa0cb48d78a1f7a64a777f
+089573ba79452efcc31c8258fb317369feb0d7ccd48cf13da6d1ccb59a4a
+48ea0b398e590c1169113fed81639e13e96aa268d99cfdb7aee977fbe85f
+f784853a06642b5521ae0a7f610c9739af31ba7a5157ebbbad999e23794a
+d2cf25af987dc85dfa29639957cf28e7f2b7671188045130a6e2785f8d8e
+30e91f0f68c1cc9f2de902952730003e816e4f5703db7a97b4c566f80547
+42fa77be563ef681a4513b9a68b2b0956551c74545cc9883428dfa72fd5c
+4eee93256b26bc86ea34f7427cb0c0cc22c0cc343f739c6c0c46d0923675
+5e04d70587426ef875f8c89ff8492ea23e4e4d763b84a6437a440e69eb70
+65ab6d8cf5f8444a844e6ef3d158b451d121daea2d0e2b423eea24254226
+7eff1b4224c4e80af2a7becac1649e4bbef09f39415e9b1e3750d7ac47a1
+068a4f5ce30840b00574eb4e683e3ec25f6e690feeb0d354568efbc354ba
+813ca1400734a67693af127b0f636d58b83e91548f98e3d87da7fd7cdebf
+f3ecb4b9272d1c83d4980170378d32f1d98b87c440881af9ec052510982a
+0c02ba6743bdc7691a44bae5e044c25304c1a2525cf2c0694494a2e9aa34
+f36af43ab288807ffa4bd418ad51d98c75f2b2f01abfd834d3305682b6b8
+62ef69d05962aac485bb4f560583a5dbb74e967eaf6d299160753ec32249
+bb1d9851d5441cb0c624208e69dc876cd8841a66976b5d7f9c99be68363b
+8112d33d971f2c4f2a1feca88ba1a794ddb725c5e2e2c248082231059aef
+729bb5fee5006ab8809f63e162fc0743c047c7984a9e6333b433fa143d73
+72d4a74fe37314508e04f54dc7a1445e2d6178ec9c041d0cd4fda5cae830
+4b16feb21f3222261c293a8b058dc708405c1a97ff34eee4ca69ff4e1ee2
+a03380d52297574e3aa50c8afb826fc94a14e8caa9ba89d6e92913be9e07
+bf7ae011e6bd142d8952d9c2304735e875d1ddcf82fa9fc0c6449df2acf0
+d5f6cff6d21ef6b2d29022ed79c4226c97f163284f2311cf34d5b0524a1a
+a446645b9d05554f8b49075075f0734b3d1ea31410759c174fcc7305d2c1
+d7128781043cba326251a3375784a506cf32d6a11a4876f85ffa2606fbdf
+27dd16d64b2108d808e33c409dd33f6e0c6079e47e7196016f261e824fba
+b0e4f91a189747053e648ad2d942ece8f582f052668b63a23a2fae4c75a5
+180db7811aac654270ec6e341126e3561429f1d41fe7ba3f1de9f8bbb8d9
+fc5cebdef869376a2e42dcaa578c0807835e58d75c39f91a83d5c1eb86a1
+b0f7aab991f65eef030f212d38d10b1913bff71717c06c78d9a1be136f21
+4be157ba11ba309326c55c23ae8512646751fb82ae200c06bd2e644bed38
+c7cee826cb587ee8ff378b7fdc00ec316bd4a9c24e2c250cb3d64f8ecbb8
+7f4d81626d7f1e4491908bf17c48c84bb1736693eb4d0fe634484cdd590f
+a40ae94d44f348ba683a43004b487f047745fcdfdee2e913328a11a99530
+9bd117e0e5be4fb25d176d59dc2b1842418141190ed9ae1f33e5354cacfd
+a5e4bc186119e1461bcd98517e675276ddf0296d3b3cef617dfa36b4759c
+944fd721e1bf63d45cea90b5817a40d153a2f779e03487cad3c1375425ac
+8cbabf7f754d16cabe45c65f1be4441908e0969d5a5111c931e724537dea
+7cd3fbfec9b2f7d3efa747bf586e9218c3106c49276b89fa28f770fa0644
+fe1f3fe3adf07f59c755a5b39a2ac1d6f23c256a293bf3b31b6b9cf4c622
+b188d6e7401c038657c78bfde9ba09f508f1bbe3ed79793772cfc928c4da
+519f7dbf3ff7074284437d2de8d7b7c78829642d924abacf353119e9088d
+14739935a23667c432806085c3af71ffb7c5fe6b4412b9b1044c1e62ee0a
+a5ce7e0322bc65a8c7d874270d84136526e52d0c7f9f93199c6bb7301216
+a19bebcef3c5633f21d012b448d367157ad928e21f8e471e46982bc46a7f
+df1bf816a86dc62657c4ebf286134b327ce363ab6a66634eaa2a42e99034
+069fe1302febf06959eab8e7304da4d94a83ac1650a02c38c1c4b7e65c43
+e3a6fb0213e57ac49e58721a4f36996069caedefeb48f1a59303459d5873
+f3bedcdb9d00c1cf31130c27b60928f210e1aa5e1c8e04b86d2049f31265
+9198fa646c53afa9058eb8ceb41bda65f415c79ac92af5790b176de1d300
+f1c06b782d584f458dbd07d32c427d894f84215a8e7819e295ee98d976d5
+644f11920ff2f49cb1075c3bb42b9fe4b561362902f11a75669b7e7c4475
+b65f1ae48834cd67816eb63b58cda2f50bc22eeb0cc965569b476bedded1
+2701668f609393659b266bb0e37bb27afc90bca271366e34754383363592
+0f9a3b508aabfe8deef585b07a992460c592a150b325b1e50e4214a2f483
+e9dfc826c54b488493a96eaa37276f5a9666f0a5388fe388263d2c0cf614
+c6cd01571da4389f01fcdbd0ade1c435d64c5921b5bf7dbebd5268100a03
+1e1abb8cbd83873089a9e08cf80276c7e30d2bb40280278c29fa818eb079
+87623b1cfe13e0b01e27be0a8320b69b5afee820f4705202158b7f3059b3
+655bc28a754d088fde23d43d6a9389da8bc1cf3e8ea1a6f4328c196e655e
+42184444d8c0614c7167c91a492c24c8357794c61f5e47cdaf4b38004a5c
+8fceaa8151e929328bce1b8f67b22034f3f75e4d105283337c3d460e7d99
+89920c43f5e1449c74ad6ab5ea029cc6e497ea60068451c4ef2132fb87ae
+049077a156c868b768df4a4c475a532e2a22d999931c64f8bcc18f51d25f
+0f94fbd3e9e6c094f78da062f80c4aa2b86fa572cc469e629deb4ba0c553
+55e8422b562ed2f694d0e8e5540144e30841d7593b255edd4a61dd345d5a
+00e411d2c50d64782a3ebedf945fc31c00d2fe4ca800f5aeeaf12ab399db
+956362e979bd7ef0787188e43835e5389ac444d13204af6bf1875622f175
+09f32015c28729cfa3b3cca90308eefaf260e3fd9df10f3e76786b8bc0eb
+a30e8cd33689aabc55e3ce387cdb89a30573495852a48009cb58a0fd34bd
+da911159ccacc94698ffb94c5f45f15ecc9e82365174cefbe746f95eee44
+7a33b4d823487e203478eeb2d8c4bc7b743427778249c56e48fe17d0a501
+7b693509ddfe1f42bdef97aedcc26ceffa9357dd985cdf2c70bbfc987354
+6f0aa7df227ec42f9ca2482f58809e3f9650444568c54d3520bd0a7301ef
+48bfebef1fc4332b5ca851fd786c1ece136fe9e575b69393b5aec2611903
+fae6e7a5046e2ff350becb8700f209b1131044afd32fed1bc1297b6a2f29
+6ec3b87f170e92aabacc8867360e4dbce9ea29f0c1df981f6cecc8986767
+0ccfb4c9faeaad7ca9029b8ff0129fec4a040f80ead041b3bc8af7526675
+ed9e13204e64d76440a097d77c535d34165bfe9ffcade530abcc75ae224e
+890d5c110004e218bd827a02ac7340e18bf3684c43e664e0a37d5fd4fd1c
+4d4489d25a99d542c16e06685652cfa3567da4eb0cb517be1482939da0cd
+d0ea3519ad1e51bd9dc7b9077375a8cd3b5de9888697e853bacddbbdd1a3
+0e442e1d6f2d652046821813d0cc0e8f16c97cdd32daf239f5b2b65ef620
+46f6e9821b2e2ec539302747795fa746318514d38bdf0d0e490c00e114d5
+03e7fc9a8fb83b14337a5bb4d640b52630f5450bb3bfcf7cecfbb1ef5192
+ae401265450db197bcfa07315ff95a809bc5fb4249e3a728a817f2580ae3
+50d8d6577f79c883ab4a3119d9ab98219aed0d1e826023a66da814396058
+d95e52d9af8bdbcb0454721f27855b686d13bdb473f650c9865f3e04f08d
+b10f5256a3e59bcf16b12a84bb7ef3b370647cdad5929b722a05f5b3669e
+14c232bb82fcb9c1dd8155ff4515f4e83c895cafb86754e896f38e5f3beb
+5d29f1bd99cb8a09c5e50f412f6d8a773b79021ab2c4831aa663c5defc4d
+553616874dd5bd8b75c7a2af7d029aab5a72528fbc4b5ee3d30d523412c9
+60b432434017c4cd68b2062d28f307fc287e11663511d1a6b52143afac0d
+ce0f7ba3f326fb707fb8d2c985dd60090e6664f2344e098a7a1a6448026a
+2ee651e8141cd7786b6543f512e4c31d25dcaf6652b1eb52706300b771cc
+0c49295067befc044ea46341927123ad4b7d094784bda7fa7b568853d0b6
+1e4cc39e1abcc9479f91a2501009ae34ef7d5ff56205cf5288503591cc55
+c48abcc78daa4804549562afc713a4c11152e6e4331619b2e474a25ffb62
+7c46112fa4259f07871f8d6882e9a7ec62d20a86a0c502815d0a8f3f5ce7
+cb4a6a74b6db8e17d54bc919b82c7c729cc05b98855b9d8a0fabd8a9bdfd
+4333f395607631f57c0473be0fb290c4f40a7aa6ac49208570ffa1d0f849
+d4871ebcf9ef6f5106301cf54ff8cc9918d6de74d519fccba58bb1c21543
+f3bca9f43c211b2e5c233ff6dff2c9b56d3f656f6070d13dfd0be04653e4
+98c670770e01c07b731ca0e2eb56e608828fedaf1a31087f2d43cb4c0074
+e576769b0830577c86ad5de48ee216df02d7c4e4ec231afd8e76c608fc9d
+06cc86f38cf4d839e0a0829902f56cf2f86f08b975a6bdd0642d6b4c78e2
+57cf9a4f52646a952f6a220c36c91db7f44c7f44bddf33328ea8cc01827b
+5f2d79e3ee6c514a4f8597a847ef5f32c6400736e6ade28faa7bc6e9c6ba
+e4bbff236fa6dd2b0ed23fc77f92649feba149f82488260b0bea2a4fe1f4
+65d96d8c51719e5e10d4c17d1b67e700aac36b1ed55c93b4b2604e72f51e
+b30fbf5b64c6fcaaef764639ebd789f82ed354712c7f9fcd1df257e14c0e
+8fd59a0eddab684bb1b4176d79b22ad2605bf534e4b8fac2272fbdeaf210
+0424a2c5cc65f8dd5faa13313dd926128ed466046ee94bd3eb41f3ea5505
+5a70603a2ae1981bfae8e77d850fc5a5bf1bacb3df9b7cbce68ce7979fad
+a73c2900526b68236c6d37197b0c521c5b1cf5cbbc89238586eceb99818e
+aa47ca94ff615233575fe83d0d50d734351e0363030a12300f7b20450946
+17bb209c346ac1d35402b617d6260fce04ce8b3231ab5c05af30b0f3ccb3
+3616d3df334c8d963279537563222dfbb705c3e14616ad01927f952e6364
+4c4b7fa44ac97616c1521facd066aa33b2296dc03682eb6a3b9dd8e5bf62
+53f10667ecb07bbd50553f1b211067f5cf098b64b84d94ba9ad8b146dc9e
+8e9be06bc14cfe0945e22fd819856d6996e857c0bb5f292defeb493589f4
+515700753885d61eee1b8c19e6e94fe2302c07933f949d6bf119d207fb04
+dae7bcff7578bf33d77e29611c7cf03b2df12c242827ec4c4e5b5343ca3e
+4f7f38ed337583e30dedd78a082f41d60cbad55d59dbba11af1bd296ed6f
+e31d2e10d3a8b5ea698e656ff97755a47ddd862d23309e2e6ed3e3e111c0
+2c3a713d782fe301dbaff0a4225f932576622d1cbae40d20f46958298d01
+783851c894f2712bfc4736d3802e548a704878e2d139348671fb96d0ddbb
+f56d9349172caef0dfed4b84d867116d91063dcdf9ec401dfe8abb269ee6
+0d646bd12e0752313e2ddc272d9f4aeb9d940987596ab623f9198765cec4
+62f7b6c540c9a70c9a872bd28ea62e056560b61ec51fc68eafe008f20760
+246e06374ae5a6bd2577217700507978811ec29985ab644e474e41e8a105
+295fa67ae05e0739e8c7fbc51104522934942f53e1e1df1ec2a66f0a74b5
+9885cf2c2fad1cab3e2b609f126ac8b7350d5408a7df9ed5c27a10ef6505
+6f0d877cd7bb902977ba93e6e8520d2d018560ec8143876ad0dcb95b173d
+af72c0d413bbb5541f14faa57eedb3ac2430e36911d2f486d9ebf9cb6745
+2ccc763e1e46e7a4b8373e06082176a6c66d045e18f90b4b2ad15802f6ef
+cf2130cdc627601ecc19887784b6de7fb6a193bc3d057ace29f74199acae
+69526ba6f7a2c669593f9d0849f12e37201c32c88384e4548a6718cbb2ab
+714ccc917d93b865ac7d7d4dbd13979843f4f5c1f8b937ef12fcdc9aff50
+f09d2625f4367ee70a98772a273d8919952102aa03297e3cbcd876da5abd
+2ceb162b8fe1d9a22ff694495528c09a8819fbfb6946ab205d4b2424f6d5
+6fa1c704065cb64fb2aa0fdf291fd5e7daa38667e6d8e889be7f4c453da0
+59c492cd25fcf4a03a6995897145273a66cd6ba999138bc8e2aa7d080f9d
+231497ed28a9a27b6b0d4785bfaee46fee71b26d6839f2549a14e7ab7347
+0b6cf368d2d49e74c78d93477828e4582589cb447d795181d3f13dd8ad52
+3c750df8f19b3260c17a6598b406472a7204dd26c5988911ce9884de9a1d
+ce33d834becb1dc80efb07f32d3ed6c2a484c5d53746071576c3f67f25ff
+1558986fe2dc2265b4fff79c07e3f4c6c0ce8319e04c14728ed722cf214f
+65066148bc817753dfdcc0950bf80dc515002e1a92e7d8936e9b3aa9635a
+a6d512c68aebc79a62a6bd17a411bba7684e1f06be9bc3d1aca25d50c8bd
+1d75597194cf87c9ffe04ff28bea91b5b9521fd356ed9e036466137586ee
+f0a8795486438d0d9707cb2854f12963929edac394c562235ca71376d938
+e4e1518668180b857d75318bc22e9f0683749047e7649f9e20b35204b6ee
+60c0d47bebf53179a083f0b4cad5b3327a3faf2cf03753e3e46c05773629
+7e9bb305f603369cbb568350b2b5c6d23a35c551e0ab28b082e321ef4ed0
+e2704d35c75b4750af782160c2f2e9aab0e14e541e95b64ebedd66db2c12
+a8935a60177cab634e20a8871a3a72f4b21c3a34d9dac37176a321c2ce3e
+e828d140c8445117e7fe4738000c30ffae8e2a48bd618cc8813e38fa0f86
+92ca634d1e56010987483aa0f08980d91528df3d370ac724acb238e141ab
+595dcb3da7a769de170edd5763078d1084e2ebefadf8a50a816b50722617
+c9539dbd68d9062b015639708dd900aecf4f15adb36339c05a9aec7403ed
+771f9f28c60e52bda3ba6902e06334036c1dfd66d35ed00e3fc0bebf55da
+416093b5cf512217c47f905ccc91fad879d63dd1380519a02025ddf15d70
+eaa1bd8cb6be67608fbc5c94796bd09ba35933f64c5e72a26db1ae40ef49
+af5e972fa44660588292b67ac670bf046cb1f5a7a0d73ffd6df862744786
+4a56393b0f1b4cfcfa362c74634713093161b29c94a2526b7138aa92fdde
+b37a8c1f30a6b3837d9500b340515f0412e681f5bf36e7869fa157df18e5
+c79df3e6aca924d7b7dd2e0d5b87682d7ea6913b26397ac180fb75fabc1b
+8e156ed542b9d8c83079bccd141c187f90d72694de4f6d08520d11cd454b
+bd3c2e6d259694fda0c8decc724bdd650163b7f6ce1181590c06de4c0dd8
+536aba318cabf54782c919e07c2ffa1034143175d05deddfcd7dce6c86a9
+ec9bf6a4437da474aac2dbce2c91aedc20043f179d5c9120f3dfb1cf6906
+c27f2ec68cd75035c283e1672ea90d953a23a1515c420b81c3270fa06573
+4d003eca1bb71a2dacdab67e44f47c266c2ea1776648b62bc110671e6eca
+4546d3c72c8acd956e10452c32532ed51bf3d0518467fa829efd9c896e8e
+1e5c7ff6da0b51e872e403470affc95f25e1d2b9b59ddb0472705e14fdc8
+fc2af16527188508be10d098372cd7eb7d62a85c8d8dd1d0f55ae3ccd0a6
+5dd6bf776dc187bf4de409d5db3fcc5a6d852848a251f4fb4e01dac5e9b9
+587fa8c46ce03689709008b34dfb3dc105def80a1b515abcbe06e73fdf7e
+7136e40cc922fe9a9da1726747e84427f288d934747b6c587490734906b8
+a91144ac82a57957cffab561714e1ff5148a39499dfc8cc96bf5d87ced17
+825e8f80cd943d9a73945fb8bc51cf1f9cb39c605491c1bb8f1c4139974a
+59471ead310d041b1ca1ecd5e9f92007cd8243cb3fb1ec5256444699a9fc
+ed6cb31eaf0912c16fa480a1cb4a8f4a9cb6a4d9a9903d1e2f674286032b
+489b8a23ac4719fe435a9fa2d79abdbaba740e69d5ed611421b1aefcd06a
+362ddbb7b79aac41e3e90657afc0b87a6e8c57ceef70a628efe19f568634
+50f47b5c6d95870039caa3d07a54e58df064bb5f59dbe9b9a2c7c84d7e0f
+32386309560a0efa2cbfa27f861b208b2df4a062ffe2c59c057296aaf5c2
+0f48ffc9ff0692f8cfbd6fc6ed1f3a14537ba40d7267e6b5f69c997a949b
+26577a9a99db3f53167355c4967dabd522292ddaca3c537bcf303ce76add
+eb99f6664227a94d6a698dd5a5d40008349376067d057e28e55972264502
+e035b1f5e33d7b3aeae016f9be50f2aa09aa138d15d7af3c1ccb805f2d5b
+cd4e9b2b5c288b2af4a25abf0a9093749377c9e8232ba1af17962f85064a
+23b0a13f11acbb471cc700f9f1b588f72cb63d3d1a95a93502ef74ed212a
+c452f1a84619bbdf61a1dc79c0d9ba29c7f19b400f682cf66f7705849314
+f5c8bbf973f2c53bdb060932156bf2c9cd8d36cf6271075500b0e3e6ad49
+958af46a9dc950f4c29f1ab5dc0a85924f7ffef259f778459c80118b1eb1
+ed29208d1145b21b19d62f755de4972c57a09b3decb0a8096ab025fe6b9d
+be49ae35394f0ea40d3693980f97f712b27f0e28d8a549acbf1da63518d0
+374941effacf63ac3de0523cfac0dcaeb690de5836741fe58917c7ecffc1
+95e7b560a3e763aa70fc883751bd60ea0a0f893d8e9fe75a66c67e202c24
+84f66708ae74413c0101fe0b5003be20881345d917203b582a247e6c74a8
+1d0479f317aba7b9dbbc0a92e91c51fbe8775a44c57699acc9da84ad60fb
+9629929d1edabbd70b4ef9887ce4ec2469f154fada42de54240cf3302364
+7c492ba17e6936a4d85e0751df0945463368a803fb40d8ded22abe118250
+86cfff1878abe5b100bc08b991cda6fdfd579332360f0c3374842edce6ed
+e43649d6702f34668a29bf387e647f96d78f33395e8d4b3521cb4fb0956d
+12c924c16eee798cde68e319a358cc3524c753177d976d4e14a2e0cb72a4
+80cd87bfb842060b1266568af298bbec58a717c577be73ad808e004348f1
+6aead32a3d57457376ab57197534d6e469ed24474a83618f3ce21df515a1
+22918f4b62c642de0c8a62315ebe02bcfc529c5b8f7c127085c2d819e29a
+f44be20fa077ee01a8d427bbe3d97a9d2bafd77f17835279bf135900aee5
+9bc49582b18d468bf93e47ce0bdd627775264ebe9e4172839a444f928580
+8c95895b7e23592b2dcd41ee82e966c26aa2143e3057161511796e980998
+1f2e4ef5868b3bf4576e3546e6407e35cdf14654bcefa7557d09407545a2
+38173080b4771ea52054736677a8d9749a2b22b46b24fbff93c55aa2274b
+8c7ddbd751bcaf1df00ccbe1f24a80622aff192fd6db2238db941ec44ae0
+dd73f6b2f80d89bd0aa30c038583deba14913d38a7b61b54522755e251b2
+aeca62033a39ec1143b2b960f9cb87f748428bec3243b8164f07d5ff72eb
+f2ef69347bb933241c2401a96ba5ffa3f9ad060c41f4e6bf7280af65293a
+bbae49d723dbc4be61d7e13f7a5931a697e7f2c6582dff416341ccf5a24e
+9a53686a1e13bbe0bb480c19a4e72a5e477bd29f39dce1a17f63f1e8c696
+d5f8855cefdbf7ce681c7d6ac46798ca9bbdc01f9ad78ce26011ee4b0a55
+786bb41995e509058610650d4858836fcedfe72b42e1d8ba4d607e7ddbbe
+3b0222919c85de3cd428fed182f37f0d38e254378c56358e258f8e336126
+9b1f1acd7f387686e8022326a6bbc1511ed3684e2d2fc9b4e53e83e127e7
+84da13550e593bbad1c87493f27b60240852e7fa24392fbf3f478f411047
+3f00a8fdb6dcb8aae629dc7f055d85341d119f7f6951ae612ffa7df82111
+d1ca48306a57a922cf4c3106f0b5e87efba6815f6de4294c7a0394087067
+677889d22a3fd86b0796200300d2716445078027fe0c0b05c86ac80d2095
+ae874324ee6ea3553bcb92fc1522a6d1524f6fa22b71598fbce784a10b5b
+61e50307ef4409ffb7b38f27800f2185140ed08fc4ab396050b068025a9d
+e4bddcad201e72ed9b41c4ffd4cee743c9c2345b95c5071442defc8ba5fa
+9c63c56e209df41d10d93135a8080f7cccacf67e0b0ddb3e0a31df32b83f
+290b3c536e9949973cdc80aa5c8a4feee20290a95f68e59f54050192de42
+f27464ee374e4d2451ee8708933b970402c90ca3070843a449d7c3146347
+1efa666a60fd5cbf55a47e4a3c5c318fc1af944d58d32690a2c7eeef09b2
+d94721896e1e3e76e44a8efd524ed5d6f5eb9da093d277441546c6828745
+ad71b6c13f653dd631bc6fc55d0eb4648b7bd9c0eddb13222542f2b6e8d8
+b80bfab4365f4199a41ac690979285d917de79359a183e6fc254b63e6408
+6d33e3c029f472f40742a99f92999f302f79994ffd615f1a848194cb56c7
+12146850f5e400303bf5bcd4e5fdccd1fe2edf5352d525cb15d8327f45a2
+6e3ac276dc8780c65724d28dc6bf9c7c985840070c35e32859168890d599
+a884dc2a90194cc2e9cc6a20c6c0ee11b20adf3aff01db48eb8dba7b0c81
+7fc10cf5a66e8171a2823a4cd22f0e80c82011ae56dd895ae2d3ebe84ff3
+d521c31453e0909cb9b1cf0b030eb6b7059ec38038cae12d0e1cc4b5b3bf
+e6c821faac9b8792441e2612aa1ee9318b71f9966d7d3a64abe349be68b1
+744de7b212f6be73a0e1eb2fa30850acc3d9562f989cb2d4fbfbcd5d3ef7
+ba55717da1cabf197b06ee4d8650e968518b6103fbe68fcd5aab70bdd21d
+66f09f96208db67c1b345672486657295a39a7fd689b2c9216c6b46a29dd
+1283bdba295dfa839a45b86c14f553ff903a6f7a962f035ce90c241f7cde
+13bab01d8b94d89abdf5288288a5b32879f0532148c188d42233613b7a1a
+7f68e98e63b44af842b924167da2ab0cab8c470a1696a92a19e190a8e84b
+1d307b824506e72e68377107166c9c6b6dc0eed258e71e2c6c7d3e63d921
+39690865d3f347c95070cd9691a025825421be84bd571802c85e2c83ba53
+841223435a9ced5dead103b470a4c6ae9efcc8b53331c61d0e1e6d3246cd
+aa1b0da347685121196a07e97d21b10ad34e7031d95c1bafa37b4141bf33
+a6be401129dcd64086885f4b5f1b25bce75a4cc8be60af35479509e64044
+d49c8a0c286e4158a5f346ef5fe93a6d4b0a9372233c7434a7a6f9e7ea21
+30c0b4b9f62e3a74cc5d2916ebdaa51a1ef81fceb6cf221e70002a8a3106
+bfbccc2d1809dde18e9607fcaac008fabb72e8c50244507f4013c5a268a3
+6135ead9cc25362c37aa9511589f18d812e6039490f9c599f44e88754ac1
+4f6c1841d570efde27958c7f1b2c68772584e1d12fea252e3a6ec3b051a7
+6faebbf6f5101978e24a9ca927c02065e8e49150a55c64dd30757e8a33d5
+2a788437a9181efb47414dbc22fdeda203d4122137bd045611f68314e12d
+1d6a5ec270c8919562c03e3af7b0e0deceeddbdaf3eab8fb5632e44dc1e8
+d46e2396b0236a46659164e33709415e7b347f7f7b87a9224a189ddf5178
+2cf66c9d385470a51efc88696176f6d3ac3b7b95fa074c981194e22981f5
+1d925f980393b7102f1f836b12855149ef1a20d2949371ddba037b53a389
+7617c257bbdfcd74bc51c2b40f8addfe1b5f8bc45aa4d953c0d1d5f4091c
+6af796af6513c820499969593bfd22f8c6dcde1d2ee2c0ceebb5bd6a1ce4
+5fa61094e932b380cee381f4485e39b4b1797f2a7d8d90bcbf89b9cb1006
+2d50fff083743bf318157caac1c0179c87c03a2857fc002979e7cc97feda
+966b09ceb761d3f55cf07637256c6aa8b8e5cb6aa9739452a330afbe7082
+975ee39fad5e8106e8ee05771157e92d99003533d922ccc37add065b6236
+7613d039741f99edc77c230fe8d1baba720a185186662376b947bbe1a686
+4b42c61ebe1abd40d890751ab8945c629de3b6d2a49809dc693f9e397097
+cf1e568c258081242460af2de0ca44b7ba2734573967b3bdec0e5e64598c
+cbf41e630d821491504f414d9b54a3100dd5105a141cf61bd3ec41b67368
+c8cd366c543754ee800ffee3d19c9cd0d408cc772da10e4d8134964b0a61
+232e2dfbeacd0fdee12792504bb327a2e1fc44127f8577ca51d380a760b3
+740e6be46455cbf3917b90f0dfeadaa25d5d9f66cda43ebf9f75e0191a06
+25ba29666bbe8678822a453d4e876bad4a6b0d4b6cf98feb60339c9eba2a
+dce4ef7faba428422c503d0210dcf8d884ca9f5094aab9f3b1a2238b569f
+444748902907cb0d9d7ca33fccdd0cd29bc68e44f7bca5092be6272bc949
+baae5af92c302bb21f91b6ea8463265680f7c16f45d8ff35392a10eab87e
+296f3af4478032b5b021db8510deb617941130d45c46fb3647d94b162fe2
+2738766fb6d76a06ab6803818b27c5ff4205ba668f95b5ec5ce4ce6da545
+c13ff56f417a4e0b3b8554a1e2a985a167e168adc8c4db28a601a80ab451
+91bf32acfd8d25c39c2f17fb3bca1296d3d160f25b43b4d6b94f20ffe012
+b779339b12860dfc897b366e3d400e756f4f9f4d2c86fb9d94c11ebd1450
+eaf720056e2c39529331bdcb104d113b42c94af2c6a5035750b7ae7fdcba
+b6116d74bc07a11d4357ecf73d99221dad5cba4a7136425c2a3ac0e092fd
+606a4ab722195e3b7fdfb5a5e3ccbb85fc701c42bec43b54e964dff3fa04
+193043eead7681cedae9cce6919949ea60ef5630c4b9263c8f98b4bc74a1
+63ccf3d0a0bc1deff39b800ac90bd734dda7ecdc73169ad77e129887db80
+7a253f8807a422eda8a16c9ee9bb8fc0942634bfe035dac9f7e36d09844e
+39477c043399db4d07b3617da9d6eee76d0fde9201da98b906050748b68d
+8c944ace3c96e90a3c2b63eae27b9152cb7274fa336866d71b65a57f1bc2
+bb1f482a67f3993dcb3ff24abb0223f9a026c81b2b33127a1dad8929dec7
+5d46bdd790eb1addd771c5c3965a2f514d3a128117a44560cc10a729bade
+4e6c86de7c09a39602235c803902e34f5c176b18e127d71a011dd9a3a61e
+ebfaa4a4e2a5651be6f4067e5e09bb4f3514d67c2129e4d3ea9568661138
+1e45af07bd84f883c70577a986416747f3bd8d1bf86d3d7b07e8a350899d
+3c2dae237bd5ece45faba7a0ba30fcda7b7eec9fbeaa5a94620686d1e403
+1cd2512e8d89451c7bd8eb432c8862023d66f3f9fcec0d47598e2df59525
+d673a5ff493d458748cd6341f161a0a3e8996ca5b496508578fe4f653924
+2ae28bf4b7397c02b726fd5f9d8b898938bb668a546be6e42865f4f030d9
+5faa289eb24f7b8e249b224a95a2245605d67417a489626df7417855b8d3
+1c0043cadd2b461d32e1b39ccf409757c37b68f84e752bde6b5bbb847bf1
+57ea3434802def983d6ce5ceb3e9fbc4911b5484e99bb94dc3f383e50672
+0e85a91ed378e352838cf02921ee0ea94be01b5a60f9b1f58fcc1b4f527e
+43725de9b9dadc3ef462fa279bd7138095d4cff2a0563039f71e383430dc
+f628dc9611b2e3db08fb2da1d5383dc1a3c784e1e64541fde1d9d7f42505
+de96d3d0a401099fc2879af0293b0eeb143b78cc221f670c0479bc150047
+0cacb9a282e334e428b527acdfbfc56e6aec8d4d60745c1dc000011b6248
+d9ab4a17dca7cc74e17d33c0641710b02cb1edb0addc6be214b17e9f845b
+2d9c8bf03c19e131e00f91f2a393b5f2ae7c3d4ae9021c4d7891d84d5067
+377ce92836e42eacd7e540824f7ac95360ce116d41d17a50748748971c82
+27f089a22ee0d21940de854f737547b73c7517addd9bdaab425a6c2908f6
+87dd990d6cba4d84308bdd4c4435a6480ecfa1a14daabd4d8e2398178e48
+de28b84f7ce4b61d2e6e64fe043c29a941f6de7621ee6f6d8b506221df05
+db238b8fe4323cb5f259d4d3d9c94d4ae1ca37d6c34345489c0284171346
+e9830e2e3c6c167238a7ffe0989d3eac870cd44102cae139469b9d909b5a
+9c34792f693ac94ecd35d2277080e30a2d24b50391b6f2a3d3b6c81f7ed1
+a7b218903e7fed7a63269e27d793a2e0b40320ebf447c71f36d40dee002d
+7257f43c8add31edf2c571123e46fdb413e007cc89e99b6f98d77ab38bff
+cf140f787e45ffb2c7cc4ddbb59a4e32dfc36e2875f204ac851d757c1236
+12deb31324ea4c201d27fdab46e9f3988ad2bcfb8e9cfa8c487831a9b0c6
+60b20fb66b4c77f52359ac96f3b3d189aa0571c1c53db06ddb10f08882db
+0b1e93e9478d4c75626c5fbdbc6044c4d82684b310ab2af144d12bf36f1a
+c0bf6249d1da9ab319453594cb19d0e93c4e047fb49229c0cce76d0cece4
+2e76fabd2425382afe707db032cf617b046a59a2fc1bb3838d98fd5c8053
+ecb918bc14762e4ca45027623988f434ff4cb08bc9bff5d7de21940e3e03
+1ee042d9c30662aa76f96213fb5a92047af60f320e4660eadd1ec19d0086
+072f2202af5f219725f81882f10d1e065a8035a9946d0ca0e48a5e7dcf61
+0283b834eda01e7d94b3453830daade2aa6c947989b290c02ade0d7b2620
+813ad177ed82813b6a985d5c0a2d42419bda763d409da085936e33c817ae
+68e5467eddc30be172de855a0f7f5c527555b3f4d942401b450f08273b1e
+c5b5352fdb8562a71f276284cf7c27537e628f94bcbffe8d669ea2645752
+60830f1e65e83a2204cec393f6d92d4f61f317471b4b93039d298ca2cc94
+eeada0140823a2bcd1573e732e7b4bde7368f2ecca5961ad547f554ae989
+98d87b7e5d07a85c382bcea1693a697224f41eb8b406bc6a0c3eddfe8b5c
+f25b11c3e4bd91ea7d6274cd6b3ee7b8f18cc3fd502a324c645568dce9e0
+d43caa61f7306fd5488fcfc439d85f8160ebf0ac90fc541f9c74d35d7833
+09309807a639477bb038200738342e50136dc64baa7cc1b879c61f7e1b90
+e1f2bd4f6e54c4dc97b8e4adeb102979203a31fe26a7f58c609915a95abc
+4acc263179423f8ab16b04272d5592fc536f29a45cbcdbe15890f119ca9f
+c7a52eef41dfa5c4fed087eef8e698ba738e300bd58f2a1a10da1198c1f9
+b60e2032f8384a86aa84027df21cb87977528e3bb9bea1e3a6879c56402e
+a29063afc6ac0194f4944433f9a5872cf0a2a741382d7f3c0ca7817d5d7c
+4b8bf53af0f18b1eb54480519cebb61d983157e039b13025e7980eb36f54
+3451bbb84e470ffd0f98eba80c74f238729dd6278294388a2e06de68a719
+47b6d478c85f124d14aaa835620e49b7f5a4f21347302c0f0864f7ebaeec
+d0831c36187cbe9c848736764a31056d2cef27c07cca00033dcddca9a2f3
+b9ebf28e67257b69cd38bc23c711b6a2f6e4dda9bf5a19da275e6a8d683c
+723bfbb95a90a344a6f421f0b67ae84c74652288b0597e4c86c28f73808a
+77455f2948e8df634c2d14f221626b019033f9230c9167982cca9ae6dc37
+aecbcb49fd9fc1dbf2d11bba7187888721bc42a7f47c23e07d2fc5a7a91c
+0dfe255a7f9d17e69af1618502a6b90b1dd748c7eaca1e1ebe8b861b04ff
+e5f628f47eb4e7e65311037d7a5713d7cc3552dc85f452ba74c4f12aecd0
+d72892c940c3325640d62fe3bbbc71361dce6d54766e1fb99dedcb2d19d2
+fa6fa21f9116e03952ebbef659816a62db51a9b5b3916ff818518774ccd6
+79d44100d7236f211f36fa80a4cbafb3db76ba1e7e7f12082b0140eed2cb
+5e793e24501715c6c170ad4f856a4bf16bb10210025156e635264d3cf18b
+1fc1e8cd2fcfdc2ab1a24af9087975bfcf6fb703fb36e288e58d0d2ffc98
+bb4318001d931ad6161dcdf8984e6690e0f6bb07af81bf07445f8f57b355
+6b960d24e7cd152708489e4d953ab6a155a757e002ead97585e6c5333d7e
+5aaab2731f047f3490432e0ebf3d0d628eefa8c1f665b9c86aabb0706639
+5bc372e16378f0d9b439c98e7bf87be73e934995d58e4e70d3ae9a5b54c8
+87a19f2826a772c39d41805c642354d9bec75b065f148f7c1e435dabbeaf
+e4a5744e3f2894a928121ab069bffa3218a106a9dbb83971353a7c7a5616
+d9da66fbb908173f9b07aadcbd4d112cc353e7b70476046ce5a92e86eaff
+4eec40acc840005f51f55c9f5874216851e9cf3fa431d95d3032e779e356
+4bdce33966a3a798b170a06c4cc9f73700224c858c36bbf2d0326c337ce9
+46f69c19a84187fa50afc5b36010f9a7612e3a25e846d49bb907af9505e7
+d8c78748d7dcb501bbb3d6603e829deee3784f2f3ca583d3738d6d2ecfb8
+eaa887103606211a3c1b5cd74a3e0e96fb57da91baebaecd3669661e7b1d
+579ba41928a40a7028acff6cd409e601d23ff66ff2c8acb12e535360d727
+60d2e988d801930e0e9443d60dcb9f378fa75d58d73e6a3b6e5b26407c82
+67d50ad97787f8a9b91765e41552283cb67e43e59bf71cf08b9755c8ce47
+0cf374832c72d1e9702b55bcfc8b5a4e966d5072fb2a72a2108574c58601
+03082ac8c4bba3e7eeb34d6b13181365a0fbd4e0aa25ffded22008d76f67
+d44c3e29741961dbe7cbaae1622a9d2c8bca23056d2a609581d5b5e3d697
+08d7e369b48b08fa69660e0ce3157c24f8d6e59bf2f564ce495d0fca4741
+c3a58ec9f924986399480ee547ad1853288e994940bd1d0a2d2519797bf2
+8f345e1bb9cbf6997dae764e69c64534e7f9dd98f86b5710ff8b500e1c4d
+f509da50c64e213ebdf91978553a5d90908eb554f09b8fc2748c9c405903
+e7bfbf0ea7e84254fb6735f09bf865244238e5fed85336c995bc3a3b9948
+947a6eb95db4cd1b64c0fccf82d247a2202e9e7eef5a550557625a0192bc
+8bcc9e461e52833f6b8729ccd957d5c4b6e07016e864fc02b792c7400ace
+d0a8f43c755f87bba6e5c6e1022416e5454cb34a19865d951f7aea527760
+53658cbf306ead832244f3062c39a0a121a1157a8e47008163c5bfc88197
+be16e9a1ba26a035a16dd38cc28dffb666dd4ba7356c66b7bced9e26e905
+4ce25f6d36607d8f5dda1e21ac96a815bb2989f01130ba1aca9aade554fe
+effdfef5d6b0d2a01aad92f599f6a12e121010ae6acc6f150f19e7305271
+97da761b07530ca19b84b119e5edca1fad18462143b8913d6b3f6864b713
+7a93bb9e1bc29c09d660704e8d8292c61072ebfe35c354a2342b2458a353
+31d043874380d439388e46688a53bcfe01bc190ef1a6b5dec9d40aafe822
+261b28bf3e2d76f3dc4302506ce3387b4aa2a51cd4ba1faa2ed1fd7df664
+6772fe9f83d253451eeb0448b444b8ca80cc7cb653c2d1eaa0de6f2b1c72
+47e6d24ae72e620e200aff83a557a1aa7a0ce0a9cfbbeae03c31d8cbf1d8
+20b53b688ed2ffbd83418d743ee31e3d62216ac7be6c12bc1917548cf670
+d69fd2e78d9f7786ada0ea30a6f6d9fbd1f1406337151ffa1d3d40afbe03
+728fd1aa2fa8a4f075796b9de9586b71218b4356fb52daa01d3c18cb75ae
+d4d33fc809dcb6e3dcf7aee408a0cef21353d76ed480bf522fdfe86e0e0a
+b7d097defcb793057f0ce98ea4989a9b6787b14029a4bf10315a2557149a
+fe9c91e7d825f7518b343fb556f0177a8f6ca08fbda9913d52997511590e
+b9942c9813b4cf4d4aae4919401f2fc11fef0620eb5c40532cdb22d5fad6
+919a3a710de6c40d54993b5386636499c866938e33bc703a99c73adc228d
+95cac73ff4f4a275c04d0d787b62c6a184dacc4024d23f593e7721be232e
+9882fb738160e52ab905f0ce2c76ae6ff2c8bbe118a1acdb3b464178cf01
+94bc6a50df1090e9221be11e49f254b06c3236a31569b947ad041d1c6b55
+bfdec3c18c791ace0fe2a59504eef64a4eec4b5c8dd38b092745e0d5ad29
+276bf02c419c546627672a5764a4904635bff86fd0781d36fbdf13485229
+71f355de2b0ad250052f50ad70f61afc870ac7a816561d3232b73360d4ab
+2727b2fd045f254c782bb3f1f49d94c6d625047071b7e32da5c6d21a86de
+9283fd632074430772bfbd85e0c9ccab1dec16bbc049c3e223bec1b65c8a
+9e98cf58b30a74f74f1a842dc91e30c023498e280ac55edd58f4cc731d81
+e443d9b9efdf5fea63c9f357320e01b8740eedaeef2495cd02eb2f338b3e
+674fb074cc497d7b1937b188da857c2c230e9a931cbc00c85a7a36fa80b4
+56588e1bbabbe4ef429a6aef9bd4eb89c5752421bd049aa13f4dcf9b51ce
+2503e90bc118fac78a25d187353d6f5d496cd6130b337666f49619cea985
+dfbeb7e49c67c1e0f0f8e9ec8ba14624ed0982dcbb69415e4b3c8ddba140
+397eb1fc1ddd36c94c374f018873ba41109e45afa51f0e691157d5958c06
+26fbc0903ae25e47ee372389cf65472a3e4d9769550bdc42c0b72f9a297c
+d5d3c16ec67e06036e740ab664abc9f10b9499269b73ad3678daf4474329
+c2c7252c1f0df1e3b5e8f198dfef8325cb1e7e8057897a3d7fb5bb5858e0
+cfc0c115bbd7362d8e8ee41862af6eeda681cabbb06f72ebd2ae0b0be45b
+a9e1be83f1da30687a655e5d148fcc17d9f53b760810a565f6d2f4cd5da3
+5434116edef756adb4d3df544a1de593be988f2bb8d36c34deaac7d9dc15
+cba49764f1e03aa09fe21fcd7c74e3d6487ebe219569e019f10dd163046b
+c1a3cb2bcbaa8558197cb2c18709a998b4efa8ab8c9a71d2ccf942c17662
+1b88dee6b424165d6ce10ac48375e760983818e0085276b1674dd41042e1
+a01a8de111c903f74834199b3230bd475d92c6226ef74eb1daaec3475a6a
+fcb47644a17c7e390ee3b16bef1c1ca6c55eddc44fbefbdde525921b3047
+0d76817bd8ac724739a8e743eb09cf78e88adad527d4f115b8a32ed4898f
+45bab3eb802b8168aec061e3ecdb026c056fb9efe7e2df48bd516ccb12ce
+00de08ed8be4ee0c41f40f4c8f64483e0ade90a78d6d4fe9203fe0b97c60
+3b2f8882bc15a212453c691c52d00fae8a3a26934ff8acf68d4352eef75a
+0b10d938e55b7333dda2db0296a69e9775bf82b1aa6d684fd9080fc1c11f
+ab4369c7a95a9504063db900a6e345bf6dd99be041230b2e60cc86b8c345
+1d84a9c2cb4ab6d74d63dd43dc26eb6b384f5222796d4083dcc3e1651548
+d9469f09a33b213a33ac52a6a2e23802d8f8a75c01a607940daab0051410
+73a88130bc192f303616adb113c0051b65e12086cb319c0a5323fa7def40
+402f5f87a3b2c2cf0e92789985f6775ac2743e1ffe2d0668291059740d45
+43bae7a2897e5e658592bf5a72966097742e0702deecb0cb12499eab701d
+34ba37a08346217a415e44297a181bbf3744f0a49230ad6f030e11462be9
+afc2ae14e0587bc02311b48b8e2122c28cdf14414f3680fa52dbbb63b17f
+6ebe4a1204f3c5d6150cbf89a8023890383153838d4dde77d4c8b1b78823
+8918c564d3babfe58eeb154307dd1997f5ab7105426e35c279008b2677e4
+695c60f956b348799c04b734338018fc27f7de7ad9d73468fdbc5283bd14
+c066ddad9a3562f16baae15d72d7bfcb409e1c874e9db1a8cde233b282b9
+6e76e9c08d85ddfbd3cce7e64104d0b0e95291bd91f405ff82f41601ee20
+8471e613fbbee67f269e4e954c36d1d18ca9880b7cc2b08fc990978efdc5
+1d157deefedaa765c1e26ee125d4a2514a41a3b95e9151a824532d7d6486
+35ad622718fe71219a697e94c2e64f26424cbb767acdef5cda70e179cd29
+b7e318d1c6d3ad26fd5fdcbf2fc221301cc1f10f5ed86b40a1a6bcc01c90
+eafd65183e75609610637b99fea57885efe76437df02a2ffc21223d039b5
+74955d9a54ff41980eddaa8768c5ad883a0c9150877392b990d63c6805db
+7b8d6ab1358cbedaedb6feadb0ee4fb8f9c1ca03a3e755a74227a8930bb7
+2ea0a00b48fc626fa14d7d48624aedc31c556f44e982f3ccbde7ee735f73
+629ab1b65bcbcf0a3586a920477e8c960219802fcb1bc3a179032b324f8d
+c424899b38275886cb5bc771f26a0880767d49cc23426a40a4b6ff8fe48f
+d747565fc537565f6d7fd08706accc60f5fbcb45bc785f45ee9b0812366f
+ae71b23ec43f3549c8224d78baf18719f05108d5741e681457ead8abc050
+462481771a8dc6cfeb98956e163981a98c59ab44d90e9c3a946c453b5071
+db0c769f7fb5144c7ab0c9ef1a6db1addcde1d4ae1daee1b4035af256a04
+df53926c7a2dcdb94caaf12f986e20929ba4e396f3aa7c93a7abaef1294f
+5f13a0dd3c3aaa8fb38da3e15daa32163b7437af683b4f5e64cb14aebbde
+8c69ed2e8cdbfb213fc8129af29ca2c06c8f85a5038d688d1fa5d1b54ebe
+4dea81a49ce24131f8e6702e7aa4e2cba078d5dd373f894ccb275f49c690
+1dc772e1d2f5fb3fe15dbfffac62c87110162074eb72ae4e5e446bf7e650
+a554178d0d64d3c07f330f0d99e99f2239cb1597f2e5f443854cdb0f5fab
+b28fe62f22e7f3419d017980f325351bb04f8f3c3dc57fee03cc029bd29b
+202308d5a800ed2d500d41ace8e54e2557bf25b627883beb8118d800eb94
+f4253f855168f7fc8a2d29c5fcb76bb90a6c4e345722b8991a854047f46e
+4e97336be85470b6be2b9ba573dbc4967ddcdbfc3b6fc35b0c7f3f2f570c
+55dc3fee6d80bc6f46cc7e4d86a0b86f6fa61d062e213d9e442db63fbf11
+d03165b44572096995ed342893bb672f6bb55ff8fed944667995f0f89a48
+a904c47420f32afd14129c6e2bedffce1f07ea69d550b6909bb5beb4aa08
+b0b44f35e018ba5206fdb4df0228462c1fdbb95a429e53eb27bb1b0490db
+f07202c3608d0f4ce08570e3d6aa3d4581c569b57bd8c1ea0e4ed3fc5497
+e316ecec06e6be582d9170d426f6d22d8c7287b8219945c124941ca8812b
+e97efd9105eb6999edc0665016633b3b48820df736125b7c76c9f3a67d93
+8a2a0a6b743fd42aebc46a0249be459f16811ac9eba7b63bad7c2e88f175
+0eff8da5faaab5659824f9d19b3225aad2ac17c52c523414d3031d08a926
+30abf474fe02a32b44d3b7d9fe0c19aec16ca6d018b71d9d395ffaea0788
+0d4501d7cdf0f7077a2d63303d09083080d67f1f714a1b271dab9fc9866e
+4b0571a171eec8a4e351ba2d02438cd108a33b1106acaad0ccdb051061ea
+7f40543748115f29debfb4be4b42cae8762d62114ec6f8ef68c478a8e05d
+ecfa18b0368428efec9eafb2353f95e3d71e1636b9d9f94a77e692843255
+698576dce13b2b858d2d15ee47cdba3ed08d64b77ab46dd29bba6aac2106
+ab847de378cccdaf35c64e50840248915f4fc110992c493cb1b9cd0b483f
+0f1abf5e9b018210b477fea28234ffbe5e0bbe01338e0842a89f1e00a0ca
+7cdde0b2d7c324d5e17d8d3415ccad703507497ac95360ce660b656e5f66
+72a2f50761f3d02ccdc1d5692d7797699b8e2147cfd4817c81a432ff6a5f
+39cc54927fa146cbed56a55f85f123c0a94b7553a8819b329d9dd122c502
+94e3f6314d5117db89ae7597c4691b6c542979a1ca3d26a8e23d3eb698c7
+1841651e08ec771cfb974d6613f2143872c739b62796bd0a45172530793c
+28d93a65b59f79c245248d2c09428657a35b0c0e367bf7a4a4f0425b3f4b
+485d9f402e164328a4b963f456829a39035c00283d2e4fcb71a42da6d42a
+d46cb751287de34e6519c60bb3f1a6ba91f7bfa21dca96ee712af5681701
+18ece8a0535d9ba1dd4bd835e004a2f38c5ba43c9b30d17045e5649fbbac
+188922e442182d4bdafaefb39e00106a5a7765f3d67850471e3629e526af
+8691f935b57bd38465665204a214fef1006ea37dc0781073ced5fc042781
+93650393c3cadfddedcc5550ed483bb6355f54600e9758e647f9c9711f1b
+e7df05d0e50a698615307c18f6d4886f50188011ba499d03831185915f3f
+77c4b9ce708d78423b110776aaaf90396be0381616d1e9b0c1dcf68b6396
+82399da2a7323bf42ae5347599ef4ae9e5c135522c5ecb87e201853eb899
+db60d24acad17d6b7c2c7ea4dc221f3cb6d6caacd1ac0822ea3242ad9b4d
+d15116c3874e3012fad26074a23b3cc7e25d67ef349811dbc6b87b53377f
+0cf972040a037ecb91e3406a9bac68c9cab9be9a6bb28e93e3275b177cd5
+0b66935cbe8dd3d6a8365625db936b2cfc87d4d6e7322df3dbe6ccda2421
+a5e5372566f626a5e9d8bc66959e443286f8eb4bcfdeb6c49a799f1efa69
+63260d0ea2d51260baba9207fb246da927fc4c89e9c4dd5848fd4ef6f81a
+cd836f5f06ff0fe135cafd7ab512af55a57727dd05a5fe1f7c3c7bbe8ea7
+e6680fcb3bbbee1cf2e2c0bba20185f00e2dc3afd42f22de472cdb3eaa5a
+ddf8c6fb3682eea5548c51ddca25ca615221127b4438ea535ab3089c9ed9
+b971f35245cf831d9461a5da9d57bc4e5606d26535a7414cef6aee2a7b95
+bf2276044818ee0f3b0a16532934b8b745d8137b42ec2b28fae7d55fc02c
+9ccfa4e0055f8a4be96e1e235c01b8b6ad509b832a3e90161e0a449934e7
+4be973c939b31cbc19dad4c58e9be89d242f0ce200548cdd4fa2081ab3f8
+e01f358d5db24b7a50eb2096d833378921f561f132cd7988708ee10cffb6
+2256201801c667e176b1dfaecde9756d725bef093457805e16f550e8a7de
+87ecd46e5b09646b73ee74f890a36867636911e4cda2c46a40e7d57cf297
+9696046614c85b1a47ba55c60544ebd3ad7d750d003bda56dd7eed8c4702
+f8b319aaeef9d3cdc59b3e63ee93c6e1e857af273eb90909ecf36ef4c276
+895c78aa762e5376c5c542f854fba864ebce56e4b0207091139f053c2c08
+3b7ddcd0a9909b52100002bc3f8c47bcb19e7a9cb58b1ac03fee95e81195
+072d3aa7c8079632725f63425a3550a947834d29ac9a26d0774e90248e18
+996731fd9aa53ab62b40ce557d98e874b763d9d629a173f0c7babfc00ae7
+82daef5f00cf3608ebeef403dbbc19e16a1d160b889f4a10359d9eacc19d
+7b5f126b31720dce7fc35ec861dfa56ea23fa18423ff4e8fe6e53fc6ba16
+b95a2b5dec00f614e4f835281ee0b4bf549e7e882689e0b445dd46fc40c9
+090e5575fa2c34b02a51ad0bccf6a7bb83ca3b929285e5e9fd054b72c47b
+733a66c5abda526b18b2e49d0746e067e63b948a45eab2f4221c5b62ae21
+a5d9d7cd8aa9eeb49588891d22c56b14b55ceb6488f02b73ab3b7f6c5555
+b75452594658255e4cd58ac4815f2e1bc3888c6777f62aac2f0a57d416c3
+765c991f0f9a33d888aeb2d527b482c042ee23783a04a73ad13dfc590a52
+f3116f8296cacc7ab29b7d87e7864561a5d0a12bde2d36ee697064f41d1b
+ca6ef2f801caab5295d19bf4c02b10c19f73b44635ba48a0806b967d7dfc
+ce9a4850171a78532cb30020c0d66b3b1e7c75eaa7894904c181a022e8bc
+9b2b8ef1202f3c7d36bcab4742d4a4761bb55b64da0d99685d319f5da8fa
+132be6c0483f50e2657ae8af1e28f969440d6ed43eb00e95fd9e1cd490a4
+8646f6d008598751f7a41b43fbec7770fe591012b6b0c4ae18775ccc7db5
+de0ded2dd53e82c89648d46f0d0cc5d3ac5aa104239608d512a4353b9547
+04fe6eb7e73d718323cf9d748b8ec5da01ec9358267de12cc22b05ef0312
+e4b6ac5dbb6d06d7f2d911f20d527f504d62547aef136834b3695df8044c
+383b6145e824d3931a602f081d9d656f84987a1ef121772f1f5b37a116bb
+d2e77d4ccda01411545d24e15ce595db4cd62ee876b8754df0b85b44e011
+b82d76ce45795e6c2c58be8690b734a8880a074f303a70da4a1b086a6de6
+56c02cc7a4c25258eff18cb0fd868214bb46f972e26509f868d065b3cb14
+1c316898cf22293391bd7051ac3a6927aada952a8fd0658ce63357c07f34
+acbf8c99a5537da0023e901f0eb5547e1b466b7d982c8c539798b76ee2a2
+252437a81a37c3b63f625172d682eeed0b795860b2755f020ef52a138353
+003c61be2052cdd7d73b2cdcd26b127660a7b22fc51a6a2f6034f37e3e46
+c1d7f83f8b28c7c965993abba1d358362833580d9c63fa85d4cb949f97de
+579fb6807b95a58b78f596db50055947dd0d0e597d9687083e9bc0266e86
+90b884b27f4094d8fb82ffdbaac4d580340a9ef8aa242be87e54b601af19
+87a48d267c04e371ae77163ebd0de3f5297b1060442ecdeac38334844e38
+0f294d4be73935fd8a38de7fba6d082c3d9156d7e88f2cfff0459377cbb6
+041f37a7e05010753b98e0b67d5827aa312129bb3c3bd883c12323756406
+d555720da8a0bb30edcfa760c01ecc2ba3b15fecccf5a10e9f358822e0ff
+b64178fce2ea6a1105bfb72df0e4bc499b207ae26b8ea960de48e7ee7010
+b4e671dff795e4cdc5b43e81b1604d224f0616ae311f1208859c502c1a10
+940e7b9cd11be728bd3a0c8005ae23aea32c1b642812198a6f1aed32cb75
+97152b1340dd35ada1b81051e393d38f3740fa9523df6a83b8ca7dbceb33
+6e299b54cd998d4dfef804733c76156585e42b7284cbcc4047ba6b290efc
+aa60953e98cd2b4bc2893857fa6a339f820142a52ccab0df09a2709df550
+f22e5921cbca408e7998cc1cccb8adf6d8f8b71e6685ae59d290fa33f5cd
+664d73e434237424060f634262f04e9a71a977556e93b692ddc3aad26d92
+97dde71e4def64932151ad572af6e681082e9944ddbec6e7a8bdfd534233
+9ca3106ca1ccc80eab14f1655978b137fad8f399df7cbfa2d7d3d9675e0e
+9afec37369a8ede2c93145ab3f42a375926946680c215fa16bf7416fc892
+bacd806cd424b9f85b47802c4336918f7486af2a03bf0d39b10169d35494
+419cb1ab7b8f407897f70c18303e91563b497d70b7181ede6aa0c3efe089
+ca6135b34dd1019b298e3677f8da61f864a67023c31eaa716c40cf3d397f
+9a1209564c9ec759c37028079661d2a56374203c78b023ec61340bce5d96
+e477a4f77e5c0db7c0d1257b4bbbc6f889b17e6eaab045b8adef6f931e4d
+0795583d60a6b7002cf61639c6f930671f3b8ac05a1c4e002f4bfc50d8b2
+3029fc4dce1b602cc3a5533336271bccc226559ffb127e3a562f92f89824
+552b9a70466d5a3c74ae515a222b109d490f26e8fc2d9d72bc8af6d1dcc7
+80463c7af81993bac2ce4aece9d95ab736b1dc73e32d1237bc8ec2b52513
+36dbabb4ecc7ceb5d18b02043281eb9a3bfdf19bc4853c9b1722ef1cdcf4
+fcec534923db2e2653dc48545a9850c0ac2e4594abc9f7d18a0bcf2fadfb
+bf085d465a4d10528312f5d790eb9511ca01061c0d94136b99a043bcf278
+c18223b1e0f1cc062b32b79e28dec2dc59a0aaa4b5f3506923c83e6a87fa
+08a1d941bb644c994491cf7f3b0e2ccf6c8a8ba89376f76dfdb592374f93
+528e78e31e0b18719346b9f1486f652638e3120687774030444674cb0778
+96385c41f6566819652d825dd58f9a4308ff79b45d7828dcbfebc406e40a
+c46e866cb0e3e97d6ce7fcac19a9d0fe39bbde66c5f0cf775eb3b1e6d7e1
+1f67e7edb3d5c4facc85c916bf13322b56a0414ca27d145cb740fa2c37cd
+8c142d9301f1ac3704cf6a8e93973a07fde5a331cf0cbb370c7ba555de61
+18a6cea0ecb2c0e37152390cc57e2e4fb3791ddbc383ee26b6f4006d0d68
+4880888011020f856a9de47f45440f127cf27ccaea7d40a3869d39ec7dec
+ebc06382d294717644b6118354e15544fd4c6d88df9245c9a83b30e6ce09
+e2498dd1df488a019b179cb859889e6ad2838f749e3b038b280ebc8d5c3a
+b03e8f15751214691edf0f86281e612d7ec0773c8a5d2b433266402df62f
+fcc06879ca196aaf1fc73a5f01ac46b44d6cbe7743ae9a862c20445ae2be
+1544f413d010280cc2941900bf3c42ec088cb21b44a915bb810e7666b545
+5324465c5943eedcef0c09128a995f431382e2062f5e39f4338c8eba1bca
+e553cb60bb8f3e5038ac8073398c49f06dc734b18afa7921ea0d455e6e73
+db8ad9f77fb5ba6c28af6b4f18cbe46cf842c82d6c960be1520a5fd929df
+ac7e00ede976fb2be0a07f659079a421fca693de89ce9b8fcb42b0176d9d
+f3ddd58f921e13e216933d27b49d175b423751c451be7618eaab054d3b8c
+23e8dd6fd60182d61e9b5c86b3b764a29a62f913ee7524d8cb33737d7224
+d95dc4bb8c2ad6397604a0ffecc8865adcb540e5da1cd769077838515118
+ebc9f0b988545c1881dd2e7a8fd73e11bd7ae9085fb4d45526b23a346b0f
+e4281ee3d588106db5f7c386c488d8f2f4dd02d4c08e74c1034f987a44e5
+d39fd07538de57a42987ce290fb2f6557e8b5cbcaec168f5780927226415
+1e11e3667d33b36a793aa53e9e2d1102c9eb30cb3ba0ebac953e0227fe4a
+3d3c0eb57e4390c3d35db0c41946e45be2830a1ae33fa25cf2c7c9cb4550
+ce9ff6c6e3d628fc7284daa6241604c90dde6339b7f7e7df3733416cdac8
+e5291357e4983d74d3582a490438a7fdb0af97001a31990b1de68e6adb48
+917daa387e647f9f13312db57310c7dedc2a2ea80800b4f4bbaa99c6b7b2
+7ac8345cb659489307e2565ebfd17774642c9ae5d3c18068dc35170c7d58
+4cf4173f1baf98137fa249c81f3347e1dadd6b1ba0f50c3b64c1eab183a0
+937b0f7278eff101e5267fa6480da7d602844416490c2c2c7eb0d44ac8f4
+75cfd611db5ec268db07c0b3608825c3e12834a2b2efaf5e2723c5199c42
+6011cf22e64e4c0d31d563f321097935ea0c6fcbf5acd3748d90079f6ab8
+687288dc55df29fe7958f566b27b73e2ea30747247f7a2b2add0602c7d64
+d23f52e7c96748e6a54ee8c4629b2aab8882169653f0ba7f05236bf14364
+244720f3259cbed73a318b29e4a9305deb65a2c9dec8a9d0f9a9f6fae541
+83e0f4b9a9a567057a1794945168dc23cec25d1c02ea9242c9fb6d8fc11e
+e8874bd80a5226373ae87cea91853d0625c777ceb1f5a6f3debcf2f75a61
+460c7b4067f568ecd01f62901ade8bf8fbc5db9c6720420496f0cb48a002
+99870773c2e7b12e83987a5d0290d9bbf589ac889bf7d4334a5147187a7f
+71008f216ce917ca4cfba5347078f354897fd87ac48af6a6c62711d2eb3a
+5882bf3b32c0f1bfda976f850c9dcb97170e78c229a27fd5e292d161ece9
+a8c47a223cbdc28e24f79f6429c72b5752a08f917feda941582c36d9acb5
+748c86072858d053170fdbf708971a0bd5a8d8034ec769cb72ea88eb5cd7
+49f35be6ee5e9b5df6021926cae9dac3f5ec2b33680b12e95fd4ecbf28eb
+a0503c10c6f2be6c7c47e9d66a0fae6038441c50e6447892f4aaf0a25ccd
+952c2e8b201bb479099f16fc4903993ac18d4667c84c124685ae7648a826
+6bc1701cc600964fdcc01258a72104a0e5e9996b34c2691a66fa20f48d7c
+2522333dfdabf3785f37dd9b021e8ee29fa10f76f43d5f935996cbf9d98d
+92d0a84ce65613f7c4a5052f4c408bf10679fc28a4a9ff848d9e0c4976bb
+dfdfb78bb934cd72434db596cb49e199f386a0bda69449ce2e11e3a4f53d
+be134c6d7fe452a0927cf6a9a15b2406f8bd354adcde0ce136378baa565f
+b9c51a03b1fbe1e166a1f92af26bd9f072250aaa6596a236ba2d5a200c90
+a760ca050421abc78223b2e8b2eea958ab23084fa1947574e846e48aeb12
+26cebb8b5a92089e9ea771557599e2fff44d75bcf600e76ae7289ba98cf3
+98208c5104562834f568ebd62801b988b0a9fdf132b6564566103b3d2d8e
+6a099b7fbad8a13b8cd7f6729bb6651fc1019e66c4bd6ff27410bd5cdae7
+4010bd68b066bffdb4fd5e3dd9cf7e1a1353f7a4c5157e3ad508f4ca0259
+9761b7cdd6a81b3560b8765be3b0432fe4c25dcb4001b00c7fa62874f681
+ed22127dc3974605a05be8d8fcf9701f859ffce4dc598091891ab7596ac3
+4cd851ecfd2dbbaa2f99dac376f7bb40703fd0700d7499a7c24726bdc9bb
+3b88c6a82e52686c1ee945d8825092bc81848a08722ac5a1d24353f95ec8
+18f3fa487d9600318091b0ae9874b42bb3cb683a2518b18cc1bd86c6e5e8
+3d37c14ef4fe0c77b03a3314995b1e7c1066b98c4375bd1fc5fadee1b024
+7ece4f95a0f59978d543910deb2e5761632c74c508269c4e4b9e315bda02
+975dc771fc30c8164b9df9172a4e571d8ca578cd2aaeaa0dd083e74cdc2e
+d938b984b96d76a64b8c5fd12e63220bbac41e5bcd5ccb6b84bdbf6a02d5
+934ac50c654c0853209a6758bcdf560e53566d78987484bb6672ebe93f22
+dcba14e3acc132a2d9ae837adde04d8b16
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+0000000000000000000000000000000000000000000000000000000000000000
+cleartomark
+%%BeginResource: procset Altsys_header 4 0
+userdict begin /AltsysDict 245 dict def end
+AltsysDict begin
+/bdf{bind def}bind def
+/xdf{exch def}bdf
+/defed{where{pop true}{false}ifelse}bdf
+/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def}ifelse}bdf
+/d{setdash}bdf
+/h{closepath}bdf
+/H{}bdf
+/J{setlinecap}bdf
+/j{setlinejoin}bdf
+/M{setmiterlimit}bdf
+/n{newpath}bdf
+/N{newpath}bdf
+/q{gsave}bdf
+/Q{grestore}bdf
+/w{setlinewidth}bdf
+/sepdef{
+ dup where not
+ {
+AltsysSepDict
+ }
+ if 
+ 3 1 roll exch put
+}bdf
+/st{settransfer}bdf
+/colorimage defed /_rci xdf
+/_NXLevel2 defed { 
+ _NXLevel2 not {   
+/colorimage where {
+userdict eq {
+/_rci false def 
+} if
+} if
+ } if
+} if
+/md defed{ 
+ md type /dicttype eq {  
+/colorimage where { 
+md eq { 
+/_rci false def 
+}if
+}if
+/settransfer where {
+md eq {
+/st systemdict /settransfer get def
+}if
+}if
+ }if 
+}if
+/setstrokeadjust defed
+{
+ true setstrokeadjust
+ /C{curveto}bdf
+ /L{lineto}bdf
+ /m{moveto}bdf
+}
+{
+ /dr{transform .25 sub round .25 add 
+exch .25 sub round .25 add exch itransform}bdf
+ /C{dr curveto}bdf
+ /L{dr lineto}bdf
+ /m{dr moveto}bdf
+ /setstrokeadjust{pop}bdf 
+}ifelse
+/rectstroke defed /xt xdf
+xt {/yt save def} if
+/privrectpath { 
+ 4 -2 roll m
+ dtransform round exch round exch idtransform 
+ 2 copy 0 lt exch 0 lt xor
+ {dup 0 exch rlineto exch 0 rlineto neg 0 exch rlineto}
+ {exch dup 0 rlineto exch 0 exch rlineto neg 0 rlineto}
+ ifelse
+ closepath
+}bdf
+/rectclip{newpath privrectpath clip newpath}def
+/rectfill{gsave newpath privrectpath fill grestore}def
+/rectstroke{gsave newpath privrectpath stroke grestore}def
+xt {yt restore} if
+/_fonthacksave false def
+/currentpacking defed 
+{
+ /_bfh {/_fonthacksave currentpacking def false setpacking} bdf
+ /_efh {_fonthacksave setpacking} bdf
+}
+{
+ /_bfh {} bdf
+ /_efh {} bdf
+}ifelse
+/packedarray{array astore readonly}ndf
+/` 
+{ 
+ false setoverprint  
+ 
+ 
+ /-save0- save def
+ 5 index concat
+ pop
+ storerect left bottom width height rectclip
+ pop
+ 
+ /dict_count countdictstack def
+ /op_count count 1 sub def
+ userdict begin
+ 
+ /showpage {} def
+ 
+ 0 setgray 0 setlinecap 1 setlinewidth
+ 0 setlinejoin 10 setmiterlimit [] 0 setdash newpath
+ 
+} bdf
+/currentpacking defed{true setpacking}if
+/min{2 copy gt{exch}if pop}bdf
+/max{2 copy lt{exch}if pop}bdf
+/xformfont { currentfont exch makefont setfont } bdf
+/fhnumcolors 1 
+ statusdict begin
+/processcolors defed 
+{
+pop processcolors
+}
+{
+/deviceinfo defed {
+deviceinfo /Colors known {
+pop deviceinfo /Colors get
+} if
+} if
+} ifelse
+ end 
+def
+/printerRes 
+ gsave
+ matrix defaultmatrix setmatrix
+ 72 72 dtransform
+ abs exch abs
+ max
+ grestore
+ def
+/graycalcs
+[
+ {Angle Frequency}   
+ {GrayAngle GrayFrequency} 
+ {0 Width Height matrix defaultmatrix idtransform 
+dup mul exch dup mul add sqrt 72 exch div} 
+ {0 GrayWidth GrayHeight matrix defaultmatrix idtransform 
+dup mul exch dup mul add sqrt 72 exch div} 
+] def
+/calcgraysteps {
+ forcemaxsteps
+ {
+maxsteps
+ }
+ {
+/currenthalftone defed
+{currenthalftone /dicttype eq}{false}ifelse
+{
+currenthalftone begin
+HalftoneType 4 le
+{graycalcs HalftoneType 1 sub get exec}
+{
+HalftoneType 5 eq
+{
+Default begin
+{graycalcs HalftoneType 1 sub get exec}
+end
+}
+{0 60} 
+ifelse
+}
+ifelse
+end
+}
+{
+currentscreen pop exch 
+}
+ifelse
+ 
+printerRes 300 max exch div exch 
+2 copy 
+sin mul round dup mul 
+3 1 roll 
+cos mul round dup mul 
+add 1 add 
+dup maxsteps gt {pop maxsteps} if 
+ }
+ ifelse
+} bdf
+/nextrelease defed { 
+ /languagelevel defed not {    
+/framebuffer defed { 
+0 40 string framebuffer 9 1 roll 8 {pop} repeat
+dup 516 eq exch 520 eq or
+{
+/fhnumcolors 3 def
+/currentscreen {60 0 {pop pop 1}}bdf
+/calcgraysteps {maxsteps} bdf
+}if
+}if
+ }if
+}if
+fhnumcolors 1 ne {
+ /calcgraysteps {maxsteps} bdf
+} if
+/currentpagedevice defed {
+ 
+ 
+ currentpagedevice /PreRenderingEnhance known
+ {
+currentpagedevice /PreRenderingEnhance get
+{
+/calcgraysteps 
+{
+forcemaxsteps 
+{maxsteps}
+{256 maxsteps min}
+ifelse
+} def
+} if
+ } if
+} if
+/gradfrequency 144 def
+printerRes 1000 lt {
+ /gradfrequency 72 def
+} if
+/adjnumsteps {
+ 
+ dup dtransform abs exch abs max  
+ 
+ printerRes div       
+ 
+ gradfrequency mul      
+ round        
+ 5 max       
+ min        
+}bdf
+/goodsep {
+ spots exch get 4 get dup sepname eq exch (_vc_Registration) eq or
+}bdf
+/BeginGradation defed
+{/bb{BeginGradation}bdf}
+{/bb{}bdf}
+ifelse
+/EndGradation defed
+{/eb{EndGradation}bdf}
+{/eb{}bdf}
+ifelse
+/bottom -0 def 
+/delta -0 def 
+/frac -0 def 
+/height -0 def 
+/left -0 def 
+/numsteps1 -0 def 
+/radius -0 def 
+/right -0 def 
+/top -0 def 
+/width -0 def 
+/xt -0 def 
+/yt -0 def 
+/df currentflat def 
+/tempstr 1 string def 
+/clipflatness currentflat def 
+/inverted? 
+ 0 currenttransfer exec .5 ge def
+/tc1 [0 0 0 1] def 
+/tc2 [0 0 0 1] def 
+/storerect{/top xdf /right xdf /bottom xdf /left xdf 
+/width right left sub def /height top bottom sub def}bdf
+/concatprocs{
+ systemdict /packedarray known 
+ {dup type /packedarraytype eq 2 index type /packedarraytype eq or}{false}ifelse
+ { 
+/proc2 exch cvlit def /proc1 exch cvlit def
+proc1 aload pop proc2 aload pop
+proc1 length proc2 length add packedarray cvx
+ }
+ { 
+/proc2 exch cvlit def /proc1 exch cvlit def
+/newproc proc1 length proc2 length add array def
+newproc 0 proc1 putinterval newproc proc1 length proc2 putinterval
+newproc cvx
+ }ifelse
+}bdf
+/i{dup 0 eq
+ {pop df dup} 
+ {dup} ifelse 
+ /clipflatness xdf setflat
+}bdf
+version cvr 38.0 le
+{/setrgbcolor{
+currenttransfer exec 3 1 roll
+currenttransfer exec 3 1 roll
+currenttransfer exec 3 1 roll
+setrgbcolor}bdf}if
+/vms {/vmsv save def} bdf
+/vmr {vmsv restore} bdf
+/vmrs{vmsv restore /vmsv save def}bdf
+/eomode{ 
+ {/filler /eofill load def /clipper /eoclip load def}
+ {/filler /fill load def /clipper /clip load def}
+ ifelse
+}bdf
+/normtaper{}bdf
+/logtaper{9 mul 1 add log}bdf
+/CD{
+ /NF exch def 
+ {    
+exch dup 
+/FID ne 1 index/UniqueID ne and
+{exch NF 3 1 roll put}
+{pop pop}
+ifelse
+ }forall 
+ NF
+}bdf
+/MN{
+ 1 index length   
+ /Len exch def 
+ dup length Len add  
+ string dup    
+ Len     
+ 4 -1 roll    
+ putinterval   
+ dup     
+ 0      
+ 4 -1 roll   
+ putinterval   
+}bdf
+/RC{4 -1 roll /ourvec xdf 256 string cvs(|______)anchorsearch
+ {1 index MN cvn/NewN exch def cvn
+ findfont dup maxlength dict CD dup/FontName NewN put dup
+ /Encoding ourvec put NewN exch definefont pop}{pop}ifelse}bdf
+/RF{ 
+ dup      
+ FontDirectory exch   
+ known     
+ {pop 3 -1 roll pop}  
+ {RC}
+ ifelse
+}bdf
+/FF{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
+ {exch pop findfont 3 -1 roll pop}
+ {pop dup findfont dup maxlength dict CD dup dup
+ /Encoding exch /Encoding get 256 array copy 7 -1 roll 
+ {3 -1 roll dup 4 -2 roll put}forall put definefont}
+ ifelse}bdf
+/RFJ{ 
+ dup      
+ FontDirectory exch   
+ known     
+ {pop 3 -1 roll pop  
+ FontDirectory /Ryumin-Light-83pv-RKSJ-H known 
+ {pop pop /Ryumin-Light-83pv-RKSJ-H dup}if  
+ }      
+ {RC}
+ ifelse
+}bdf
+/FFJ{dup 256 string cvs(|______)exch MN cvn dup FontDirectory exch known
+ {exch pop findfont 3 -1 roll pop}
+ {pop
+dup FontDirectory exch known not 
+ {FontDirectory /Ryumin-Light-83pv-RKSJ-H known 
+{pop /Ryumin-Light-83pv-RKSJ-H}if 
+ }if            
+ dup findfont dup maxlength dict CD dup dup
+ /Encoding exch /Encoding get 256 array copy 7 -1 roll 
+ {3 -1 roll dup 4 -2 roll put}forall put definefont}
+ ifelse}bdf
+/fps{
+ currentflat   
+ exch     
+ dup 0 le{pop 1}if 
+ {
+dup setflat 3 index stopped
+{1.3 mul dup 3 index gt{pop setflat pop pop stop}if} 
+{exit} 
+ifelse
+ }loop 
+ pop setflat pop pop
+}bdf
+/fp{100 currentflat fps}bdf
+/clipper{clip}bdf 
+/W{/clipper load 100 clipflatness dup setflat fps}bdf
+userdict begin /BDFontDict 29 dict def end
+BDFontDict begin
+/bu{}def
+/bn{}def
+/setTxMode{av 70 ge{pop}if pop}def
+/gm{m}def
+/show{pop}def
+/gr{pop}def
+/fnt{pop pop pop}def
+/fs{pop}def
+/fz{pop}def
+/lin{pop pop}def
+/:M {pop pop} def
+/sf {pop} def
+/S {pop} def
+/@b {pop pop pop pop pop pop pop pop} def
+/_bdsave /save load def
+/_bdrestore /restore load def
+/save { dup /fontsave eq {null} {_bdsave} ifelse } def
+/restore { dup null eq { pop } { _bdrestore } ifelse } def
+/fontsave null def
+end
+/MacVec 256 array def 
+MacVec 0 /Helvetica findfont
+/Encoding get 0 128 getinterval putinterval
+MacVec 127 /DEL put MacVec 16#27 /quotesingle put MacVec 16#60 /grave put
+/NUL/SOH/STX/ETX/EOT/ENQ/ACK/BEL/BS/HT/LF/VT/FF/CR/SO/SI
+/DLE/DC1/DC2/DC3/DC4/NAK/SYN/ETB/CAN/EM/SUB/ESC/FS/GS/RS/US
+MacVec 0 32 getinterval astore pop
+/Adieresis/Aring/Ccedilla/Eacute/Ntilde/Odieresis/Udieresis/aacute
+/agrave/acircumflex/adieresis/atilde/aring/ccedilla/eacute/egrave
+/ecircumflex/edieresis/iacute/igrave/icircumflex/idieresis/ntilde/oacute
+/ograve/ocircumflex/odieresis/otilde/uacute/ugrave/ucircumflex/udieresis
+/dagger/degree/cent/sterling/section/bullet/paragraph/germandbls
+/registered/copyright/trademark/acute/dieresis/notequal/AE/Oslash
+/infinity/plusminus/lessequal/greaterequal/yen/mu/partialdiff/summation
+/product/pi/integral/ordfeminine/ordmasculine/Omega/ae/oslash 
+/questiondown/exclamdown/logicalnot/radical/florin/approxequal/Delta/guillemotleft
+/guillemotright/ellipsis/nbspace/Agrave/Atilde/Otilde/OE/oe
+/endash/emdash/quotedblleft/quotedblright/quoteleft/quoteright/divide/lozenge
+/ydieresis/Ydieresis/fraction/currency/guilsinglleft/guilsinglright/fi/fl
+/daggerdbl/periodcentered/quotesinglbase/quotedblbase
+/perthousand/Acircumflex/Ecircumflex/Aacute
+/Edieresis/Egrave/Iacute/Icircumflex/Idieresis/Igrave/Oacute/Ocircumflex
+/apple/Ograve/Uacute/Ucircumflex/Ugrave/dotlessi/circumflex/tilde
+/macron/breve/dotaccent/ring/cedilla/hungarumlaut/ogonek/caron
+MacVec 128 128 getinterval astore pop
+end %. AltsysDict
+%%EndResource
+%%EndProlog
+%%BeginSetup
+AltsysDict begin
+_bfh
+%%IncludeResource: font Symbol
+_efh
+0 dict dup begin
+end 
+/f0 /Symbol FF def
+_bfh
+%%IncludeResource: font ZapfHumanist601BT-Bold
+_efh
+0 dict dup begin
+end 
+/f1 /ZapfHumanist601BT-Bold FF def
+end %. AltsysDict
+%%EndSetup
+AltsysDict begin 
+/onlyk4{false}ndf
+/ccmyk{dup 5 -1 roll sub 0 max exch}ndf
+/cmyk2gray{
+ 4 -1 roll 0.3 mul 4 -1 roll 0.59 mul 4 -1 roll 0.11 mul
+ add add add 1 min neg 1 add
+}bdf
+/setcmykcolor{1 exch sub ccmyk ccmyk ccmyk pop setrgbcolor}ndf
+/maxcolor { 
+ max max max  
+} ndf
+/maxspot {
+ pop
+} ndf
+/setcmykcoloroverprint{4{dup -1 eq{pop 0}if 4 1 roll}repeat setcmykcolor}ndf
+/findcmykcustomcolor{5 packedarray}ndf
+/setcustomcolor{exch aload pop pop 4{4 index mul 4 1 roll}repeat setcmykcolor pop}ndf
+/setseparationgray{setgray}ndf
+/setoverprint{pop}ndf 
+/currentoverprint false ndf
+/cmykbufs2gray{
+ 0 1 2 index length 1 sub
+ { 
+4 index 1 index get 0.3 mul 
+4 index 2 index get 0.59 mul 
+4 index 3 index get 0.11 mul 
+4 index 4 index get 
+add add add cvi 255 min
+255 exch sub
+2 index 3 1 roll put
+ }for
+ 4 1 roll pop pop pop
+}bdf
+/colorimage{
+ pop pop
+ [
+5 -1 roll/exec cvx 
+6 -1 roll/exec cvx 
+7 -1 roll/exec cvx 
+8 -1 roll/exec cvx
+/cmykbufs2gray cvx
+ ]cvx 
+ image
+}
+%. version 47.1 on Linotronic of Postscript defines colorimage incorrectly (rgb model only)
+version cvr 47.1 le 
+statusdict /product get (Lino) anchorsearch{pop pop true}{pop false}ifelse
+and{userdict begin bdf end}{ndf}ifelse
+fhnumcolors 1 ne {/yt save def} if
+/customcolorimage{
+ aload pop
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+ic im iy ik cmyk2gray /xt xdf
+currenttransfer
+{dup 1.0 exch sub xt mul add}concatprocs
+st 
+image
+ }
+ ifelse
+}ndf
+fhnumcolors 1 ne {yt restore} if
+fhnumcolors 3 ne {/yt save def} if
+/customcolorimage{
+ aload pop 
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+1.0 dup ic ik add min sub 
+1.0 dup im ik add min sub 
+1.0 dup iy ik add min sub 
+/ic xdf /iy xdf /im xdf
+currentcolortransfer
+4 1 roll 
+{dup 1.0 exch sub ic mul add}concatprocs 4 1 roll 
+{dup 1.0 exch sub iy mul add}concatprocs 4 1 roll 
+{dup 1.0 exch sub im mul add}concatprocs 4 1 roll 
+setcolortransfer
+{/dummy xdf dummy}concatprocs{dummy}{dummy}true 3 colorimage
+ }
+ ifelse
+}ndf
+fhnumcolors 3 ne {yt restore} if
+fhnumcolors 4 ne {/yt save def} if
+/customcolorimage{
+ aload pop
+ (_vc_Registration) eq 
+ {
+pop pop pop pop separationimage
+ }
+ {
+/ik xdf /iy xdf /im xdf /ic xdf
+currentcolortransfer
+{1.0 exch sub ik mul ik sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub iy mul iy sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub im mul im sub 1 add}concatprocs 4 1 roll
+{1.0 exch sub ic mul ic sub 1 add}concatprocs 4 1 roll
+setcolortransfer
+{/dummy xdf dummy}concatprocs{dummy}{dummy}{dummy}
+true 4 colorimage
+ }
+ ifelse
+}ndf
+fhnumcolors 4 ne {yt restore} if
+/separationimage{image}ndf
+/newcmykcustomcolor{6 packedarray}ndf
+/inkoverprint false ndf
+/setinkoverprint{pop}ndf 
+/setspotcolor { 
+ spots exch get
+ dup 4 get (_vc_Registration) eq
+ {pop 1 exch sub setseparationgray}
+ {0 5 getinterval exch setcustomcolor}
+ ifelse
+}ndf
+/currentcolortransfer{currenttransfer dup dup dup}ndf
+/setcolortransfer{st pop pop pop}ndf
+/fas{}ndf
+/sas{}ndf
+/fhsetspreadsize{pop}ndf
+/filler{fill}bdf 
+/F{gsave {filler}fp grestore}bdf
+/f{closepath F}bdf
+/S{gsave {stroke}fp grestore}bdf
+/s{closepath S}bdf
+/bc4 [0 0 0 0] def 
+/_lfp4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /yt xdf       
+ /xt xdf       
+ /ang xdf      
+ storerect
+ /taperfcn xdf
+ /k2 xdf /y2 xdf /m2 xdf /c2 xdf
+ /k1 xdf /y1 xdf /m1 xdf /c1 xdf
+ c1 c2 sub abs
+ m1 m2 sub abs
+ y1 y2 sub abs
+ k1 k2 sub abs
+ maxcolor      
+ calcgraysteps mul abs round  
+ height abs adjnumsteps   
+ dup 2 lt {pop 1} if    
+ 1 sub /numsteps1 xdf
+ currentflat mark    
+ currentflat clipflatness  
+ /delta top bottom sub numsteps1 1 add div def 
+ /right right left sub def  
+ /botsv top delta sub def  
+ {
+{
+W
+xt yt translate 
+ang rotate
+xt neg yt neg translate 
+dup setflat 
+/bottom botsv def
+0 1 numsteps1 
+{
+numsteps1 dup 0 eq {pop 0.5 } { div } ifelse 
+taperfcn /frac xdf
+bc4 0 c2 c1 sub frac mul c1 add put
+bc4 1 m2 m1 sub frac mul m1 add put
+bc4 2 y2 y1 sub frac mul y1 add put
+bc4 3 k2 k1 sub frac mul k1 add put
+bc4 vc
+1 index setflat 
+{ 
+mark {newpath left bottom right delta rectfill}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+/bottom bottom delta sub def
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/bcs [0 0] def 
+/_lfs4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /yt xdf       
+ /xt xdf       
+ /ang xdf      
+ storerect
+ /taperfcn xdf
+ /tint2 xdf      
+ /tint1 xdf      
+ bcs exch 1 exch put    
+ tint1 tint2 sub abs    
+ bcs 1 get maxspot    
+ calcgraysteps mul abs round  
+ height abs adjnumsteps   
+ dup 2 lt {pop 2} if    
+ 1 sub /numsteps1 xdf
+ currentflat mark    
+ currentflat clipflatness  
+ /delta top bottom sub numsteps1 1 add div def 
+ /right right left sub def  
+ /botsv top delta sub def  
+ {
+{
+W
+xt yt translate 
+ang rotate
+xt neg yt neg translate 
+dup setflat 
+/bottom botsv def
+0 1 numsteps1 
+{
+numsteps1 div taperfcn /frac xdf
+bcs 0
+1.0 tint2 tint1 sub frac mul tint1 add sub
+put bcs vc
+1 index setflat 
+{ 
+mark {newpath left bottom right delta rectfill}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+/bottom bottom delta sub def
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/_rfs4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /tint2 xdf      
+ /tint1 xdf      
+ bcs exch 1 exch put    
+ /radius xdf      
+ /yt xdf       
+ /xt xdf       
+ tint1 tint2 sub abs    
+ bcs 1 get maxspot    
+ calcgraysteps mul abs round  
+ radius abs adjnumsteps   
+ dup 2 lt {pop 2} if    
+ 1 sub /numsteps1 xdf
+ radius numsteps1 div 2 div /halfstep xdf 
+ currentflat mark    
+ currentflat clipflatness  
+ {
+{
+dup setflat 
+W 
+0 1 numsteps1 
+{
+dup /radindex xdf
+numsteps1 div /frac xdf
+bcs 0
+tint2 tint1 sub frac mul tint1 add
+put bcs vc
+1 index setflat 
+{ 
+newpath mark xt yt radius 1 frac sub mul halfstep add 0 360
+{ arc
+radindex numsteps1 ne 
+{
+xt yt 
+radindex 1 add numsteps1 
+div 1 exch sub 
+radius mul halfstep add
+dup xt add yt moveto 
+360 0 arcn 
+} if
+fill
+}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/_rfp4 {
+ /iosv inkoverprint def
+ /cosv currentoverprint def
+ /k2 xdf /y2 xdf /m2 xdf /c2 xdf
+ /k1 xdf /y1 xdf /m1 xdf /c1 xdf
+ /radius xdf      
+ /yt xdf       
+ /xt xdf       
+ c1 c2 sub abs
+ m1 m2 sub abs
+ y1 y2 sub abs
+ k1 k2 sub abs
+ maxcolor      
+ calcgraysteps mul abs round  
+ radius abs adjnumsteps   
+ dup 2 lt {pop 1} if    
+ 1 sub /numsteps1 xdf
+ radius numsteps1 dup 0 eq {pop} {div} ifelse 
+ 2 div /halfstep xdf 
+ currentflat mark    
+ currentflat clipflatness  
+ {
+{
+dup setflat 
+W 
+0 1 numsteps1 
+{
+dup /radindex xdf
+numsteps1 dup 0 eq {pop 0.5 } { div } ifelse 
+/frac xdf
+bc4 0 c2 c1 sub frac mul c1 add put
+bc4 1 m2 m1 sub frac mul m1 add put
+bc4 2 y2 y1 sub frac mul y1 add put
+bc4 3 k2 k1 sub frac mul k1 add put
+bc4 vc
+1 index setflat 
+{ 
+newpath mark xt yt radius 1 frac sub mul halfstep add 0 360
+{ arc
+radindex numsteps1 ne 
+{
+xt yt 
+radindex 1 add 
+numsteps1 dup 0 eq {pop} {div} ifelse 
+1 exch sub 
+radius mul halfstep add
+dup xt add yt moveto 
+360 0 arcn 
+} if
+fill
+}stopped
+{cleartomark exch 1.3 mul dup setflat exch 2 copy gt{stop}if}
+{cleartomark exit}ifelse
+}loop
+}for
+}
+gsave stopped grestore
+{exch pop 2 index exch 1.3 mul dup 100 gt{cleartomark setflat stop}if}
+{exit}ifelse
+ }loop
+ cleartomark setflat
+ iosv setinkoverprint
+ cosv setoverprint
+}bdf
+/lfp4{_lfp4}ndf
+/lfs4{_lfs4}ndf
+/rfs4{_rfs4}ndf
+/rfp4{_rfp4}ndf
+/cvc [0 0 0 1] def 
+/vc{
+ AltsysDict /cvc 2 index put 
+ aload length 4 eq
+ {setcmykcolor}
+ {setspotcolor}
+ ifelse
+}bdf 
+/origmtx matrix currentmatrix def
+/ImMatrix matrix currentmatrix def
+0 setseparationgray
+/imgr {1692 1570.1102 2287.2756 2412 } def 
+/bleed 0 def 
+/clpr {1692 1570.1102 2287.2756 2412 } def 
+/xs 1 def 
+/ys 1 def 
+/botx 0 def 
+/overlap 0 def 
+/wdist 18 def 
+0 2 mul fhsetspreadsize 
+0 0 ne {/df 0 def /clipflatness 0 def} if 
+/maxsteps 256 def 
+/forcemaxsteps false def 
+vms
+-1845 -1956 translate
+/currentpacking defed{false setpacking}if 
+/spots[
+1 0 0 0 (Process Cyan) false newcmykcustomcolor
+0 1 0 0 (Process Magenta) false newcmykcustomcolor
+0 0 1 0 (Process Yellow) false newcmykcustomcolor
+0 0 0 1 (Process Black) false newcmykcustomcolor
+]def
+/textopf false def
+/curtextmtx{}def
+/otw .25 def
+/msf{dup/curtextmtx xdf makefont setfont}bdf
+/makesetfont/msf load def
+/curtextheight{.707104 .707104 curtextmtx dtransform
+ dup mul exch dup mul add sqrt}bdf
+/ta2{ 
+tempstr 2 index gsave exec grestore 
+cwidth cheight rmoveto 
+4 index eq{5 index 5 index rmoveto}if 
+2 index 2 index rmoveto 
+}bdf
+/ta{exch systemdict/cshow known
+{{/cheight xdf/cwidth xdf tempstr 0 2 index put ta2}exch cshow} 
+{{tempstr 0 2 index put tempstr stringwidth/cheight xdf/cwidth xdf ta2}forall} 
+ifelse 6{pop}repeat}bdf
+/sts{/textopf currentoverprint def vc setoverprint
+/ts{awidthshow}def exec textopf setoverprint}bdf
+/stol{/xt currentlinewidth def 
+ setlinewidth vc newpath 
+ /ts{{false charpath stroke}ta}def exec 
+ xt setlinewidth}bdf 
+ 
+/strk{/textopf currentoverprint def vc setoverprint
+ /ts{{false charpath stroke}ta}def exec 
+ textopf setoverprint
+ }bdf 
+n
+[] 0 d
+3.863708 M
+1 w
+0 j
+0 J
+false setoverprint
+0 i
+false eomode
+[0 0 0 1] vc
+vms
+%white border -- disabled
+%1845.2293 2127.8588 m
+%2045.9437 2127.8588 L
+%2045.9437 1956.1412 L
+%1845.2293 1956.1412 L
+%1845.2293 2127.8588 L
+%0.1417 w
+%2 J
+%2 M
+%[0 0 0 0]  vc
+%s 
+n
+1950.8 2097.2 m
+1958.8 2092.5 1967.3 2089 1975.5 2084.9 C
+1976.7 2083.5 1976.1 2081.5 1976.7 2079.9 C
+1979.6 2081.1 1981.6 2086.8 1985.3 2084 C
+1993.4 2079.3 2001.8 2075.8 2010 2071.7 C
+2010.5 2071.5 2010.5 2071.1 2010.8 2070.8 C
+2011.2 2064.3 2010.9 2057.5 2011 2050.8 C
+2015.8 2046.9 2022.2 2046.2 2026.6 2041.7 C
+2026.5 2032.5 2026.8 2022.9 2026.4 2014.1 C
+2020.4 2008.3 2015 2002.4 2008.8 1997.1 C
+2003.8 1996.8 2000.7 2001.2 1996.1 2002.1 C
+1995.2 1996.4 1996.9 1990.5 1995.6 1984.8 C
+1989.9 1979 1984.5 1973.9 1978.8 1967.8 C
+1977.7 1968.6 1976 1967.6 1974.5 1968.3 C
+1967.4 1972.5 1960.1 1976.1 1952.7 1979.3 C
+1946.8 1976.3 1943.4 1970.7 1938.5 1966.1 C
+1933.9 1966.5 1929.4 1968.8 1925.1 1970.7 C
+1917.2 1978.2 1906 1977.9 1897.2 1983.4 C
+1893.2 1985.6 1889.4 1988.6 1885 1990.1 C
+1884.6 1990.6 1883.9 1991 1883.8 1991.6 C
+1883.7 2000.4 1884 2009.9 1883.6 2018.9 C
+1887.7 2024 1893.2 2028.8 1898 2033.8 C
+1899.1 2035.5 1900.9 2036.8 1902.5 2037.9 C
+1903.9 2037.3 1905.2 2036.6 1906.4 2035.5 C
+1906.3 2039.7 1906.5 2044.6 1906.1 2048.9 C
+1906.3 2049.6 1906.7 2050.2 1907.1 2050.8 C
+1913.4 2056 1918.5 2062.7 1924.8 2068.1 C
+1926.6 2067.9 1928 2066.9 1929.4 2066 C
+1930.2 2071 1927.7 2077.1 1930.6 2081.6 C
+1936.6 2086.9 1941.5 2092.9 1947.9 2097.9 C
+1949 2098.1 1949.9 2097.5 1950.8 2097.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+S 
+n
+1975.2 2084.7 m
+1976.6 2083.4 1975.7 2081.1 1976 2079.4 C
+1979.3 2079.5 1980.9 2086.2 1984.8 2084 C
+1992.9 2078.9 2001.7 2075.6 2010 2071.2 C
+2011 2064.6 2010.2 2057.3 2010.8 2050.6 C
+2015.4 2046.9 2021.1 2045.9 2025.9 2042.4 C
+2026.5 2033.2 2026.8 2022.9 2025.6 2013.9 C
+2020.5 2008.1 2014.5 2003.1 2009.3 1997.6 C
+2004.1 1996.7 2000.7 2001.6 1995.9 2002.6 C
+1995.2 1996.7 1996.3 1990.2 1994.9 1984.6 C
+1989.8 1978.7 1983.6 1973.7 1978.4 1968 C
+1977.3 1969.3 1976 1967.6 1974.8 1968.5 C
+1967.7 1972.7 1960.4 1976.3 1952.9 1979.6 C
+1946.5 1976.9 1943.1 1970.5 1937.8 1966.1 C
+1928.3 1968.2 1920.6 1974.8 1911.6 1978.4 C
+1901.9 1979.7 1893.9 1986.6 1885 1990.6 C
+1884.3 1991 1884.3 1991.7 1884 1992.3 C
+1884.5 2001 1884.2 2011 1884.3 2019.9 C
+1890.9 2025.3 1895.9 2031.9 1902.3 2037.4 C
+1904.2 2037.9 1905.6 2034.2 1906.8 2035.7 C
+1907.4 2040.9 1905.7 2046.1 1907.3 2050.8 C
+1913.6 2056.2 1919.2 2062.6 1925.1 2067.9 C
+1926.9 2067.8 1928 2066.3 1929.6 2065.7 C
+1929.9 2070.5 1929.2 2076 1930.1 2080.8 C
+1936.5 2086.1 1941.6 2092.8 1948.4 2097.6 C
+1957.3 2093.3 1966.2 2088.8 1975.2 2084.7 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1954.8 2093.8 m
+1961.6 2090.5 1968.2 2087 1975 2084 C
+1975 2082.8 1975.6 2080.9 1974.8 2080.6 C
+1974.3 2075.2 1974.6 2069.6 1974.5 2064 C
+1977.5 2059.7 1984.5 2060 1988.9 2056.4 C
+1989.5 2055.5 1990.5 2055.3 1990.8 2054.4 C
+1991.1 2045.7 1991.4 2036.1 1990.6 2027.8 C
+1990.7 2026.6 1992 2027.3 1992.8 2027.1 C
+1997 2032.4 2002.6 2037.8 2007.6 2042.2 C
+2008.7 2042.3 2007.8 2040.6 2007.4 2040 C
+2002.3 2035.6 1997.5 2030 1992.8 2025.2 C
+1991.6 2024.7 1990.8 2024.9 1990.1 2025.4 C
+1989.4 2024.9 1988.1 2025.2 1987.2 2024.4 C
+1987.1 2025.8 1988.3 2026.5 1989.4 2026.8 C
+1989.4 2026.6 1989.3 2026.2 1989.6 2026.1 C
+1989.9 2026.2 1989.9 2026.6 1989.9 2026.8 C
+1989.8 2026.6 1990 2026.5 1990.1 2026.4 C
+1990.2 2027 1991.1 2028.3 1990.1 2028 C
+1989.9 2037.9 1990.5 2044.1 1989.6 2054.2 C
+1985.9 2058 1979.7 2057.4 1976 2061.2 C
+1974.5 2061.6 1975.2 2059.9 1974.5 2059.5 C
+1973.9 2058 1975.6 2057.8 1975 2056.6 C
+1974.5 2057.1 1974.6 2055.3 1973.6 2055.9 C
+1971.9 2059.3 1974.7 2062.1 1973.1 2065.5 C
+1973.1 2071.2 1972.9 2077 1973.3 2082.5 C
+1967.7 2085.6 1962 2088 1956.3 2090.7 C
+1953.9 2092.4 1951 2093 1948.6 2094.8 C
+1943.7 2089.9 1937.9 2084.3 1933 2079.6 C
+1931.3 2076.1 1933.2 2071.3 1932.3 2067.2 C
+1931.3 2062.9 1933.3 2060.6 1932 2057.6 C
+1932.7 2056.5 1930.9 2053.3 1933.2 2051.8 C
+1936.8 2050.1 1940.1 2046.9 1944 2046.8 C
+1946.3 2049.7 1949.3 2051.9 1952 2054.4 C
+1954.5 2054.2 1956.4 2052.3 1958.7 2051.3 C
+1960.8 2050 1963.2 2049 1965.6 2048.4 C
+1968.3 2050.8 1970.7 2054.3 1973.6 2055.4 C
+1973 2052.2 1969.7 2050.4 1967.6 2048.2 C
+1967.1 2046.7 1968.8 2046.6 1969.5 2045.8 C
+1972.8 2043.3 1980.6 2043.4 1979.3 2038.4 C
+1979.4 2038.6 1979.2 2038.7 1979.1 2038.8 C
+1978.7 2038.6 1978.9 2038.1 1978.8 2037.6 C
+1978.9 2037.9 1978.7 2038 1978.6 2038.1 C
+1978.2 2032.7 1978.4 2027.1 1978.4 2021.6 C
+1979.3 2021.1 1980 2020.2 1981.5 2020.1 C
+1983.5 2020.5 1984 2021.8 1985.1 2023.5 C
+1985.7 2024 1987.4 2023.7 1986 2022.8 C
+1984.7 2021.7 1983.3 2020.8 1983.9 2018.7 C
+1987.2 2015.9 1993 2015.4 1994.9 2011.5 C
+1992.2 2004.9 1999.3 2005.2 2002.1 2002.4 C
+2005.9 2002.7 2004.8 1997.4 2009.1 1999 C
+2011 1999.3 2010 2002.9 2012.7 2002.4 C
+2010.2 2000.7 2009.4 1996.1 2005.5 1998.5 C
+2002.1 2000.3 1999 2002.5 1995.4 2003.8 C
+1995.2 2003.6 1994.9 2003.3 1994.7 2003.1 C
+1994.3 1997 1995.6 1991.1 1994.4 1985.3 C
+1994.3 1986 1993.8 1985 1994 1985.6 C
+1993.8 1995.4 1994.4 2001.6 1993.5 2011.7 C
+1989.7 2015.5 1983.6 2014.9 1979.8 2018.7 C
+1978.3 2019.1 1979.1 2017.4 1978.4 2017 C
+1977.8 2015.5 1979.4 2015.3 1978.8 2014.1 C
+1978.4 2014.6 1978.5 2012.8 1977.4 2013.4 C
+1975.8 2016.8 1978.5 2019.6 1976.9 2023 C
+1977 2028.7 1976.7 2034.5 1977.2 2040 C
+1971.6 2043.1 1965.8 2045.6 1960.1 2048.2 C
+1957.7 2049.9 1954.8 2050.5 1952.4 2052.3 C
+1947.6 2047.4 1941.8 2041.8 1936.8 2037.2 C
+1935.2 2033.6 1937.1 2028.8 1936.1 2024.7 C
+1935.1 2020.4 1937.1 2018.1 1935.9 2015.1 C
+1936.5 2014.1 1934.7 2010.8 1937.1 2009.3 C
+1944.4 2004.8 1952 2000.9 1959.9 1997.8 C
+1963.9 1997 1963.9 2001.9 1966.8 2003.3 C
+1970.3 2006.9 1973.7 2009.9 1976.9 2012.9 C
+1977.9 2013 1977.1 2011.4 1976.7 2010.8 C
+1971.6 2006.3 1966.8 2000.7 1962 1995.9 C
+1960 1995.2 1960.1 1996.6 1958.2 1995.6 C
+1957 1997 1955.1 1998.8 1953.2 1998 C
+1951.7 1994.5 1954.1 1993.4 1952.9 1991.1 C
+1952.1 1990.5 1953.3 1990.2 1953.2 1989.6 C
+1954.2 1986.8 1950.9 1981.4 1954.4 1981.2 C
+1954.7 1981.6 1954.7 1981.7 1955.1 1982 C
+1961.9 1979.1 1967.6 1975 1974.3 1971.6 C
+1974.7 1969.8 1976.7 1969.5 1978.4 1969.7 C
+1980.3 1970 1979.3 1973.6 1982 1973.1 C
+1975.8 1962.2 1968 1975.8 1960.8 1976.7 C
+1956.9 1977.4 1953.3 1982.4 1949.1 1978.8 C
+1946 1975.8 1941.2 1971 1939.5 1969.2 C
+1938.5 1968.6 1938.9 1967.4 1937.8 1966.8 C
+1928.7 1969.4 1920.6 1974.5 1912.4 1979.1 C
+1904 1980 1896.6 1985 1889.3 1989.4 C
+1887.9 1990.4 1885.1 1990.3 1885 1992.5 C
+1885.4 2000.6 1885.2 2012.9 1885.2 2019.9 C
+1886.1 2022 1889.7 2019.5 1888.4 2022.8 C
+1889 2023.3 1889.8 2024.4 1890.3 2024 C
+1891.2 2023.5 1891.8 2028.2 1893.4 2026.6 C
+1894.2 2026.3 1893.9 2027.3 1894.4 2027.6 C
+1893.4 2027.6 1894.7 2028.3 1894.1 2028.5 C
+1894.4 2029.6 1896 2030 1896 2029.2 C
+1896.2 2029 1896.3 2029 1896.5 2029.2 C
+1896.8 2029.8 1897.3 2030 1897 2030.7 C
+1896.5 2030.7 1896.9 2031.5 1897.2 2031.6 C
+1898.3 2034 1899.5 2030.6 1899.6 2033.3 C
+1898.5 2033 1899.6 2034.4 1900.1 2034.8 C
+1901.3 2035.8 1903.2 2034.6 1902.5 2036.7 C
+1904.4 2036.9 1906.1 2032.2 1907.6 2035.5 C
+1907.5 2040.1 1907.7 2044.9 1907.3 2049.4 C
+1908 2050.2 1908.3 2051.4 1909.5 2051.6 C
+1910.1 2051.1 1911.6 2051.1 1911.4 2052.3 C
+1909.7 2052.8 1912.4 2054 1912.6 2054.7 C
+1913.4 2055.2 1913 2053.7 1913.6 2054.4 C
+1913.6 2054.5 1913.6 2055.3 1913.6 2054.7 C
+1913.7 2054.4 1913.9 2054.4 1914 2054.7 C
+1914 2054.9 1914.1 2055.3 1913.8 2055.4 C
+1913.7 2056 1915.2 2057.6 1916 2057.6 C
+1915.9 2057.3 1916.1 2057.2 1916.2 2057.1 C
+1917 2056.8 1916.7 2057.7 1917.2 2058 C
+1917 2058.3 1916.7 2058.3 1916.4 2058.3 C
+1917.1 2059 1917.3 2060.1 1918.4 2060.4 C
+1918.1 2059.2 1919.1 2060.6 1919.1 2059.5 C
+1919 2060.6 1920.6 2060.1 1919.8 2061.2 C
+1919.6 2061.2 1919.3 2061.2 1919.1 2061.2 C
+1919.6 2061.9 1921.4 2064.2 1921.5 2062.6 C
+1922.4 2062.1 1921.6 2063.9 1922.2 2064.3 C
+1922.9 2067.3 1926.1 2064.3 1925.6 2067.2 C
+1927.2 2066.8 1928.4 2064.6 1930.1 2065.2 C
+1931.8 2067.8 1931 2071.8 1930.8 2074.8 C
+1930.6 2076.4 1930.1 2078.6 1930.6 2080.4 C
+1936.6 2085.4 1941.8 2091.6 1948.1 2096.9 C
+1950.7 2096.7 1952.6 2094.8 1954.8 2093.8 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1989.4 2080.6 m
+1996.1 2077.3 2002.7 2073.8 2009.6 2070.8 C
+2009.6 2069.6 2010.2 2067.7 2009.3 2067.4 C
+2008.9 2062 2009.1 2056.4 2009.1 2050.8 C
+2012.3 2046.6 2019 2046.6 2023.5 2043.2 C
+2024 2042.3 2025.1 2042.1 2025.4 2041.2 C
+2025.3 2032.7 2025.6 2023.1 2025.2 2014.6 C
+2025 2015.3 2024.6 2014.2 2024.7 2014.8 C
+2024.5 2024.7 2025.1 2030.9 2024.2 2041 C
+2020.4 2044.8 2014.3 2044.2 2010.5 2048 C
+2009 2048.4 2009.8 2046.7 2009.1 2046.3 C
+2008.5 2044.8 2010.2 2044.6 2009.6 2043.4 C
+2009.1 2043.9 2009.2 2042.1 2008.1 2042.7 C
+2006.5 2046.1 2009.3 2048.9 2007.6 2052.3 C
+2007.7 2058 2007.5 2063.8 2007.9 2069.3 C
+2002.3 2072.4 1996.5 2074.8 1990.8 2077.5 C
+1988.4 2079.2 1985.6 2079.8 1983.2 2081.6 C
+1980.5 2079 1977.9 2076.5 1975.5 2074.1 C
+1975.5 2075.1 1975.5 2076.2 1975.5 2077.2 C
+1977.8 2079.3 1980.3 2081.6 1982.7 2083.7 C
+1985.3 2083.5 1987.1 2081.6 1989.4 2080.6 C
+f 
+S 
+n
+1930.1 2079.9 m
+1931.1 2075.6 1929.2 2071.1 1930.8 2067.2 C
+1930.3 2066.3 1930.1 2064.6 1928.7 2065.5 C
+1927.7 2066.4 1926.5 2067 1925.3 2067.4 C
+1924.5 2066.9 1925.6 2065.7 1924.4 2066 C
+1924.2 2067.2 1923.6 2065.5 1923.2 2065.7 C
+1922.3 2063.6 1917.8 2062.1 1919.6 2060.4 C
+1919.3 2060.5 1919.2 2060.3 1919.1 2060.2 C
+1919.7 2060.9 1918.2 2061 1917.6 2060.2 C
+1917 2059.6 1916.1 2058.8 1916.4 2058 C
+1915.5 2058 1917.4 2057.1 1915.7 2057.8 C
+1914.8 2057.1 1913.4 2056.2 1913.3 2054.9 C
+1913.1 2055.4 1911.3 2054.3 1910.9 2053.2 C
+1910.7 2052.9 1910.2 2052.5 1910.7 2052.3 C
+1911.1 2052.5 1910.9 2052 1910.9 2051.8 C
+1910.5 2051.2 1909.9 2052.6 1909.2 2051.8 C
+1908.2 2051.4 1907.8 2050.2 1907.1 2049.4 C
+1907.5 2044.8 1907.3 2040 1907.3 2035.2 C
+1905.3 2033 1902.8 2039.3 1902.3 2035.7 C
+1899.6 2036 1898.4 2032.5 1896.3 2030.7 C
+1895.7 2030.1 1897.5 2030 1896.3 2029.7 C
+1896.3 2030.6 1895 2029.7 1894.4 2029.2 C
+1892.9 2028.1 1894.2 2027.4 1893.6 2027.1 C
+1892.1 2027.9 1891.7 2025.6 1890.8 2024.9 C
+1891.1 2024.6 1889.1 2024.3 1888.4 2023 C
+1887.5 2022.6 1888.2 2021.9 1888.1 2021.3 C
+1886.7 2022 1885.2 2020.4 1884.8 2019.2 C
+1884.8 2010 1884.6 2000.2 1885 1991.8 C
+1886.9 1989.6 1889.9 1989.3 1892.2 1987.5 C
+1898.3 1982.7 1905.6 1980.1 1912.8 1978.6 C
+1921 1974.2 1928.8 1968.9 1937.8 1966.6 C
+1939.8 1968.3 1938.8 1968.3 1940.4 1970 C
+1945.4 1972.5 1947.6 1981.5 1954.6 1979.3 C
+1952.3 1981 1950.4 1978.4 1948.6 1977.9 C
+1945.1 1973.9 1941.1 1970.6 1938 1966.6 C
+1928.4 1968.5 1920.6 1974.8 1911.9 1978.8 C
+1907.1 1979.2 1902.6 1981.7 1898.2 1983.6 C
+1893.9 1986 1889.9 1989 1885.5 1990.8 C
+1884.9 1991.2 1884.8 1991.8 1884.5 1992.3 C
+1884.9 2001.3 1884.7 2011.1 1884.8 2019.6 C
+1890.6 2025 1896.5 2031.2 1902.3 2036.9 C
+1904.6 2037.6 1905 2033 1907.3 2035.5 C
+1907.2 2040.2 1907 2044.8 1907.1 2049.6 C
+1913.6 2055.3 1918.4 2061.5 1925.1 2067.4 C
+1927.3 2068.2 1929.6 2062.5 1930.6 2066.9 C
+1929.7 2070.7 1930.3 2076 1930.1 2080.1 C
+1935.6 2085.7 1941.9 2090.7 1947.2 2096.7 C
+1942.2 2091.1 1935.5 2085.2 1930.1 2079.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1930.8 2061.9 m
+1930.3 2057.8 1931.8 2053.4 1931.1 2050.4 C
+1931.3 2050.3 1931.7 2050.5 1931.6 2050.1 C
+1933 2051.1 1934.4 2049.5 1935.9 2048.7 C
+1937 2046.5 1939.5 2047.1 1941.2 2045.1 C
+1939.7 2042.6 1937.3 2041.2 1935.4 2039.3 C
+1934 2039.7 1934.5 2038.1 1933.7 2037.6 C
+1934 2033.3 1933.1 2027.9 1934.4 2024.4 C
+1934.3 2023.8 1933.9 2022.8 1933 2022.8 C
+1931.6 2023.1 1930.5 2024.4 1929.2 2024.9 C
+1928.4 2024.5 1929.8 2023.5 1928.7 2023.5 C
+1927.7 2024.1 1926.2 2022.6 1925.6 2021.6 C
+1926.9 2021.6 1924.8 2020.6 1925.6 2020.4 C
+1924.7 2021.7 1923.9 2019.6 1923.2 2019.2 C
+1923.3 2018.3 1923.8 2018.1 1923.2 2018 C
+1922.9 2017.8 1922.9 2017.5 1922.9 2017.2 C
+1922.8 2018.3 1921.3 2017.3 1920.3 2018 C
+1916.6 2019.7 1913 2022.1 1910 2024.7 C
+1910 2032.9 1910 2041.2 1910 2049.4 C
+1915.4 2055.2 1920 2058.7 1925.3 2064.8 C
+1927.2 2064 1929 2061.4 1930.8 2061.9 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1907.6 2030.4 m
+1907.5 2027.1 1906.4 2021.7 1908.5 2019.9 C
+1908.8 2020.1 1908.9 2019 1909.2 2019.6 C
+1910 2019.6 1912 2019.2 1913.1 2018.2 C
+1913.7 2016.5 1920.2 2015.7 1917.4 2012.7 C
+1918.2 2011.2 1917 2013.8 1917.2 2012 C
+1916.9 2012.3 1916 2012.4 1915.2 2012 C
+1912.5 2010.5 1916.6 2008.8 1913.6 2009.6 C
+1912.6 2009.2 1911.1 2009 1910.9 2007.6 C
+1911 1999.2 1911.8 1989.8 1911.2 1982.2 C
+1910.1 1981.1 1908.8 1982.2 1907.6 1982.2 C
+1900.8 1986.5 1893.2 1988.8 1887.2 1994.2 C
+1887.2 2002.4 1887.2 2010.7 1887.2 2018.9 C
+1892.6 2024.7 1897.2 2028.2 1902.5 2034.3 C
+1904.3 2033.3 1906.2 2032.1 1907.6 2030.4 C
+f 
+S 
+n
+1910.7 2025.4 m
+1912.7 2022.4 1916.7 2020.8 1919.8 2018.9 C
+1920.2 2018.7 1920.6 2018.6 1921 2018.4 C
+1925 2020 1927.4 2028.5 1932 2024.2 C
+1932.3 2025 1932.5 2023.7 1932.8 2024.4 C
+1932.8 2028 1932.8 2031.5 1932.8 2035 C
+1931.9 2033.9 1932.5 2036.3 1932.3 2036.9 C
+1933.2 2036.4 1932.5 2038.5 1933 2038.4 C
+1933.1 2040.5 1935.6 2042.2 1936.6 2043.2 C
+1936.2 2042.4 1935.1 2040.8 1933.7 2040.3 C
+1932.2 2034.4 1933.8 2029.8 1933 2023.2 C
+1931.1 2024.9 1928.4 2026.4 1926.5 2023.5 C
+1925.1 2021.6 1923 2019.8 1921.5 2018.2 C
+1917.8 2018.9 1915.2 2022.5 1911.6 2023.5 C
+1910.8 2023.8 1911.2 2024.7 1910.4 2025.2 C
+1910.9 2031.8 1910.6 2039.1 1910.7 2045.6 C
+1910.1 2048 1910.7 2045.9 1911.2 2044.8 C
+1910.6 2038.5 1911.2 2031.8 1910.7 2025.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1910.7 2048.9 m
+1910.3 2047.4 1911.3 2046.5 1911.6 2045.3 C
+1912.9 2045.3 1913.9 2047.1 1915.2 2045.8 C
+1915.2 2044.9 1916.6 2043.3 1917.2 2042.9 C
+1918.7 2042.9 1919.4 2044.4 1920.5 2043.2 C
+1921.2 2042.2 1921.4 2040.9 1922.4 2040.3 C
+1924.5 2040.3 1925.7 2040.9 1926.8 2039.6 C
+1927.1 2037.9 1926.8 2038.1 1927.7 2037.6 C
+1929 2037.5 1930.4 2037 1931.6 2037.2 C
+1932.3 2038.2 1933.1 2038.7 1932.8 2040.3 C
+1935 2041.8 1935.9 2043.8 1938.5 2044.8 C
+1938.6 2045 1938.3 2045.5 1938.8 2045.3 C
+1939.1 2042.9 1935.4 2044.2 1935.4 2042.2 C
+1932.1 2040.8 1932.8 2037.2 1932 2034.8 C
+1932.3 2034 1932.7 2035.4 1932.5 2034.8 C
+1931.3 2031.8 1935.5 2020.1 1928.9 2025.9 C
+1924.6 2024.7 1922.6 2014.5 1917.4 2020.4 C
+1915.5 2022.8 1912 2022.6 1910.9 2025.4 C
+1911.5 2031.9 1910.9 2038.8 1911.4 2045.3 C
+1911.1 2046.5 1910 2047.4 1910.4 2048.9 C
+1915.1 2054.4 1920.4 2058.3 1925.1 2063.8 C
+1920.8 2058.6 1914.9 2054.3 1910.7 2048.9 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1934.7 2031.9 m
+1934.6 2030.7 1934.9 2029.5 1934.4 2028.5 C
+1934 2029.5 1934.3 2031.2 1934.2 2032.6 C
+1933.8 2031.7 1934.9 2031.6 1934.7 2031.9 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+vmrs
+1934.7 2019.4 m
+1934.1 2015.3 1935.6 2010.9 1934.9 2007.9 C
+1935.1 2007.8 1935.6 2008.1 1935.4 2007.6 C
+1936.8 2008.6 1938.2 2007 1939.7 2006.2 C
+1940.1 2004.3 1942.7 2005 1943.6 2003.8 C
+1945.1 2000.3 1954 2000.8 1950 1996.6 C
+1952.1 1993.3 1948.2 1989.2 1951.2 1985.6 C
+1953 1981.4 1948.4 1982.3 1947.9 1979.8 C
+1945.4 1979.6 1945.1 1975.5 1942.4 1975 C
+1942.4 1972.3 1938 1973.6 1938.5 1970.4 C
+1937.4 1969 1935.6 1970.1 1934.2 1970.2 C
+1927.5 1974.5 1919.8 1976.8 1913.8 1982.2 C
+1913.8 1990.4 1913.8 1998.7 1913.8 2006.9 C
+1919.3 2012.7 1923.8 2016.2 1929.2 2022.3 C
+1931.1 2021.6 1932.8 2018.9 1934.7 2019.4 C
+[0 0 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2024.2 2038.1 m
+2024.1 2029.3 2024.4 2021.7 2024.7 2014.4 C
+2024.4 2013.6 2020.6 2013.4 2021.3 2011.2 C
+2020.5 2010.3 2018.4 2010.6 2018.9 2008.6 C
+2019 2008.8 2018.8 2009 2018.7 2009.1 C
+2018.2 2006.7 2015.2 2007.9 2015.3 2005.5 C
+2014.7 2004.8 2012.4 2005.1 2013.2 2003.6 C
+2012.3 2004.2 2012.8 2002.4 2012.7 2002.6 C
+2009.4 2003.3 2011.2 1998.6 2008.4 1999.2 C
+2007 1999.1 2006.1 1999.4 2005.7 2000.4 C
+2006.9 1998.5 2007.7 2000.5 2009.3 2000.2 C
+2009.2 2003.7 2012.4 2002.1 2012.9 2005.2 C
+2015.9 2005.6 2015.2 2008.6 2017.7 2008.8 C
+2018.4 2009.6 2018.3 2011.4 2019.6 2011 C
+2021.1 2011.7 2021.4 2014.8 2023.7 2015.1 C
+2023.7 2023.5 2023.9 2031.6 2023.5 2040.5 C
+2021.8 2041.7 2020.7 2043.6 2018.4 2043.9 C
+2020.8 2042.7 2025.5 2041.8 2024.2 2038.1 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+2023.5 2040 m
+2023.5 2031.1 2023.5 2023.4 2023.5 2015.1 C
+2020.2 2015 2021.8 2010.3 2018.4 2011 C
+2018.6 2007.5 2014.7 2009.3 2014.8 2006.4 C
+2011.8 2006.3 2012.2 2002.3 2009.8 2002.4 C
+2009.7 2001.5 2009.2 2000.1 2008.4 2000.2 C
+2008.7 2000.9 2009.7 2001.2 2009.3 2002.4 C
+2008.4 2004.2 2007.5 2003.1 2007.9 2005.5 C
+2007.9 2010.8 2007.7 2018.7 2008.1 2023.2 C
+2009 2024.3 2007.3 2023.4 2007.9 2024 C
+2007.7 2024.6 2007.3 2026.3 2008.6 2027.1 C
+2009.7 2026.8 2010 2027.6 2010.5 2028 C
+2010.5 2028.2 2010.5 2029.1 2010.5 2028.5 C
+2011.5 2028 2010.5 2030 2011.5 2030 C
+2014.2 2029.7 2012.9 2032.2 2014.8 2032.6 C
+2015.1 2033.6 2015.3 2033 2016 2033.3 C
+2017 2033.9 2016.6 2035.4 2017.2 2036.2 C
+2018.7 2036.4 2019.2 2039 2021.3 2038.4 C
+2021.6 2035.4 2019.7 2029.5 2021.1 2027.3 C
+2020.9 2023.5 2021.5 2018.5 2020.6 2016 C
+2020.9 2013.9 2021.5 2015.4 2022.3 2014.4 C
+2022.2 2015.1 2023.3 2014.8 2023.2 2015.6 C
+2022.7 2019.8 2023.3 2024.3 2022.8 2028.5 C
+2022.3 2028.2 2022.6 2027.6 2022.5 2027.1 C
+2022.5 2027.8 2022.5 2029.2 2022.5 2029.2 C
+2022.6 2029.2 2022.7 2029.1 2022.8 2029 C
+2023.9 2032.8 2022.6 2037 2023 2040.8 C
+2022.3 2041.2 2021.6 2041.5 2021.1 2042.2 C
+2022 2041.2 2022.9 2041.4 2023.5 2040 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2009.1 1997.8 m
+2003.8 1997.7 2000.1 2002.4 1995.4 2003.1 C
+1995 1999.5 1995.2 1995 1995.2 1992 C
+1995.2 1995.8 1995 1999.7 1995.4 2003.3 C
+2000.3 2002.2 2003.8 1997.9 2009.1 1997.8 C
+2012.3 2001.2 2015.6 2004.8 2018.7 2008.1 C
+2021.6 2011.2 2027.5 2013.9 2025.9 2019.9 C
+2026.1 2017.9 2025.6 2016.2 2025.4 2014.4 C
+2020.2 2008.4 2014 2003.6 2009.1 1997.8 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+2009.3 1997.8 m
+2008.7 1997.4 2007.9 1997.6 2007.2 1997.6 C
+2007.9 1997.6 2008.9 1997.4 2009.6 1997.8 C
+2014.7 2003.6 2020.8 2008.8 2025.9 2014.8 C
+2025.8 2017.7 2026.1 2014.8 2025.6 2014.1 C
+2020.4 2008.8 2014.8 2003.3 2009.3 1997.8 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+2009.6 1997.6 m
+2009 1997.1 2008.1 1997.4 2007.4 1997.3 C
+2008.1 1997.4 2009 1997.1 2009.6 1997.6 C
+2014.8 2003.7 2021.1 2008.3 2025.9 2014.4 C
+2021.1 2008.3 2014.7 2003.5 2009.6 1997.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2021.8 2011.5 m
+2021.9 2012.2 2022.3 2013.5 2023.7 2013.6 C
+2023.4 2012.7 2022.8 2011.8 2021.8 2011.5 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+2021.1 2042 m
+2022.1 2041.1 2020.9 2040.2 2020.6 2039.6 C
+2018.4 2039.5 2018.1 2036.9 2016.3 2036.4 C
+2015.8 2035.5 2015.3 2033.8 2014.8 2033.6 C
+2012.4 2033.8 2013 2030.4 2010.5 2030.2 C
+2009.6 2028.9 2009.6 2028.3 2008.4 2028 C
+2006.9 2026.7 2007.5 2024.3 2006 2023.2 C
+2006.6 2023.2 2005.7 2023.3 2005.7 2023 C
+2006.4 2022.5 2006.3 2021.1 2006.7 2020.6 C
+2006.6 2015 2006.9 2009 2006.4 2003.8 C
+2006.9 2002.5 2007.6 2001.1 2006.9 2000.7 C
+2004.6 2003.6 2003 2002.9 2000.2 2004.3 C
+1999.3 2005.8 1997.9 2006.3 1996.1 2006.7 C
+1995.7 2008.9 1996 2011.1 1995.9 2012.9 C
+1993.4 2015.1 1990.5 2016.2 1987.7 2017.7 C
+1987.1 2019.3 1991.1 2019.4 1990.4 2021.3 C
+1990.5 2021.5 1991.9 2022.3 1992 2023 C
+1994.8 2024.4 1996.2 2027.5 1998.5 2030 C
+2002.4 2033 2005.2 2037.2 2008.8 2041 C
+2010.2 2041.3 2011.6 2042 2011 2043.9 C
+2011.2 2044.8 2010.1 2045.3 2010.5 2046.3 C
+2013.8 2044.8 2017.5 2043.4 2021.1 2042 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+2019.4 2008.8 m
+2018.9 2009.2 2019.3 2009.9 2019.6 2010.3 C
+2022.2 2011.5 2020.3 2009.1 2019.4 2008.8 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+2018 2007.4 m
+2015.7 2006.7 2015.3 2003.6 2012.9 2002.8 C
+2013.5 2003.7 2013.5 2005.1 2015.6 2005.2 C
+2016.4 2006.1 2015.7 2007.7 2018 2007.4 C
+f 
+S 
+n
+vmrs
+1993.5 2008.8 m
+1993.4 2000 1993.7 1992.5 1994 1985.1 C
+1993.7 1984.3 1989.9 1984.1 1990.6 1982 C
+1989.8 1981.1 1987.7 1981.4 1988.2 1979.3 C
+1988.3 1979.6 1988.1 1979.7 1988 1979.8 C
+1987.5 1977.5 1984.5 1978.6 1984.6 1976.2 C
+1983.9 1975.5 1981.7 1975.8 1982.4 1974.3 C
+1981.6 1974.9 1982.1 1973.1 1982 1973.3 C
+1979 1973.7 1980 1968.8 1976.9 1969.7 C
+1975.9 1969.8 1975.3 1970.3 1975 1971.2 C
+1976.2 1969.2 1977 1971.2 1978.6 1970.9 C
+1978.5 1974.4 1981.7 1972.8 1982.2 1976 C
+1985.2 1976.3 1984.5 1979.3 1987 1979.6 C
+1987.7 1980.3 1987.5 1982.1 1988.9 1981.7 C
+1990.4 1982.4 1990.7 1985.5 1993 1985.8 C
+1992.9 1994.3 1993.2 2002.3 1992.8 2011.2 C
+1991.1 2012.4 1990 2014.4 1987.7 2014.6 C
+1990.1 2013.4 1994.7 2012.6 1993.5 2008.8 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1992.8 2010.8 m
+1992.8 2001.8 1992.8 1994.1 1992.8 1985.8 C
+1989.5 1985.7 1991.1 1981.1 1987.7 1981.7 C
+1987.9 1978.2 1983.9 1980 1984.1 1977.2 C
+1981.1 1977 1981.5 1973 1979.1 1973.1 C
+1979 1972.2 1978.5 1970.9 1977.6 1970.9 C
+1977.9 1971.6 1979 1971.9 1978.6 1973.1 C
+1977.6 1974.9 1976.8 1973.9 1977.2 1976.2 C
+1977.2 1981.5 1977 1989.4 1977.4 1994 C
+1978.3 1995 1976.6 1994.1 1977.2 1994.7 C
+1977 1995.3 1976.6 1997 1977.9 1997.8 C
+1979 1997.5 1979.3 1998.3 1979.8 1998.8 C
+1979.8 1998.9 1979.8 1999.8 1979.8 1999.2 C
+1980.8 1998.7 1979.7 2000.7 1980.8 2000.7 C
+1983.5 2000.4 1982.1 2003 1984.1 2003.3 C
+1984.4 2004.3 1984.5 2003.7 1985.3 2004 C
+1986.3 2004.6 1985.9 2006.1 1986.5 2006.9 C
+1988 2007.1 1988.4 2009.7 1990.6 2009.1 C
+1990.9 2006.1 1989 2000.2 1990.4 1998 C
+1990.2 1994.3 1990.8 1989.2 1989.9 1986.8 C
+1990.2 1984.7 1990.8 1986.2 1991.6 1985.1 C
+1991.5 1985.9 1992.6 1985.5 1992.5 1986.3 C
+1992 1990.5 1992.6 1995 1992 1999.2 C
+1991.6 1998.9 1991.9 1998.3 1991.8 1997.8 C
+1991.8 1998.5 1991.8 2000 1991.8 2000 C
+1991.9 1999.9 1992 1999.8 1992 1999.7 C
+1993.2 2003.5 1991.9 2007.7 1992.3 2011.5 C
+1991.6 2012 1990.9 2012.2 1990.4 2012.9 C
+1991.3 2011.9 1992.2 2012.1 1992.8 2010.8 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1978.4 1968.5 m
+1977 1969.2 1975.8 1968.2 1974.5 1969 C
+1968.3 1973 1961.6 1976 1955.1 1979.1 C
+1962 1975.9 1968.8 1972.5 1975.5 1968.8 C
+1976.5 1968.8 1977.6 1968.8 1978.6 1968.8 C
+1981.7 1972.1 1984.8 1975.7 1988 1978.8 C
+1990.9 1981.9 1996.8 1984.6 1995.2 1990.6 C
+1995.3 1988.6 1994.9 1986.9 1994.7 1985.1 C
+1989.5 1979.1 1983.3 1974.3 1978.4 1968.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1978.4 1968.3 m
+1977.9 1968.7 1977.1 1968.5 1976.4 1968.5 C
+1977.3 1968.8 1978.1 1967.9 1978.8 1968.5 C
+1984 1974.3 1990.1 1979.5 1995.2 1985.6 C
+1995.1 1988.4 1995.3 1985.6 1994.9 1984.8 C
+1989.5 1979.4 1983.9 1973.8 1978.4 1968.3 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1978.6 1968 m
+1977.9 1968 1977.4 1968.6 1978.4 1968 C
+1983.9 1973.9 1990.1 1979.1 1995.2 1985.1 C
+1990.2 1979 1983.8 1974.1 1978.6 1968 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1991.1 1982.2 m
+1991.2 1982.9 1991.6 1984.2 1993 1984.4 C
+1992.6 1983.5 1992.1 1982.5 1991.1 1982.2 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1990.4 2012.7 m
+1991.4 2011.8 1990.2 2010.9 1989.9 2010.3 C
+1987.7 2010.2 1987.4 2007.6 1985.6 2007.2 C
+1985.1 2006.2 1984.6 2004.5 1984.1 2004.3 C
+1981.7 2004.5 1982.3 2001.2 1979.8 2000.9 C
+1978.8 1999.6 1978.8 1999.1 1977.6 1998.8 C
+1976.1 1997.4 1976.7 1995 1975.2 1994 C
+1975.8 1994 1975 1994 1975 1993.7 C
+1975.7 1993.2 1975.6 1991.8 1976 1991.3 C
+1975.9 1985.7 1976.1 1979.7 1975.7 1974.5 C
+1976.2 1973.3 1976.9 1971.8 1976.2 1971.4 C
+1973.9 1974.3 1972.2 1973.6 1969.5 1975 C
+1967.9 1977.5 1963.8 1977.1 1961.8 1980 C
+1959 1980 1957.6 1983 1954.8 1982.9 C
+1953.8 1984.2 1954.8 1985.7 1955.1 1987.2 C
+1956.2 1989.5 1959.7 1990.1 1959.9 1991.8 C
+1965.9 1998 1971.8 2005.2 1978.1 2011.7 C
+1979.5 2012 1980.9 2012.7 1980.3 2014.6 C
+1980.5 2015.6 1979.4 2016 1979.8 2017 C
+1983 2015.6 1986.8 2014.1 1990.4 2012.7 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+1988.7 1979.6 m
+1988.2 1979.9 1988.6 1980.6 1988.9 1981 C
+1991.4 1982.2 1989.6 1979.9 1988.7 1979.6 C
+[0 0.33 0.33 0.99]  vc
+f 
+S 
+n
+1987.2 1978.1 m
+1985 1977.5 1984.6 1974.3 1982.2 1973.6 C
+1982.7 1974.5 1982.8 1975.8 1984.8 1976 C
+1985.7 1976.9 1985 1978.4 1987.2 1978.1 C
+f 
+S 
+n
+1975.5 2084 m
+1975.5 2082 1975.3 2080 1975.7 2078.2 C
+1978.8 2079 1980.9 2085.5 1984.8 2083.5 C
+1993 2078.7 2001.6 2075 2010 2070.8 C
+2010.1 2064 2009.9 2057.2 2010.3 2050.6 C
+2014.8 2046.2 2020.9 2045.7 2025.6 2042 C
+2026.1 2035.1 2025.8 2028 2025.9 2021.1 C
+2025.8 2027.8 2026.1 2034.6 2025.6 2041.2 C
+2022.2 2044.9 2017.6 2046.8 2012.9 2048 C
+2012.5 2049.5 2010.4 2049.4 2009.8 2051.1 C
+2009.9 2057.6 2009.6 2064.2 2010 2070.5 C
+2001.2 2075.4 1992 2079.1 1983.2 2084 C
+1980.3 2082.3 1977.8 2079.2 1975.2 2077.5 C
+1974.9 2079.9 1977.2 2084.6 1973.3 2085.2 C
+1964.7 2088.6 1956.8 2093.7 1948.1 2097.2 C
+1949 2097.3 1949.6 2096.9 1950.3 2096.7 C
+1958.4 2091.9 1967.1 2088.2 1975.5 2084 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1948.6 2094.5 m
+1950.2 2093.7 1951.8 2092.9 1953.4 2092.1 C
+1951.8 2092.9 1950.2 2093.7 1948.6 2094.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1971.6 2082.3 m
+1971.6 2081.9 1970.7 2081.1 1970.9 2081.3 C
+1970.7 2081.6 1970.6 2081.6 1970.4 2081.3 C
+1970.8 2080.1 1968.7 2081.7 1968.3 2080.8 C
+1966.6 2080.9 1966.7 2078 1964.2 2078.2 C
+1964.8 2075 1960.1 2075.8 1960.1 2072.9 C
+1958 2072.3 1957.5 2069.3 1955.3 2069.3 C
+1953.9 2070.9 1948.8 2067.8 1950 2072 C
+1949 2074 1943.2 2070.6 1944 2074.8 C
+1942.2 2076.6 1937.6 2073.9 1938 2078.2 C
+1936.7 2078.6 1935 2078.6 1933.7 2078.2 C
+1933.5 2080 1936.8 2080.7 1937.3 2082.8 C
+1939.9 2083.5 1940.6 2086.4 1942.6 2088 C
+1945.2 2089.2 1946 2091.3 1948.4 2093.6 C
+1956 2089.5 1963.9 2086.1 1971.6 2082.3 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+1958.2 2089.7 m
+1956.4 2090 1955.6 2091.3 1953.9 2091.9 C
+1955.6 2091.9 1956.5 2089.7 1958.2 2089.7 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1929.9 2080.4 m
+1929.5 2077.3 1929.7 2073.9 1929.6 2070.8 C
+1929.8 2074.1 1929.2 2077.8 1930.1 2080.8 C
+1935.8 2085.9 1941.4 2091.3 1946.9 2096.9 C
+1941.2 2091 1935.7 2086 1929.9 2080.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1930.1 2080.4 m
+1935.8 2086 1941.5 2090.7 1946.9 2096.7 C
+1941.5 2090.9 1935.7 2085.8 1930.1 2080.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1940.9 2087.1 m
+1941.7 2088 1944.8 2090.6 1943.6 2089.2 C
+1942.5 2089 1941.6 2087.7 1940.9 2087.1 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1972.8 2082.8 m
+1973 2075.3 1972.4 2066.9 1973.3 2059.5 C
+1972.5 2058.9 1972.8 2057.3 1973.1 2056.4 C
+1974.8 2055.2 1973.4 2055.5 1972.4 2055.4 C
+1970.1 2053.2 1967.9 2050.9 1965.6 2048.7 C
+1960.9 2049.9 1956.9 2052.7 1952.4 2054.7 C
+1949.3 2052.5 1946.3 2049.5 1943.6 2046.8 C
+1939.9 2047.7 1936.8 2050.1 1933.5 2051.8 C
+1930.9 2054.9 1933.5 2056.2 1932.3 2059.7 C
+1933.2 2059.7 1932.2 2060.5 1932.5 2060.2 C
+1933.2 2062.5 1931.6 2064.6 1932.5 2067.4 C
+1932.9 2069.7 1932.7 2072.2 1932.8 2074.6 C
+1933.6 2070.6 1932.2 2066.3 1933 2062.6 C
+1934.4 2058.2 1929.8 2053.5 1935.2 2051.1 C
+1937.7 2049.7 1940.2 2048 1942.8 2046.8 C
+1945.9 2049.2 1948.8 2052 1951.7 2054.7 C
+1952.7 2054.7 1953.6 2054.6 1954.4 2054.2 C
+1958.1 2052.5 1961.7 2049.3 1965.9 2049.2 C
+1968.2 2052.8 1975.2 2055 1972.6 2060.9 C
+1973.3 2062.4 1972.2 2065.2 1972.6 2067.6 C
+1972.7 2072.6 1972.4 2077.7 1972.8 2082.5 C
+1968.1 2084.9 1963.5 2087.5 1958.7 2089.5 C
+1963.5 2087.4 1968.2 2085 1972.8 2082.8 C
+f 
+S 
+n
+1935.2 2081.1 m
+1936.8 2083.4 1938.6 2084.6 1940.4 2086.6 C
+1938.8 2084.4 1936.7 2083.4 1935.2 2081.1 C
+f 
+S 
+n
+1983.2 2081.3 m
+1984.8 2080.5 1986.3 2079.7 1988 2078.9 C
+1986.3 2079.7 1984.8 2080.5 1983.2 2081.3 C
+f 
+S 
+n
+2006.2 2069.1 m
+2006.2 2068.7 2005.2 2067.9 2005.5 2068.1 C
+2005.3 2068.4 2005.2 2068.4 2005 2068.1 C
+2005.4 2066.9 2003.3 2068.5 2002.8 2067.6 C
+2001.2 2067.7 2001.2 2064.8 1998.8 2065 C
+1999.4 2061.8 1994.7 2062.6 1994.7 2059.7 C
+1992.4 2059.5 1992.4 2055.8 1990.1 2056.8 C
+1985.9 2059.5 1981.1 2061 1976.9 2063.8 C
+1977.2 2067.6 1974.9 2074.2 1978.8 2075.8 C
+1979.6 2077.8 1981.7 2078.4 1982.9 2080.4 C
+1990.6 2076.3 1998.5 2072.9 2006.2 2069.1 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1992.8 2076.5 m
+1991 2076.8 1990.2 2078.1 1988.4 2078.7 C
+1990.2 2078.7 1991 2076.5 1992.8 2076.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1975.5 2073.4 m
+1976.1 2069.7 1973.9 2064.6 1977.4 2062.4 C
+1973.9 2064.5 1976.1 2069.9 1975.5 2073.6 C
+1976 2074.8 1979.3 2077.4 1978.1 2076 C
+1977 2075.7 1975.8 2074.5 1975.5 2073.4 C
+f 
+S 
+n
+2007.4 2069.6 m
+2007.6 2062.1 2007 2053.7 2007.9 2046.3 C
+2007.1 2045.7 2007.3 2044.1 2007.6 2043.2 C
+2009.4 2042 2007.9 2042.3 2006.9 2042.2 C
+2002.2 2037.4 1996.7 2032.4 1992.5 2027.3 C
+1992 2027.3 1991.6 2027.3 1991.1 2027.3 C
+1991.4 2035.6 1991.4 2045.6 1991.1 2054.4 C
+1990.5 2055.5 1988.4 2056.6 1990.6 2055.4 C
+1991.6 2055.4 1991.6 2054.1 1991.6 2053.2 C
+1990.8 2044.7 1991.9 2035.4 1991.6 2027.6 C
+1991.8 2027.6 1992 2027.6 1992.3 2027.6 C
+1997 2032.8 2002.5 2037.7 2007.2 2042.9 C
+2007.3 2044.8 2006.7 2047.4 2007.6 2048.4 C
+2006.9 2055.1 2007.1 2062.5 2007.4 2069.3 C
+2002.7 2071.7 1998.1 2074.3 1993.2 2076.3 C
+1998 2074.2 2002.7 2071.8 2007.4 2069.6 C
+f 
+S 
+n
+2006.7 2069.1 m
+2006.3 2068.6 2005.9 2067.7 2005.7 2066.9 C
+2005.7 2059.7 2005.9 2051.4 2005.5 2045.1 C
+2004.9 2045.3 2004.7 2044.5 2004.3 2045.3 C
+2005.1 2045.3 2004.2 2045.8 2004.8 2046 C
+2004.8 2052.2 2004.8 2059.2 2004.8 2064.5 C
+2005.7 2065.7 2005.1 2065.7 2005 2066.7 C
+2003.8 2067 2002.7 2067.2 2001.9 2066.4 C
+2001.3 2064.6 1998 2063.1 1998 2061.9 C
+1996.1 2062.3 1996.6 2058.3 1994.2 2058.8 C
+1992.6 2057.7 1992.7 2054.8 1989.9 2056.6 C
+1985.6 2059.3 1980.9 2060.8 1976.7 2063.6 C
+1976 2066.9 1976 2071.2 1976.7 2074.6 C
+1977.6 2070.8 1973.1 2062.1 1980.5 2061.2 C
+1984.3 2060.3 1987.5 2058.2 1990.8 2056.4 C
+1991.7 2056.8 1992.9 2057.2 1993.5 2059.2 C
+1994.3 2058.6 1994.4 2060.6 1994.7 2059.2 C
+1995.3 2062.7 1999.2 2061.4 1998.8 2064.8 C
+2001.8 2065.4 2002.5 2068.4 2005.2 2067.4 C
+2004.9 2067.9 2006 2068 2006.4 2069.1 C
+2001.8 2071.1 1997.4 2073.9 1992.8 2075.8 C
+1997.5 2073.8 2002 2071.2 2006.7 2069.1 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1988.7 2056.6 m
+1985.1 2058.7 1981.1 2060.1 1977.6 2061.9 C
+1981.3 2060.5 1985.6 2058.1 1988.7 2056.6 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1977.9 2059.5 m
+1975.7 2064.5 1973.7 2054.7 1975.2 2060.9 C
+1976 2060.6 1977.6 2059.7 1977.9 2059.5 C
+f 
+S 
+n
+1989.6 2051.3 m
+1990.1 2042.3 1989.8 2036.6 1989.9 2028 C
+1989.8 2027 1990.8 2028.3 1990.1 2027.3 C
+1988.9 2026.7 1986.7 2026.9 1986.8 2024.7 C
+1987.4 2023 1985.9 2024.6 1985.1 2023.7 C
+1984.1 2021.4 1982.5 2020.5 1980.3 2020.6 C
+1979.9 2020.8 1979.5 2021.1 1979.3 2021.6 C
+1979.7 2025.8 1978.4 2033 1979.6 2038.1 C
+1983.7 2042.9 1968.8 2044.6 1978.8 2042.7 C
+1979.3 2042.3 1979.6 2041.9 1980 2041.5 C
+1980 2034.8 1980 2027 1980 2021.6 C
+1981.3 2020.5 1981.7 2021.5 1982.9 2021.8 C
+1983.6 2024.7 1986.1 2023.8 1986.8 2026.4 C
+1987.1 2027.7 1988.6 2027.1 1989.2 2028.3 C
+1989.1 2036.7 1989.3 2044.8 1988.9 2053.7 C
+1987.2 2054.9 1986.2 2056.8 1983.9 2057.1 C
+1986.3 2055.9 1990.9 2055 1989.6 2051.3 C
+f 
+S 
+n
+1971.6 2078.9 m
+1971.4 2070.5 1972.1 2062.2 1971.6 2055.9 C
+1969.9 2053.7 1967.6 2051.7 1965.6 2049.6 C
+1961.4 2050.4 1957.6 2053.6 1953.4 2055.2 C
+1949.8 2055.6 1948.2 2051.2 1945.5 2049.6 C
+1945.1 2048.8 1944.5 2047.9 1943.6 2047.5 C
+1940.1 2047.8 1937.3 2051 1934 2052.3 C
+1933.7 2052.6 1933.7 2053 1933.2 2053.2 C
+1933.7 2060.8 1933.4 2067.2 1933.5 2074.6 C
+1933.8 2068.1 1934 2060.9 1933.2 2054 C
+1935.3 2050.9 1939.3 2049.6 1942.4 2047.5 C
+1942.8 2047.5 1943.4 2047.4 1943.8 2047.7 C
+1947.1 2050.2 1950.3 2057.9 1955.3 2054.4 C
+1955.4 2054.4 1955.5 2054.3 1955.6 2054.2 C
+1955.9 2057.6 1956.1 2061.8 1955.3 2064.8 C
+1955.4 2064.3 1955.1 2063.8 1955.6 2063.6 C
+1956 2066.6 1955.3 2068.7 1958.7 2069.8 C
+1959.2 2071.7 1961.4 2071.7 1962 2074.1 C
+1964.4 2074.2 1964 2077.7 1967.3 2078.4 C
+1967 2079.7 1968.1 2079.9 1969 2080.1 C
+1971.1 2079.9 1970 2079.2 1970.4 2078 C
+1969.5 2077.2 1970.3 2075.9 1969.7 2075.1 C
+1970.1 2069.8 1970.1 2063.6 1969.7 2058.8 C
+1969.2 2058.5 1970 2058.1 1970.2 2057.8 C
+1970.4 2058.3 1971.2 2057.7 1971.4 2058.3 C
+1971.5 2065.3 1971.2 2073.6 1971.6 2081.1 C
+1974.1 2081.4 1969.8 2084.3 1972.4 2082.5 C
+1971.9 2081.4 1971.6 2080.2 1971.6 2078.9 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1952.4 2052 m
+1954.1 2051.3 1955.6 2050.4 1957.2 2049.6 C
+1955.6 2050.4 1954.1 2051.3 1952.4 2052 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1975.5 2039.8 m
+1975.5 2039.4 1974.5 2038.7 1974.8 2038.8 C
+1974.6 2039.1 1974.5 2039.1 1974.3 2038.8 C
+1974.6 2037.6 1972.5 2039.3 1972.1 2038.4 C
+1970.4 2038.4 1970.5 2035.5 1968 2035.7 C
+1968.6 2032.5 1964 2033.3 1964 2030.4 C
+1961.9 2029.8 1961.4 2026.8 1959.2 2026.8 C
+1957.7 2028.5 1952.6 2025.3 1953.9 2029.5 C
+1952.9 2031.5 1947 2028.2 1947.9 2032.4 C
+1946 2034.2 1941.5 2031.5 1941.9 2035.7 C
+1940.6 2036.1 1938.9 2036.1 1937.6 2035.7 C
+1937.3 2037.5 1940.7 2038.2 1941.2 2040.3 C
+1943.7 2041.1 1944.4 2043.9 1946.4 2045.6 C
+1949.1 2046.7 1949.9 2048.8 1952.2 2051.1 C
+1959.9 2047.1 1967.7 2043.6 1975.5 2039.8 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1962 2047.2 m
+1960.2 2047.5 1959.5 2048.9 1957.7 2049.4 C
+1959.5 2049.5 1960.3 2047.2 1962 2047.2 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2012.4 2046.3 m
+2010.3 2051.3 2008.3 2041.5 2009.8 2047.7 C
+2010.5 2047.4 2012.2 2046.5 2012.4 2046.3 C
+f 
+S 
+n
+1944.8 2044.6 m
+1945.5 2045.6 1948.6 2048.1 1947.4 2046.8 C
+1946.3 2046.5 1945.5 2045.2 1944.8 2044.6 C
+f 
+S 
+n
+1987.2 2054.9 m
+1983.7 2057.3 1979.6 2058 1976 2060.2 C
+1974.7 2058.2 1977.2 2055.8 1974.3 2054.9 C
+1973.1 2052 1970.4 2050.2 1968 2048 C
+1968 2047.7 1968 2047.4 1968.3 2047.2 C
+1969.5 2046.1 1983 2040.8 1972.4 2044.8 C
+1971.2 2046.6 1967.9 2046 1968 2048.2 C
+1970.5 2050.7 1973.8 2052.6 1974.3 2055.6 C
+1975.1 2055 1975.7 2056.7 1975.7 2057.1 C
+1975.7 2058.2 1974.8 2059.3 1975.5 2060.4 C
+1979.3 2058.2 1983.9 2057.7 1987.2 2054.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1967.8 2047.5 m
+1968.5 2047 1969.1 2046.5 1969.7 2046 C
+1969.1 2046.5 1968.5 2047 1967.8 2047.5 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1976.7 2040.3 m
+1976.9 2032.8 1976.3 2024.4 1977.2 2017 C
+1976.4 2016.5 1976.6 2014.8 1976.9 2013.9 C
+1978.7 2012.7 1977.2 2013 1976.2 2012.9 C
+1971.5 2008.1 1965.9 2003.1 1961.8 1998 C
+1960.9 1998 1960.1 1998 1959.2 1998 C
+1951.5 2001.1 1944.3 2005.5 1937.1 2009.6 C
+1935 2012.9 1937 2013.6 1936.1 2017.2 C
+1937.1 2017.2 1936 2018 1936.4 2017.7 C
+1937 2020.1 1935.5 2022.1 1936.4 2024.9 C
+1936.8 2027.2 1936.5 2029.7 1936.6 2032.1 C
+1937.4 2028.2 1936 2023.8 1936.8 2020.1 C
+1938.3 2015.7 1933.6 2011 1939 2008.6 C
+1945.9 2004.5 1953.1 2000.3 1960.6 1998.3 C
+1960.9 1998.3 1961.3 1998.3 1961.6 1998.3 C
+1966.2 2003.5 1971.8 2008.4 1976.4 2013.6 C
+1976.6 2015.5 1976 2018.1 1976.9 2019.2 C
+1976.1 2025.8 1976.4 2033.2 1976.7 2040 C
+1971.9 2042.4 1967.4 2045 1962.5 2047 C
+1967.3 2044.9 1972 2042.6 1976.7 2040.3 C
+f 
+S 
+n
+1939 2038.6 m
+1940.6 2040.9 1942.5 2042.1 1944.3 2044.1 C
+1942.7 2041.9 1940.6 2040.9 1939 2038.6 C
+f 
+S 
+n
+2006.2 2065.7 m
+2006 2057.3 2006.7 2049 2006.2 2042.7 C
+2002.1 2038.4 1997.7 2033.4 1993 2030 C
+1992.9 2029.3 1992.5 2028.6 1992 2028.3 C
+1992.1 2036.6 1991.9 2046.2 1992.3 2054.9 C
+1990.8 2056.2 1989 2056.7 1987.5 2058 C
+1988.7 2057.7 1990.7 2054.4 1993 2056.4 C
+1993.4 2058.8 1996 2058.2 1996.6 2060.9 C
+1999 2061 1998.5 2064.5 2001.9 2065.2 C
+2001.5 2066.5 2002.7 2066.7 2003.6 2066.9 C
+2005.7 2066.7 2004.6 2066 2005 2064.8 C
+2004 2064 2004.8 2062.7 2004.3 2061.9 C
+2004.6 2056.6 2004.6 2050.4 2004.3 2045.6 C
+2003.7 2045.3 2004.6 2044.9 2004.8 2044.6 C
+2005 2045.1 2005.7 2044.5 2006 2045.1 C
+2006 2052.1 2005.8 2060.4 2006.2 2067.9 C
+2008.7 2068.2 2004.4 2071.1 2006.9 2069.3 C
+2006.4 2068.2 2006.2 2067 2006.2 2065.7 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+2021.8 2041.7 m
+2018.3 2044.1 2014.1 2044.8 2010.5 2047 C
+2009.3 2045 2011.7 2042.6 2008.8 2041.7 C
+2004.3 2035.1 1997.6 2030.9 1993 2024.4 C
+1992.1 2024 1991.5 2024.3 1990.8 2024 C
+1993.2 2023.9 1995.3 2027.1 1996.8 2029 C
+2000.4 2032.6 2004.9 2036.9 2008.4 2040.8 C
+2008.2 2043.1 2011.4 2042.8 2009.8 2045.8 C
+2009.8 2046.3 2009.7 2046.9 2010 2047.2 C
+2013.8 2045 2018.5 2044.5 2021.8 2041.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+2001.6 2034 m
+2000.7 2033.1 1999.9 2032.3 1999 2031.4 C
+1999.9 2032.3 2000.7 2033.1 2001.6 2034 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+vmrs
+1989.4 2024.4 m
+1989.5 2025.4 1988.6 2024.3 1988.9 2024.7 C
+1990.5 2025.8 1990.7 2024.2 1992.8 2024.9 C
+1993.8 2025.9 1995 2027.1 1995.9 2028 C
+1994.3 2026 1991.9 2023.4 1989.4 2024.4 C
+[0 0.87 0.91 0.83]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1984.8 2019.9 m
+1984.6 2018.6 1986.3 2017.2 1987.7 2016.8 C
+1987.2 2017.5 1982.9 2017.9 1984.4 2020.6 C
+1984.1 2019.9 1984.9 2020 1984.8 2019.9 C
+f 
+S 
+n
+1981.7 2017 m
+1979.6 2022 1977.6 2012.3 1979.1 2018.4 C
+1979.8 2018.1 1981.5 2017.2 1981.7 2017 C
+f 
+S 
+n
+1884.3 2019.2 m
+1884.7 2010.5 1884.5 2000.6 1884.5 1991.8 C
+1886.6 1989.3 1889.9 1988.9 1892.4 1987 C
+1890.8 1988.7 1886 1989.1 1884.3 1992.3 C
+1884.7 2001 1884.5 2011.3 1884.5 2019.9 C
+1891 2025.1 1895.7 2031.5 1902 2036.9 C
+1896.1 2031 1890 2024.9 1884.3 2019.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1884 2019.4 m
+1884.5 2010.6 1884.2 2000.4 1884.3 1991.8 C
+1884.8 1990.4 1887.8 1989 1884.8 1990.8 C
+1884.3 1991.3 1884.3 1992 1884 1992.5 C
+1884.5 2001.2 1884.2 2011.1 1884.3 2019.9 C
+1887.9 2023.1 1891.1 2026.4 1894.4 2030 C
+1891.7 2026.1 1887.1 2022.9 1884 2019.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1885 2011.7 m
+1885 2006.9 1885 2001.9 1885 1997.1 C
+1885 2001.9 1885 2006.9 1885 2011.7 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1975.5 2036.4 m
+1975.2 2028 1976 2019.7 1975.5 2013.4 C
+1971.1 2008.5 1965.6 2003.6 1961.6 1999 C
+1958.8 1998 1956 2000 1953.6 2001.2 C
+1948.2 2004.7 1941.9 2006.5 1937.1 2010.8 C
+1937.5 2018.3 1937.3 2024.7 1937.3 2032.1 C
+1937.6 2025.6 1937.9 2018.4 1937.1 2011.5 C
+1937.3 2011 1937.6 2010.5 1937.8 2010 C
+1944.6 2005.7 1951.9 2002.3 1959.2 1999 C
+1960.1 1998.5 1960.1 1999.8 1960.4 2000.4 C
+1959.7 2006.9 1959.7 2014.2 1959.4 2021.1 C
+1959 2021.1 1959.2 2021.9 1959.2 2022.3 C
+1959.2 2021.9 1959 2021.3 1959.4 2021.1 C
+1959.8 2024.1 1959.2 2026.2 1962.5 2027.3 C
+1963 2029.2 1965.3 2029.2 1965.9 2031.6 C
+1968.3 2031.8 1967.8 2035.2 1971.2 2036 C
+1970.8 2037.2 1971.9 2037.5 1972.8 2037.6 C
+1974.9 2037.4 1973.9 2036.7 1974.3 2035.5 C
+1973.3 2034.7 1974.1 2033.4 1973.6 2032.6 C
+1973.9 2027.3 1973.9 2021.1 1973.6 2016.3 C
+1973 2016 1973.9 2015.6 1974 2015.3 C
+1974.3 2015.9 1975 2015.3 1975.2 2015.8 C
+1975.3 2022.8 1975.1 2031.2 1975.5 2038.6 C
+1977.9 2039 1973.7 2041.8 1976.2 2040 C
+1975.7 2039 1975.5 2037.8 1975.5 2036.4 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1991.1 2012.4 m
+1987.5 2014.8 1983.4 2015.6 1979.8 2017.7 C
+1978.5 2015.7 1981 2013.3 1978.1 2012.4 C
+1973.6 2005.8 1966.8 2001.6 1962.3 1995.2 C
+1961.4 1994.7 1960.8 1995 1960.1 1994.7 C
+1962.5 1994.6 1964.6 1997.8 1966.1 1999.7 C
+1969.7 2003.3 1974.2 2007.6 1977.6 2011.5 C
+1977.5 2013.8 1980.6 2013.5 1979.1 2016.5 C
+1979.1 2017 1979 2017.6 1979.3 2018 C
+1983.1 2015.7 1987.8 2015.2 1991.1 2012.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1970.9 2004.8 m
+1970 2003.9 1969.2 2003 1968.3 2002.1 C
+1969.2 2003 1970 2003.9 1970.9 2004.8 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1887.9 1994.9 m
+1888.5 1992.3 1891.4 1992.2 1893.2 1990.8 C
+1898.4 1987.5 1904 1984.8 1909.5 1982.2 C
+1909.7 1982.7 1910.3 1982.1 1910.4 1982.7 C
+1909.5 1990.5 1910.1 1996.4 1910 2004.5 C
+1909.1 2003.4 1909.7 2005.8 1909.5 2006.4 C
+1910.4 2006 1909.7 2008 1910.2 2007.9 C
+1911.3 2010.6 1912.5 2012.6 1915.7 2013.4 C
+1915.8 2013.7 1915.5 2014.4 1916 2014.4 C
+1916.3 2015 1915.4 2016 1915.2 2016 C
+1916.1 2015.5 1916.5 2014.5 1916 2013.6 C
+1913.4 2013.3 1913.1 2010.5 1910.9 2009.8 C
+1910.7 2008.8 1910.4 2007.9 1910.2 2006.9 C
+1911.1 1998.8 1909.4 1990.7 1910.7 1982.4 C
+1910 1982.1 1908.9 1982.1 1908.3 1982.4 C
+1901.9 1986.1 1895 1988.7 1888.8 1993 C
+1888 1993.4 1888.4 1994.3 1887.6 1994.7 C
+1888.1 2001.3 1887.8 2008.6 1887.9 2015.1 C
+1887.3 2017.5 1887.9 2015.4 1888.4 2014.4 C
+1887.8 2008 1888.4 2001.3 1887.9 1994.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+vmrs
+1887.9 2018.4 m
+1887.5 2016.9 1888.5 2016 1888.8 2014.8 C
+1890.1 2014.8 1891.1 2016.6 1892.4 2015.3 C
+1892.4 2014.4 1893.8 2012.9 1894.4 2012.4 C
+1895.9 2012.4 1896.6 2013.9 1897.7 2012.7 C
+1898.4 2011.7 1898.6 2010.4 1899.6 2009.8 C
+1901.7 2009.9 1902.9 2010.4 1904 2009.1 C
+1904.3 2007.4 1904 2007.6 1904.9 2007.2 C
+1906.2 2007 1907.6 2006.5 1908.8 2006.7 C
+1910.6 2008.2 1909.8 2011.5 1912.6 2012 C
+1912.4 2013 1913.8 2012.7 1914 2013.2 C
+1911.5 2011.1 1909.1 2007.9 1909.2 2004.3 C
+1909.5 2003.5 1909.9 2004.9 1909.7 2004.3 C
+1909.9 1996.2 1909.3 1990.5 1910.2 1982.7 C
+1909.5 1982.6 1909.5 1982.6 1908.8 1982.7 C
+1903.1 1985.7 1897 1987.9 1891.7 1992 C
+1890.5 1993 1888.2 1992.9 1888.1 1994.9 C
+1888.7 2001.4 1888.1 2008.4 1888.6 2014.8 C
+1888.3 2016 1887.2 2016.9 1887.6 2018.4 C
+1892.3 2023.9 1897.6 2027.9 1902.3 2033.3 C
+1898 2028.2 1892.1 2023.8 1887.9 2018.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.9 1995.2 m
+1910.4 1999.8 1911 2003.3 1910.9 2008.1 C
+1910.9 2003.8 1910.9 1999.2 1910.9 1995.2 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1911.2 2004.3 m
+1911.2 2001.9 1911.2 1999.7 1911.2 1997.3 C
+1911.2 1999.7 1911.2 2001.9 1911.2 2004.3 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1958.7 1995.2 m
+1959 1995.6 1956.2 1995 1956.5 1996.8 C
+1955.8 1997.6 1954.2 1998.5 1953.6 1997.3 C
+1953.6 1990.8 1954.9 1989.6 1953.4 1983.9 C
+1953.4 1983.3 1953.3 1982.1 1954.4 1982 C
+1955.5 1982.6 1956.5 1981.3 1957.5 1981 C
+1956.3 1981.8 1954.7 1982.6 1953.9 1981.5 C
+1951.4 1983 1954.7 1988.8 1952.9 1990.6 C
+1953.8 1990.6 1953.2 1992.7 1953.4 1993.7 C
+1953.8 1994.5 1952.3 1996.1 1953.2 1997.8 C
+1956.3 1999.4 1957.5 1994 1959.9 1995.6 C
+1962 1994.4 1963.7 1997.7 1965.2 1998.8 C
+1963.5 1996.7 1961.2 1994.1 1958.7 1995.2 C
+f 
+S 
+n
+1945 2000.7 m
+1945.4 1998.7 1945.4 1997.9 1945 1995.9 C
+1944.5 1995.3 1944.2 1992.6 1945.7 1993.2 C
+1946 1992.2 1948.7 1992.5 1948.4 1990.6 C
+1947.5 1990.3 1948.1 1988.7 1947.9 1988.2 C
+1948.9 1987.8 1950.5 1986.8 1950.5 1984.6 C
+1951.5 1980.9 1946.7 1983 1947.2 1979.8 C
+1944.5 1979.9 1945.2 1976.6 1943.1 1976.7 C
+1941.8 1975.7 1942.1 1972.7 1939.2 1973.8 C
+1938.2 1974.6 1939.3 1971.6 1938.3 1970.9 C
+1938.8 1969.2 1933.4 1970.3 1937.3 1970 C
+1939.4 1971.2 1937.2 1973 1937.6 1974.3 C
+1937.2 1976.3 1937.1 1981.2 1937.8 1984.1 C
+1938.8 1982.3 1937.9 1976.6 1938.5 1973.1 C
+1938.9 1975 1938.5 1976.4 1939.7 1977.2 C
+1939.5 1983.5 1938.9 1991.3 1940.2 1997.3 C
+1939.4 1999.1 1938.6 1997.1 1937.8 1997.1 C
+1937.4 1996.7 1937.6 1996.1 1937.6 1995.6 C
+1936.5 1998.5 1940.1 1998.4 1940.9 2000.7 C
+1942.1 2000.4 1943.2 2001.3 1943.1 2002.4 C
+1943.6 2003.1 1941.1 2004.6 1942.8 2003.8 C
+1943.9 2002.5 1942.6 2000.6 1945 2000.7 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914.5 2006.4 m
+1914.1 2004.9 1915.2 2004 1915.5 2002.8 C
+1916.7 2002.8 1917.8 2004.6 1919.1 2003.3 C
+1919 2002.4 1920.4 2000.9 1921 2000.4 C
+1922.5 2000.4 1923.2 2001.9 1924.4 2000.7 C
+1925 1999.7 1925.3 1998.4 1926.3 1997.8 C
+1928.4 1997.9 1929.5 1998.4 1930.6 1997.1 C
+1930.9 1995.4 1930.7 1995.6 1931.6 1995.2 C
+1932.8 1995 1934.3 1994.5 1935.4 1994.7 C
+1936.1 1995.8 1936.9 1996.2 1936.6 1997.8 C
+1938.9 1999.4 1939.7 2001.3 1942.4 2002.4 C
+1942.4 2002.5 1942.2 2003 1942.6 2002.8 C
+1942.9 2000.4 1939.2 2001.8 1939.2 1999.7 C
+1936.2 1998.6 1937 1995.3 1935.9 1993.5 C
+1937.1 1986.5 1935.2 1977.9 1937.6 1971.2 C
+1937.6 1970.3 1936.6 1971 1936.4 1970.4 C
+1930.2 1973.4 1924 1976 1918.4 1980 C
+1917.2 1981 1914.9 1980.9 1914.8 1982.9 C
+1915.3 1989.4 1914.7 1996.4 1915.2 2002.8 C
+1914.9 2004 1913.9 2004.9 1914.3 2006.4 C
+1919 2011.9 1924.2 2015.9 1928.9 2021.3 C
+1924.6 2016.2 1918.7 2011.8 1914.5 2006.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1914.5 1982.9 m
+1915.1 1980.3 1918 1980.2 1919.8 1978.8 C
+1925 1975.5 1930.6 1972.8 1936.1 1970.2 C
+1939.4 1970.6 1936.1 1974.2 1936.6 1976.4 C
+1936.5 1981.9 1936.8 1987.5 1936.4 1992.8 C
+1935.9 1992.8 1936.2 1993.5 1936.1 1994 C
+1937.1 1993.6 1936.2 1995.9 1936.8 1995.9 C
+1937 1998 1939.5 1999.7 1940.4 2000.7 C
+1940.1 1998.6 1935 1997.2 1937.6 1993.7 C
+1938.3 1985.7 1935.9 1976.8 1937.8 1970.7 C
+1936.9 1969.8 1935.4 1970.3 1934.4 1970.7 C
+1928.3 1974.4 1921.4 1976.7 1915.5 1981 C
+1914.6 1981.4 1915.1 1982.3 1914.3 1982.7 C
+1914.7 1989.3 1914.5 1996.6 1914.5 2003.1 C
+1913.9 2005.5 1914.5 2003.4 1915 2002.4 C
+1914.5 1996 1915.1 1989.3 1914.5 1982.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1939.2 1994.9 m
+1939.3 1995 1939.4 1995.1 1939.5 1995.2 C
+1939.1 1989 1939.3 1981.6 1939 1976.7 C
+1938.6 1976.3 1938.6 1974.6 1938.5 1973.3 C
+1938.7 1976.1 1938.1 1979.4 1939 1981.7 C
+1937.3 1986 1937.7 1991.6 1938 1996.4 C
+1937.3 1994.3 1939.6 1996.2 1939.2 1994.9 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1938.3 1988.4 m
+1938.5 1990.5 1937.9 1994.1 1938.8 1994.7 C
+1937.9 1992.6 1939 1990.6 1938.3 1988.4 C
+[0 0.87 0.91 0.83]  vc
+f 
+S 
+n
+1938.8 1985.8 m
+1938.5 1985.9 1938.4 1985.7 1938.3 1985.6 C
+1938.4 1986.2 1938 1989.5 1938.8 1987.2 C
+1938.8 1986.8 1938.8 1986.3 1938.8 1985.8 C
+f 
+S 
+n
+vmrs
+1972.8 2062.1 m
+1971.9 2061 1972.5 2059.4 1972.4 2058 C
+1972.2 2063.8 1971.9 2073.7 1972.4 2081.3 C
+1972.5 2074.9 1971.9 2067.9 1972.8 2062.1 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940.2 2071.7 m
+1941.3 2072 1943.1 2072.3 1944 2071.5 C
+1943.6 2069.9 1945.2 2069.1 1946 2068.8 C
+1950 2071.1 1948.7 2065.9 1951.7 2066.2 C
+1953.5 2063.9 1956.9 2069.4 1955.6 2063.8 C
+1955.5 2064.2 1955.7 2064.8 1955.3 2065 C
+1954.3 2063.7 1956.2 2063.6 1955.6 2062.1 C
+1954.5 2060 1958.3 2050.3 1952.2 2055.6 C
+1949.1 2053.8 1946 2051 1943.8 2048 C
+1940.3 2048 1937.5 2051.3 1934.2 2052.5 C
+1933.1 2054.6 1934.4 2057.3 1934 2060 C
+1934 2065.1 1934 2069.7 1934 2074.6 C
+1934.4 2069 1934.1 2061.5 1934.2 2054.9 C
+1934.6 2054.5 1935.3 2054.7 1935.9 2054.7 C
+1937 2055.3 1935.9 2056.1 1935.9 2056.8 C
+1936.5 2063 1935.6 2070.5 1935.9 2074.6 C
+1936.7 2074.4 1937.3 2075.2 1938 2074.6 C
+1937.9 2073.6 1939.1 2072.1 1940.2 2071.7 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1933.2 2074.1 m
+1933.2 2071.5 1933.2 2069 1933.2 2066.4 C
+1933.2 2069 1933.2 2071.5 1933.2 2074.1 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2007.4 2048.9 m
+2006.5 2047.8 2007.1 2046.2 2006.9 2044.8 C
+2006.7 2050.6 2006.5 2060.5 2006.9 2068.1 C
+2007.1 2061.7 2006.5 2054.7 2007.4 2048.9 C
+f 
+S 
+n
+1927.2 2062.4 m
+1925.8 2060.1 1928.1 2058.2 1927 2056.4 C
+1927.3 2055.5 1926.5 2053.5 1926.8 2051.8 C
+1926.8 2052.8 1926 2052.5 1925.3 2052.5 C
+1924.1 2052.8 1925 2050.5 1924.4 2050.1 C
+1925.3 2050.2 1925.4 2048.8 1926.3 2049.4 C
+1926.5 2052.3 1928.4 2047.2 1928.4 2051.1 C
+1928.9 2050.5 1929 2051.4 1928.9 2051.8 C
+1928.9 2052 1928.9 2052.3 1928.9 2052.5 C
+1929.4 2051.4 1928.9 2049 1930.1 2048.2 C
+1928.9 2047.1 1930.5 2047.1 1930.4 2046.5 C
+1931.9 2046.2 1933.1 2046.1 1934.7 2046.5 C
+1934.6 2046.9 1935.2 2047.9 1934.4 2048.4 C
+1936.9 2048.1 1933.6 2043.8 1935.9 2043.9 C
+1935.7 2043.9 1934.8 2041.3 1933.2 2041.7 C
+1932.5 2041.6 1932.4 2039.6 1932.3 2041 C
+1930.8 2042.6 1929 2040.6 1927.7 2042 C
+1927.5 2041.4 1927.1 2040.9 1927.2 2040.3 C
+1927.8 2040.6 1927.4 2039.1 1928.2 2038.6 C
+1929.4 2038 1930.5 2038.8 1931.3 2037.9 C
+1931.7 2039 1932.5 2038.6 1931.8 2037.6 C
+1930.9 2037 1928.7 2037.8 1928.2 2037.9 C
+1926.7 2037.8 1928 2039 1927 2038.8 C
+1927.4 2040.4 1925.6 2040.8 1925.1 2041 C
+1924.3 2040.4 1923.2 2040.5 1922.2 2040.5 C
+1921.4 2041.7 1921 2043.9 1919.3 2043.9 C
+1918.8 2043.4 1917.2 2043.3 1916.4 2043.4 C
+1915.9 2044.4 1915.7 2046 1914.3 2046.5 C
+1913.1 2046.6 1912 2044.5 1911.4 2046.3 C
+1912.8 2046.5 1913.8 2047.4 1915.7 2047 C
+1916.9 2047.7 1915.6 2048.8 1916 2049.4 C
+1915.4 2049.3 1913.9 2050.3 1913.3 2051.1 C
+1913.9 2054.1 1916 2050.2 1916.7 2053 C
+1916.9 2053.8 1915.5 2054.1 1916.7 2054.4 C
+1917 2054.7 1920.2 2054.3 1919.3 2056.6 C
+1918.8 2056.1 1920.2 2058.6 1920.3 2057.6 C
+1921.2 2057.9 1922.1 2057.5 1922.4 2059 C
+1922.3 2059.1 1922.2 2059.3 1922 2059.2 C
+1922.1 2059.7 1922.4 2060.3 1922.9 2060.7 C
+1923.2 2060.1 1923.8 2060.4 1924.6 2060.7 C
+1925.9 2062.6 1923.2 2062 1925.6 2063.6 C
+1926.1 2063.1 1927.3 2062.5 1927.2 2062.4 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1933.2 2063.3 m
+1933.2 2060.7 1933.2 2058.2 1933.2 2055.6 C
+1933.2 2058.2 1933.2 2060.7 1933.2 2063.3 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1965.2 2049.2 m
+1967.1 2050.1 1969.9 2053.7 1972.1 2056.4 C
+1970.5 2054 1967.6 2051.3 1965.2 2049.2 C
+f 
+S 
+n
+1991.8 2034.8 m
+1991.7 2041.5 1992 2048.5 1991.6 2055.2 C
+1990.5 2056.4 1991.9 2054.9 1991.8 2054.4 C
+1991.8 2047.9 1991.8 2041.3 1991.8 2034.8 C
+f 
+S 
+n
+1988.9 2053.2 m
+1988.9 2044.3 1988.9 2036.6 1988.9 2028.3 C
+1985.7 2028.2 1987.2 2023.5 1983.9 2024.2 C
+1983.9 2022.4 1982 2021.6 1981 2021.3 C
+1980.6 2021.1 1980.6 2021.7 1980.3 2021.6 C
+1980.3 2027 1980.3 2034.8 1980.3 2041.5 C
+1979.3 2043.2 1977.6 2043 1976.2 2043.6 C
+1977.1 2043.8 1978.5 2043.2 1978.8 2044.1 C
+1978.5 2045.3 1979.9 2045.3 1980.3 2045.8 C
+1980.5 2046.8 1980.7 2046.2 1981.5 2046.5 C
+1982.4 2047.1 1982 2048.6 1982.7 2049.4 C
+1984.2 2049.6 1984.6 2052.2 1986.8 2051.6 C
+1987.1 2048.6 1985.1 2042.7 1986.5 2040.5 C
+1986.3 2036.7 1986.9 2031.7 1986 2029.2 C
+1986.3 2027.1 1986.9 2028.6 1987.7 2027.6 C
+1987.7 2028.3 1988.7 2028 1988.7 2028.8 C
+1988.1 2033 1988.7 2037.5 1988.2 2041.7 C
+1987.8 2041.4 1988 2040.8 1988 2040.3 C
+1988 2041 1988 2042.4 1988 2042.4 C
+1988 2042.4 1988.1 2042.3 1988.2 2042.2 C
+1989.3 2046 1988 2050.2 1988.4 2054 C
+1987.8 2054.4 1987.1 2054.7 1986.5 2055.4 C
+1987.4 2054.4 1988.4 2054.6 1988.9 2053.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1950.8 2054.4 m
+1949.7 2053.4 1948.7 2052.3 1947.6 2051.3 C
+1948.7 2052.3 1949.7 2053.4 1950.8 2054.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+vmrs
+2006.7 2043.2 m
+2004.5 2040.8 2002.4 2038.4 2000.2 2036 C
+2002.4 2038.4 2004.5 2040.8 2006.7 2043.2 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1976.7 2019.6 m
+1975.8 2018.6 1976.4 2016.9 1976.2 2015.6 C
+1976 2021.3 1975.8 2031.2 1976.2 2038.8 C
+1976.4 2032.4 1975.8 2025.5 1976.7 2019.6 C
+f 
+S 
+n
+1988.4 2053.5 m
+1988.6 2049.2 1988.1 2042.8 1988 2040 C
+1988.4 2040.4 1988.1 2041 1988.2 2041.5 C
+1988.3 2037.2 1988 2032.7 1988.4 2028.5 C
+1987.6 2027.1 1987.2 2028.6 1986.8 2028 C
+1985.9 2028.5 1986.5 2029.7 1986.3 2030.4 C
+1986.9 2029.8 1986.6 2031 1987 2031.2 C
+1987.4 2039.6 1985 2043 1987.2 2050.4 C
+1987.2 2051.6 1985.9 2052.3 1984.6 2051.3 C
+1981.9 2049.7 1982.9 2047 1980.3 2046.5 C
+1980.3 2045.2 1978.1 2046.2 1978.6 2043.9 C
+1975.6 2043.3 1979.3 2045.6 1979.6 2046.5 C
+1980.8 2046.6 1981.5 2048.5 1982.2 2049.9 C
+1983.7 2050.8 1984.8 2052.8 1986.5 2053 C
+1986.7 2053.5 1987.5 2054.1 1987 2054.7 C
+1987.4 2053.9 1988.3 2054.3 1988.4 2053.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1988 2038.1 m
+1988 2036.7 1988 2035.4 1988 2034 C
+1988 2035.4 1988 2036.7 1988 2038.1 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1999.7 2035.7 m
+1997.6 2033.5 1995.4 2031.2 1993.2 2029 C
+1995.4 2031.2 1997.6 2033.5 1999.7 2035.7 C
+f 
+S 
+n
+1944 2029.2 m
+1945.2 2029.5 1946.9 2029.8 1947.9 2029 C
+1947.4 2027.4 1949 2026.7 1949.8 2026.4 C
+1953.9 2028.6 1952.6 2023.4 1955.6 2023.7 C
+1957.4 2021.4 1960.7 2027 1959.4 2021.3 C
+1959.3 2021.7 1959.6 2022.3 1959.2 2022.5 C
+1958.1 2021.2 1960.1 2021.1 1959.4 2019.6 C
+1959.1 2012.7 1959.9 2005.1 1959.6 1999.2 C
+1955.3 2000.1 1951.3 2003.1 1947.2 2005 C
+1943.9 2006 1941.2 2008.7 1938 2010 C
+1936.9 2012.1 1938.2 2014.8 1937.8 2017.5 C
+1937.8 2022.6 1937.8 2027.3 1937.8 2032.1 C
+1938.2 2026.5 1938 2019 1938 2012.4 C
+1938.5 2012 1939.2 2012.3 1939.7 2012.2 C
+1940.8 2012.8 1939.7 2013.6 1939.7 2014.4 C
+1940.4 2020.5 1939.4 2028 1939.7 2032.1 C
+1940.6 2031.9 1941.2 2032.7 1941.9 2032.1 C
+1941.7 2031.2 1943 2029.7 1944 2029.2 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1937.1 2031.6 m
+1937.1 2029.1 1937.1 2026.5 1937.1 2024 C
+1937.1 2026.5 1937.1 2029.1 1937.1 2031.6 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1991.8 2028 m
+1992.5 2027.8 1993.2 2029.9 1994 2030.2 C
+1992.9 2029.6 1993.1 2028.1 1991.8 2028 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1991.8 2027.8 m
+1992.4 2027.6 1992.6 2028.3 1993 2028.5 C
+1992.6 2028.2 1992.2 2027.6 1991.6 2027.8 C
+1991.6 2028.5 1991.6 2029.1 1991.6 2029.7 C
+1991.6 2029.1 1991.4 2028.3 1991.8 2027.8 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1985.8 2025.4 m
+1985.3 2025.2 1984.8 2024.7 1984.1 2024.9 C
+1983.3 2025.3 1983.6 2027.3 1983.9 2027.6 C
+1985 2028 1986.9 2026.9 1985.8 2025.4 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+vmrs
+1993.5 2024.4 m
+1992.4 2023.7 1991.3 2022.9 1990.1 2023.2 C
+1990.7 2023.7 1989.8 2023.8 1989.4 2023.7 C
+1989.1 2023.7 1988.6 2023.9 1988.4 2023.5 C
+1988.5 2023.2 1988.3 2022.7 1988.7 2022.5 C
+1989 2022.6 1988.9 2023 1988.9 2023.2 C
+1989.1 2022.8 1990.4 2022.3 1990.6 2021.3 C
+1990.4 2021.8 1990 2021.3 1990.1 2021.1 C
+1990.1 2020.9 1990.1 2020.1 1990.1 2020.6 C
+1989.9 2021.1 1989.5 2020.6 1989.6 2020.4 C
+1989.6 2019.8 1988.7 2019.6 1988.2 2019.2 C
+1987.5 2018.7 1987.7 2020.2 1987 2019.4 C
+1987.5 2020.4 1986 2021.1 1987.5 2021.8 C
+1986.8 2023.1 1986.6 2021.1 1986 2021.1 C
+1986.1 2020.1 1985.9 2019 1986.3 2018.2 C
+1986.7 2018.4 1986.5 2019 1986.5 2019.4 C
+1986.5 2018.7 1986.4 2017.8 1987.2 2017.7 C
+1986.5 2017.2 1985.5 2019.3 1985.3 2020.4 C
+1986.2 2022 1987.3 2023.5 1989.2 2024.2 C
+1990.8 2024.3 1991.6 2022.9 1993.2 2024.4 C
+1993.8 2025.4 1995 2026.6 1995.9 2027.1 C
+1995 2026.5 1994.1 2025.5 1993.5 2024.4 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+[0 0.5 0.5 0.2]  vc
+S 
+n
+2023 2040.3 m
+2023.2 2036 2022.7 2029.6 2022.5 2026.8 C
+2022.9 2027.2 2022.7 2027.8 2022.8 2028.3 C
+2022.8 2024 2022.6 2019.5 2023 2015.3 C
+2022.2 2013.9 2021.7 2015.4 2021.3 2014.8 C
+2020.4 2015.3 2021 2016.5 2020.8 2017.2 C
+2021.4 2016.6 2021.1 2017.8 2021.6 2018 C
+2022 2026.4 2019.6 2029.8 2021.8 2037.2 C
+2021.7 2038.4 2020.5 2039.1 2019.2 2038.1 C
+2016.5 2036.5 2017.5 2033.8 2014.8 2033.3 C
+2014.9 2032 2012.6 2033 2013.2 2030.7 C
+2011.9 2030.8 2011.2 2030.1 2010.8 2029.2 C
+2010.8 2029.1 2010.8 2028.2 2010.8 2028.8 C
+2010 2028.8 2010.4 2026.5 2008.6 2027.3 C
+2007.9 2026.6 2007.3 2025.9 2007.9 2027.1 C
+2009.7 2028 2010 2030.1 2012.2 2030.9 C
+2012.9 2032.1 2013.7 2033.6 2015.1 2033.6 C
+2015.7 2035.1 2016.9 2036.7 2018.4 2038.4 C
+2019.8 2039.3 2022 2039.4 2021.6 2041.5 C
+2021.9 2040.7 2022.9 2041.1 2023 2040.3 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2022.5 2024.9 m
+2022.5 2023.5 2022.5 2022.2 2022.5 2020.8 C
+2022.5 2022.2 2022.5 2023.5 2022.5 2024.9 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1983.2 2022.8 m
+1982.4 2022.5 1982.1 2021.6 1981.2 2022.3 C
+1981.1 2022.9 1980.5 2024 1981 2024.2 C
+1981.8 2024.6 1982.9 2024.4 1983.2 2022.8 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1931.1 2019.9 m
+1929.6 2017.7 1932 2015.7 1930.8 2013.9 C
+1931.1 2013 1930.3 2011 1930.6 2009.3 C
+1930.6 2010.3 1929.8 2010 1929.2 2010 C
+1928 2010.3 1928.8 2008.1 1928.2 2007.6 C
+1929.1 2007.8 1929.3 2006.3 1930.1 2006.9 C
+1930.3 2009.8 1932.2 2004.8 1932.3 2008.6 C
+1932.7 2008 1932.8 2009 1932.8 2009.3 C
+1932.8 2009.6 1932.8 2009.8 1932.8 2010 C
+1933.2 2009 1932.7 2006.6 1934 2005.7 C
+1932.7 2004.6 1934.3 2004.6 1934.2 2004 C
+1935.8 2003.7 1937 2003.6 1938.5 2004 C
+1938.5 2004.5 1939.1 2005.4 1938.3 2006 C
+1940.7 2005.7 1937.4 2001.3 1939.7 2001.4 C
+1939.5 2001.4 1938.6 1998.8 1937.1 1999.2 C
+1936.3 1999.1 1936.2 1997.1 1936.1 1998.5 C
+1934.7 2000.1 1932.9 1998.2 1931.6 1999.5 C
+1931.3 1998.9 1930.9 1998.5 1931.1 1997.8 C
+1931.6 1998.2 1931.3 1996.6 1932 1996.1 C
+1933.2 1995.5 1934.3 1996.4 1935.2 1995.4 C
+1935.5 1996.5 1936.3 1996.1 1935.6 1995.2 C
+1934.7 1994.5 1932.5 1995.3 1932 1995.4 C
+1930.5 1995.3 1931.9 1996.5 1930.8 1996.4 C
+1931.2 1997.9 1929.5 1998.3 1928.9 1998.5 C
+1928.1 1997.9 1927.1 1998 1926 1998 C
+1925.3 1999.2 1924.8 2001.4 1923.2 2001.4 C
+1922.6 2000.9 1921 2000.9 1920.3 2000.9 C
+1919.7 2001.9 1919.6 2003.5 1918.1 2004 C
+1916.9 2004.1 1915.8 2002 1915.2 2003.8 C
+1916.7 2004 1917.6 2004.9 1919.6 2004.5 C
+1920.7 2005.2 1919.4 2006.3 1919.8 2006.9 C
+1919.2 2006.9 1917.7 2007.8 1917.2 2008.6 C
+1917.8 2011.6 1919.8 2007.8 1920.5 2010.5 C
+1920.8 2011.3 1919.3 2011.6 1920.5 2012 C
+1920.8 2012.3 1924 2011.8 1923.2 2014.1 C
+1922.6 2013.6 1924.1 2016.1 1924.1 2015.1 C
+1925.1 2015.4 1925.9 2015 1926.3 2016.5 C
+1926.2 2016.6 1926 2016.8 1925.8 2016.8 C
+1925.9 2017.2 1926.2 2017.8 1926.8 2018.2 C
+1927.1 2017.6 1927.7 2018 1928.4 2018.2 C
+1929.7 2020.1 1927.1 2019.5 1929.4 2021.1 C
+1929.9 2020.7 1931.1 2020 1931.1 2019.9 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1937.1 2020.8 m
+1937.1 2018.3 1937.1 2015.7 1937.1 2013.2 C
+1937.1 2015.7 1937.1 2018.3 1937.1 2020.8 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2020.4 2012.2 m
+2019.8 2012 2019.3 2011.5 2018.7 2011.7 C
+2017.9 2012.1 2018.1 2014.1 2018.4 2014.4 C
+2019.6 2014.8 2021.4 2013.7 2020.4 2012.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1976 2013.9 m
+1973.8 2011.5 1971.6 2009.1 1969.5 2006.7 C
+1971.6 2009.1 1973.8 2011.5 1976 2013.9 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1995.4 2012.7 m
+1996.1 2010.3 1993.8 2006.2 1997.3 2005.7 C
+1998.9 2005.4 2000 2003.7 2001.4 2003.1 C
+2003.9 2003.1 2005.3 2001.3 2006.9 1999.7 C
+2004.5 2003.5 2000 2002.2 1997.6 2005.7 C
+1996.5 2005.9 1994.8 2006.1 1995.2 2007.6 C
+1995.7 2009.4 1995.2 2011.6 1994.7 2012.9 C
+1992 2015.8 1987.8 2015.7 1985.3 2018.7 C
+1988.3 2016.3 1992.3 2015.3 1995.4 2012.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1995.6 2012.4 m
+1995.6 2011.2 1995.6 2010 1995.6 2008.8 C
+1995.6 2010 1995.6 2011.2 1995.6 2012.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+vmrs
+2017.7 2009.6 m
+2016.9 2009.3 2016.7 2008.4 2015.8 2009.1 C
+2014.2 2010.6 2016 2010.6 2016.5 2011.5 C
+2017.2 2010.9 2018.1 2010.8 2017.7 2009.6 C
+[0 1 1 0.23]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2014.4 2006.4 m
+2013.5 2006.8 2012.1 2005.6 2012 2006.7 C
+2013 2007.3 2011.9 2009.2 2012.9 2008.4 C
+2014.2 2008.3 2014.6 2007.8 2014.4 2006.4 C
+f 
+S 
+n
+1969 2006.4 m
+1966.5 2003.8 1964 2001.2 1961.6 1998.5 C
+1964 2001.2 1966.5 2003.8 1969 2006.4 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+2012 2005.2 m
+2012.2 2004.2 2011.4 2003.3 2010.3 2003.3 C
+2009 2003.6 2010 2004.7 2009.6 2004.8 C
+2009.3 2005.7 2011.4 2006.7 2012 2005.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1962.8 1995.2 m
+1961.7 1994.4 1960.6 1993.7 1959.4 1994 C
+1959.5 1994.9 1957.5 1994.1 1956.8 1994.7 C
+1955.9 1995.5 1956.7 1997 1955.1 1997.3 C
+1956.9 1996.7 1956.8 1994 1959.2 1994.7 C
+1961.1 1991 1968.9 2003.2 1962.8 1995.2 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1954.6 1995.6 m
+1955.9 1994.7 1955.1 1989.8 1955.3 1988 C
+1954.5 1988.3 1954.9 1986.6 1954.4 1986 C
+1955.7 1989.2 1953.9 1991.1 1954.8 1994.2 C
+1954.5 1995.9 1953.5 1995.3 1953.9 1997.3 C
+1955.3 1998.3 1953.2 1995.5 1954.6 1995.6 C
+f 
+S 
+n
+1992.3 2011 m
+1992.5 2006.7 1992 2000.3 1991.8 1997.6 C
+1992.2 1997.9 1992 1998.5 1992 1999 C
+1992.1 1994.7 1991.9 1990.2 1992.3 1986 C
+1991.4 1984.6 1991 1986.1 1990.6 1985.6 C
+1989.7 1986 1990.3 1987.2 1990.1 1988 C
+1990.7 1987.4 1990.4 1988.5 1990.8 1988.7 C
+1991.3 1997.1 1988.9 2000.6 1991.1 2007.9 C
+1991 2009.1 1989.8 2009.9 1988.4 2008.8 C
+1985.7 2007.2 1986.8 2004.5 1984.1 2004 C
+1984.2 2002.7 1981.9 2003.7 1982.4 2001.4 C
+1981.2 2001.5 1980.5 2000.8 1980 2000 C
+1980 1999.8 1980 1998.9 1980 1999.5 C
+1979.3 1999.5 1979.7 1997.2 1977.9 1998 C
+1977.2 1997.3 1976.6 1996.7 1977.2 1997.8 C
+1979 1998.7 1979.3 2000.8 1981.5 2001.6 C
+1982.2 2002.8 1983 2004.3 1984.4 2004.3 C
+1985 2005.8 1986.2 2007.5 1987.7 2009.1 C
+1989 2010 1991.3 2010.2 1990.8 2012.2 C
+1991.2 2011.4 1992.2 2011.8 1992.3 2011 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1991.8 1995.6 m
+1991.8 1994.3 1991.8 1992.9 1991.8 1991.6 C
+1991.8 1992.9 1991.8 1994.3 1991.8 1995.6 C
+[0 1 1 0.36]  vc
+f 
+S 
+n
+1959.2 1994.2 m
+1958.8 1993.3 1960.7 1993.9 1961.1 1993.7 C
+1961.5 1993.9 1961.2 1994.4 1961.8 1994.2 C
+1960.9 1994 1960.8 1992.9 1959.9 1992.5 C
+1959.6 1993.5 1958.3 1993.5 1958.2 1994.2 C
+1958.1 1994.1 1958 1994 1958 1994 C
+1957.2 1994.9 1958 1993.4 1956.8 1993 C
+1955.6 1992.5 1956 1991 1956.3 1989.9 C
+1956.5 1989.8 1956.6 1990 1956.8 1990.1 C
+1957.1 1989 1956 1989.1 1955.8 1988.2 C
+1955.1 1990.4 1956.2 1995 1954.8 1995.9 C
+1954.1 1995.5 1954.5 1996.5 1954.4 1997.1 C
+1955 1996.8 1954.8 1997.4 1955.6 1996.8 C
+1956 1996 1956.3 1993.2 1958.7 1994.2 C
+1958.9 1994.2 1959.7 1994.2 1959.2 1994.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1958.2 1994 m
+1958.4 1993.5 1959.7 1993.1 1959.9 1992 C
+1959.7 1992.5 1959.3 1992 1959.4 1991.8 C
+1959.4 1991.6 1959.4 1990.8 1959.4 1991.3 C
+1959.2 1991.8 1958.8 1991.3 1958.9 1991.1 C
+1958.9 1990.5 1958 1990.3 1957.5 1989.9 C
+1956.8 1989.5 1956.9 1991 1956.3 1990.1 C
+1956.7 1991 1955.4 1992.1 1956.5 1992.3 C
+1956.8 1993.5 1958.3 1992.9 1957.2 1994 C
+1957.8 1994.3 1958.1 1992.4 1958.2 1994 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+vmrs
+1954.4 1982.7 m
+1956.1 1982.7 1954.1 1982.5 1953.9 1982.9 C
+1953.9 1983.7 1953.7 1984.7 1954.1 1985.3 C
+1954.4 1984.2 1953.6 1983.6 1954.4 1982.7 C
+[0 1 1 0.36]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1989.6 1982.9 m
+1989.1 1982.7 1988.6 1982.3 1988 1982.4 C
+1987.2 1982.8 1987.4 1984.8 1987.7 1985.1 C
+1988.9 1985.6 1990.7 1984.4 1989.6 1982.9 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1987 1980.3 m
+1986.2 1980 1986 1979.1 1985.1 1979.8 C
+1983.5 1981.4 1985.3 1981.4 1985.8 1982.2 C
+1986.5 1981.7 1987.4 1981.5 1987 1980.3 C
+f 
+S 
+n
+1983.6 1977.2 m
+1982.7 1977.5 1981.4 1976.3 1981.2 1977.4 C
+1982.3 1978 1981.2 1979.9 1982.2 1979.1 C
+1983.5 1979 1983.9 1978.5 1983.6 1977.2 C
+f 
+S 
+n
+1981.2 1976 m
+1981.5 1974.9 1980.6 1974 1979.6 1974 C
+1978.3 1974.3 1979.3 1975.4 1978.8 1975.5 C
+1978.6 1976.4 1980.7 1977.4 1981.2 1976 C
+f 
+S 
+n
+1972.1 2082.3 m
+1971.8 2081.8 1971.3 2080.9 1971.2 2080.1 C
+1971.1 2072.9 1971.3 2064.6 1970.9 2058.3 C
+1970.3 2058.5 1970.1 2057.7 1969.7 2058.5 C
+1970.6 2058.5 1969.7 2059 1970.2 2059.2 C
+1970.2 2065.4 1970.2 2072.4 1970.2 2077.7 C
+1971.1 2078.9 1970.6 2078.9 1970.4 2079.9 C
+1969.2 2080.2 1968.2 2080.4 1967.3 2079.6 C
+1966.8 2077.8 1963.4 2076.3 1963.5 2075.1 C
+1961.5 2075.5 1962 2071.5 1959.6 2072 C
+1959.2 2070 1956.5 2069.3 1955.8 2067.6 C
+1956 2068.4 1955.3 2069.7 1956.5 2069.8 C
+1958.6 2068.9 1958.1 2073.5 1960.1 2072.4 C
+1960.7 2075.9 1964.7 2074.6 1964.2 2078 C
+1967.2 2078.6 1967.9 2081.6 1970.7 2080.6 C
+1970.3 2081.1 1971.5 2081.2 1971.9 2082.3 C
+1967.2 2084.3 1962.9 2087.1 1958.2 2089 C
+1962.9 2087 1967.4 2084.4 1972.1 2082.3 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1971.9 2080.1 m
+1971.9 2075.1 1971.9 2070 1971.9 2065 C
+1971.9 2070 1971.9 2075.1 1971.9 2080.1 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+2010.8 2050.6 m
+2013.2 2049 2010.5 2050.1 2010.5 2051.3 C
+2010.5 2057.7 2010.5 2064.1 2010.5 2070.5 C
+2008.7 2072.4 2006 2073.3 2003.6 2074.4 C
+2016.4 2073.7 2008 2058.4 2010.8 2050.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2006.4 2066.9 m
+2006.4 2061.9 2006.4 2056.8 2006.4 2051.8 C
+2006.4 2056.8 2006.4 2061.9 2006.4 2066.9 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1971.9 2060.7 m
+1972.2 2060.3 1971.4 2068.2 1972.4 2061.9 C
+1971.8 2061.6 1972.4 2060.9 1971.9 2060.7 C
+f 
+S 
+n
+vmrs
+1986.5 2055.2 m
+1987.5 2054.3 1986.3 2053.4 1986 2052.8 C
+1983.8 2052.7 1983.6 2050.1 1981.7 2049.6 C
+1981.2 2048.7 1980.8 2047 1980.3 2046.8 C
+1978.5 2047 1978 2044.6 1976.7 2043.9 C
+1974 2044.4 1972 2046.6 1969.2 2047 C
+1969 2047.2 1968.8 2047.5 1968.5 2047.7 C
+1970.6 2049.6 1973.1 2051.3 1974.3 2054.2 C
+1975.7 2054.5 1977 2055.2 1976.4 2057.1 C
+1976.7 2058 1975.5 2058.5 1976 2059.5 C
+1979.2 2058 1983 2056.6 1986.5 2055.2 C
+[0 0.5 0.5 0.2]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1970.2 2054.2 m
+1971.5 2055.3 1972.5 2056.8 1972.1 2058.3 C
+1972.8 2056.5 1971.6 2055.6 1970.2 2054.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1992 2052.5 m
+1992 2053.4 1992.2 2054.4 1991.8 2055.2 C
+1992.2 2054.4 1992 2053.4 1992 2052.5 C
+f 
+S 
+n
+1957.2 2053 m
+1958.1 2052.6 1959 2052.2 1959.9 2051.8 C
+1959 2052.2 1958.1 2052.6 1957.2 2053 C
+f 
+S 
+n
+2006.4 2047.5 m
+2006.8 2047.1 2006 2055 2006.9 2048.7 C
+2006.4 2048.4 2007 2047.7 2006.4 2047.5 C
+f 
+S 
+n
+2004.8 2041 m
+2006.1 2042.1 2007.1 2043.6 2006.7 2045.1 C
+2007.3 2043.3 2006.2 2042.4 2004.8 2041 C
+f 
+S 
+n
+1976 2039.8 m
+1975.6 2039.3 1975.2 2038.4 1975 2037.6 C
+1974.9 2030.4 1975.2 2022.1 1974.8 2015.8 C
+1974.2 2016 1974 2015.3 1973.6 2016 C
+1974.4 2016 1973.5 2016.5 1974 2016.8 C
+1974 2022.9 1974 2030 1974 2035.2 C
+1974.9 2036.4 1974.4 2036.4 1974.3 2037.4 C
+1973.1 2037.7 1972 2037.9 1971.2 2037.2 C
+1970.6 2035.3 1967.3 2033.9 1967.3 2032.6 C
+1965.3 2033 1965.9 2029.1 1963.5 2029.5 C
+1963 2027.6 1960.4 2026.8 1959.6 2025.2 C
+1959.8 2025.9 1959.2 2027.2 1960.4 2027.3 C
+1962.5 2026.4 1961.9 2031 1964 2030 C
+1964.6 2033.4 1968.5 2032.1 1968 2035.5 C
+1971 2036.1 1971.8 2039.1 1974.5 2038.1 C
+1974.2 2038.7 1975.3 2038.7 1975.7 2039.8 C
+1971 2041.8 1966.7 2044.6 1962 2046.5 C
+1966.8 2044.5 1971.3 2041.9 1976 2039.8 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1975.7 2037.6 m
+1975.7 2032.6 1975.7 2027.6 1975.7 2022.5 C
+1975.7 2027.6 1975.7 2032.6 1975.7 2037.6 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1992 2035.5 m
+1992 2034.2 1992 2032.9 1992 2031.6 C
+1992 2032.9 1992 2034.2 1992 2035.5 C
+f 
+S 
+n
+2015.3 2036 m
+2015.4 2034.1 2013.3 2034 2012.9 2033.3 C
+2011.5 2031 2009.3 2029.4 2007.4 2028 C
+2006.9 2027.1 2006.6 2023.8 2005 2024.9 C
+2004 2024.9 2002.9 2024.9 2001.9 2024.9 C
+2001.4 2026.5 2001 2028.4 2003.8 2028.3 C
+2006.6 2030.4 2008.9 2033.7 2011.2 2036.2 C
+2011.8 2036.4 2012.9 2035.8 2012.9 2036.7 C
+2013 2035.5 2015.3 2037.4 2015.3 2036 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+2009.1 2030.4 m
+2009.1 2029 2007.5 2029.4 2006.9 2028.3 C
+2007.2 2027.1 2006.5 2025.5 2005.7 2024.7 C
+2004.6 2025.1 2003.1 2024.9 2001.9 2024.9 C
+2001.8 2026.2 2000.9 2027 2002.4 2028 C
+2004.5 2027.3 2004.9 2029.4 2006.9 2029 C
+2007 2030.2 2007.6 2030.7 2008.4 2031.4 C
+2008.8 2031.5 2009.1 2031.1 2009.1 2030.4 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2003.8 2029.5 m
+2003 2029.4 2001.9 2029.1 2002.4 2030.4 C
+2003.1 2031.3 2005.2 2030.3 2003.8 2029.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1999.2 2025.2 m
+1999.1 2025.6 1998 2025.7 1998.8 2026.6 C
+2000.9 2028.5 1999.5 2023.4 1999.2 2025.2 C
+f 
+S 
+n
+2007.6 2024.2 m
+2007.6 2022.9 2008.4 2024.2 2007.6 2022.8 C
+2007.6 2017.5 2007.8 2009.1 2007.4 2003.8 C
+2007.9 2003.7 2008.7 2002.8 2009.1 2002.1 C
+2009.6 2000.8 2008.3 2000.8 2007.9 2000.2 C
+2004.9 2000 2008.9 2001.3 2007.2 2002.1 C
+2006.7 2007.7 2007 2015.1 2006.9 2021.1 C
+2006.7 2022.1 2005.4 2022.8 2006.2 2023.5 C
+2006.6 2023.1 2008 2025.9 2007.6 2024.2 C
+f 
+S 
+n
+1989.9 2023.5 m
+1989.5 2022.6 1991.4 2023.2 1991.8 2023 C
+1992.2 2023.2 1991.9 2023.7 1992.5 2023.5 C
+1991.6 2023.2 1991.6 2022.2 1990.6 2021.8 C
+1990.4 2022.8 1989 2022.8 1988.9 2023.5 C
+1988.5 2023 1988.7 2022.6 1988.7 2023.5 C
+1989.1 2023.5 1990.2 2023.5 1989.9 2023.5 C
+f 
+[0 0.5 0.5 0.2]  vc
+S 
+n
+2003.3 2023.5 m
+2003.1 2023.3 2003.1 2023.2 2003.3 2023 C
+2003.7 2023.1 2003.9 2022.9 2003.8 2022.5 C
+2003.4 2022.2 2001.2 2022.3 2002.4 2023 C
+2002.6 2022.9 2002.7 2023.1 2002.8 2023.2 C
+2000.7 2023.7 2003.9 2023.4 2003.3 2023.5 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1986.8 2019.4 m
+1987.8 2019.8 1987.5 2018.6 1987.2 2018 C
+1986.2 2017.8 1987.3 2020.5 1986.3 2019.2 C
+1986.3 2017.7 1986.3 2020.6 1986.3 2021.3 C
+1988.5 2023.1 1985.6 2020.3 1986.8 2019.4 C
+f 
+S 
+n
+1975.7 2018.2 m
+1976.1 2017.8 1975.2 2025.7 1976.2 2019.4 C
+1975.7 2019.2 1976.3 2018.4 1975.7 2018.2 C
+f 
+S 
+n
+1974 2011.7 m
+1975.4 2012.8 1976.4 2014.3 1976 2015.8 C
+1976.6 2014 1975.5 2013.1 1974 2011.7 C
+f 
+S 
+n
+1984.6 2006.7 m
+1984.7 2004.8 1982.6 2004.8 1982.2 2004 C
+1980.8 2001.7 1978.6 2000.1 1976.7 1998.8 C
+1976.1 1997.8 1975.8 1994.5 1974.3 1995.6 C
+1973.3 1995.6 1972.2 1995.6 1971.2 1995.6 C
+1970.7 1997.2 1970.3 1999.1 1973.1 1999 C
+1975.8 2001.2 1978.2 2004.4 1980.5 2006.9 C
+1981.1 2007.1 1982.1 2006.5 1982.2 2007.4 C
+1982.3 2006.2 1984.5 2008.1 1984.6 2006.7 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+1978.4 2001.2 m
+1978.4 1999.7 1976.8 2000.1 1976.2 1999 C
+1976.5 1997.8 1975.8 1996.2 1975 1995.4 C
+1973.9 1995.8 1972.4 1995.6 1971.2 1995.6 C
+1971 1997 1970.2 1997.7 1971.6 1998.8 C
+1973.8 1998 1974.2 2000.1 1976.2 1999.7 C
+1976.3 2000.9 1976.9 2001.4 1977.6 2002.1 C
+1978.1 2002.2 1978.4 2001.8 1978.4 2001.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1973.1 2000.2 m
+1972.3 2000.1 1971.2 1999.8 1971.6 2001.2 C
+1972.4 2002 1974.5 2001 1973.1 2000.2 C
+[0 1 1 0.23]  vc
+f 
+S 
+n
+1960.8 1998.5 m
+1961.6 1998.2 1962.6 2000.3 1963.2 2000.9 C
+1962.3 2000.1 1962.2 1998.7 1960.8 1998.5 C
+f 
+S 
+n
+1968.5 1995.9 m
+1968.4 1996.4 1967.3 1996.4 1968 1997.3 C
+1970.1 1999.2 1968.8 1994.1 1968.5 1995.9 C
+f 
+S 
+n
+1976.9 1994.9 m
+1976.9 1993.7 1977.6 1994.9 1976.9 1993.5 C
+1976.9 1988.2 1977.1 1979.8 1976.7 1974.5 C
+1977.2 1974.5 1978 1973.5 1978.4 1972.8 C
+1978.8 1971.5 1977.6 1971.5 1977.2 1970.9 C
+1974.2 1970.7 1978.2 1972 1976.4 1972.8 C
+1976 1978.4 1976.3 1985.8 1976.2 1991.8 C
+1976 1992.8 1974.6 1993.5 1975.5 1994.2 C
+1975.9 1993.8 1977.3 1996.6 1976.9 1994.9 C
+f 
+S 
+n
+1972.6 1994.2 m
+1972.4 1994 1972.4 1993.9 1972.6 1993.7 C
+1973 1993.8 1973.1 1993.7 1973.1 1993.2 C
+1972.7 1992.9 1970.5 1993.1 1971.6 1993.7 C
+1971.9 1993.7 1972 1993.8 1972.1 1994 C
+1970 1994.4 1973.1 1994.1 1972.6 1994.2 C
+f 
+S 
+n
+1948.1 2093.8 m
+1947 2092.7 1945.9 2091.6 1944.8 2090.4 C
+1945.9 2091.6 1947 2092.7 1948.1 2093.8 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1953.4 2091.4 m
+1954.8 2090.7 1956.3 2090 1957.7 2089.2 C
+1956.3 2090 1954.8 2090.7 1953.4 2091.4 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1954.1 2091.4 m
+1956.6 2089.6 1957.2 2089.6 1954.1 2091.4 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1962.3 2087.3 m
+1963.7 2086.6 1965.2 2085.9 1966.6 2085.2 C
+1965.2 2085.9 1963.7 2086.6 1962.3 2087.3 C
+f 
+S 
+n
+vmrs
+1967.1 2084.9 m
+1968.3 2084.4 1969.7 2083.8 1970.9 2083.2 C
+1969.7 2083.8 1968.3 2084.4 1967.1 2084.9 C
+[0 0.4 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1982.7 2080.6 m
+1981.5 2079.5 1980.5 2078.4 1979.3 2077.2 C
+1980.5 2078.4 1981.5 2079.5 1982.7 2080.6 C
+f 
+S 
+n
+1988 2078.2 m
+1989.4 2077.5 1990.8 2076.8 1992.3 2076 C
+1990.8 2076.8 1989.4 2077.5 1988 2078.2 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1988.7 2078.2 m
+1991.1 2076.4 1991.8 2076.4 1988.7 2078.2 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1976.2 2063.8 m
+1978.6 2062.2 1976 2063.3 1976 2064.5 C
+1976.1 2067.8 1975.5 2071.4 1976.4 2074.4 C
+1975.7 2071.1 1975.9 2067.2 1976.2 2063.8 C
+f 
+S 
+n
+1996.8 2074.1 m
+1998.3 2073.4 1999.7 2072.7 2001.2 2072 C
+1999.7 2072.7 1998.3 2073.4 1996.8 2074.1 C
+f 
+S 
+n
+2001.6 2071.7 m
+2002.9 2071.2 2004.2 2070.6 2005.5 2070 C
+2004.2 2070.6 2002.9 2071.2 2001.6 2071.7 C
+f 
+S 
+n
+1981.5 2060.7 m
+1980.2 2061.2 1978.9 2061.5 1977.9 2062.6 C
+1978.9 2061.5 1980.2 2061.2 1981.5 2060.7 C
+f 
+S 
+n
+1982 2060.4 m
+1982.7 2060.1 1983.6 2059.8 1984.4 2059.5 C
+1983.6 2059.8 1982.7 2060.1 1982 2060.4 C
+f 
+S 
+n
+1952 2051.3 m
+1950.8 2050.2 1949.7 2049.1 1948.6 2048 C
+1949.7 2049.1 1950.8 2050.2 1952 2051.3 C
+f 
+S 
+n
+vmrs
+1977.4 2047.7 m
+1975.8 2047.8 1974.8 2046.1 1974.5 2045.3 C
+1974.9 2044.4 1976 2044.5 1976.7 2044.8 C
+1977.9 2045 1977 2048.4 1979.3 2047.5 C
+1979.9 2047.5 1980.8 2048.6 1979.8 2049.2 C
+1978.2 2050.4 1980.8 2049.5 1980.3 2049.4 C
+1981.4 2049.8 1980.3 2048.4 1980.3 2048 C
+1979.8 2047.5 1979 2046.6 1978.4 2046.5 C
+1977.3 2045.9 1977.2 2043.3 1975.2 2044.6 C
+1974.7 2045.3 1973.6 2045 1973.3 2045.8 C
+1975 2046.3 1975.8 2049.8 1978.1 2049.4 C
+1978.4 2050.9 1978.7 2048.5 1977.9 2049.2 C
+1977.7 2048.7 1977.2 2047.8 1977.4 2047.7 C
+[0 0.5 0.5 0.2]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1957.2 2048.9 m
+1958.7 2048.2 1960.1 2047.5 1961.6 2046.8 C
+1960.1 2047.5 1958.7 2048.2 1957.2 2048.9 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1958 2048.9 m
+1960.4 2047.1 1961.1 2047.1 1958 2048.9 C
+[0 0.4 1 0]  vc
+f 
+S 
+n
+1966.1 2044.8 m
+1967.6 2044.1 1969 2043.4 1970.4 2042.7 C
+1969 2043.4 1967.6 2044.1 1966.1 2044.8 C
+f 
+S 
+n
+1970.9 2042.4 m
+1972.2 2041.9 1973.5 2041.3 1974.8 2040.8 C
+1973.5 2041.3 1972.2 2041.9 1970.9 2042.4 C
+f 
+S 
+n
+2012 2034.5 m
+2010.4 2034.6 2009.3 2032.9 2009.1 2032.1 C
+2009.4 2031 2010.3 2031.3 2011.2 2031.6 C
+2012.5 2031.8 2011.6 2035.2 2013.9 2034.3 C
+2014.4 2034.3 2015.4 2035.4 2014.4 2036 C
+2012.7 2037.2 2015.3 2036.3 2014.8 2036.2 C
+2015.9 2036.6 2014.8 2035.2 2014.8 2034.8 C
+2014.4 2034.3 2013.6 2033.4 2012.9 2033.3 C
+2011.5 2031 2009.3 2029.4 2007.4 2028 C
+2007.5 2026.5 2007.3 2027.9 2007.2 2028.3 C
+2007.9 2028.8 2008.7 2029.1 2009.3 2030 C
+2009.6 2030.7 2009 2031.9 2008.4 2031.6 C
+2006.7 2031 2007.7 2028 2005 2028.8 C
+2004.8 2028.6 2004.3 2028.2 2003.8 2028.3 C
+2006.6 2030.4 2008.9 2033.7 2011.2 2036.2 C
+2011.8 2036.4 2012.9 2035.8 2012.9 2036.7 C
+2012.7 2036.1 2011.8 2035 2012 2034.5 C
+[0 0.5 0.5 0.2]  vc
+f 
+S 
+n
+1981.2 2005.2 m
+1979.7 2005.3 1978.6 2003.6 1978.4 2002.8 C
+1978.7 2001.8 1979.6 2002.1 1980.5 2002.4 C
+1981.8 2002.5 1980.9 2005.9 1983.2 2005 C
+1983.7 2005.1 1984.7 2006.1 1983.6 2006.7 C
+1982 2007.9 1984.6 2007 1984.1 2006.9 C
+1985.2 2007.3 1984.1 2006 1984.1 2005.5 C
+1983.6 2005 1982.9 2004.1 1982.2 2004 C
+1980.8 2001.7 1978.6 2000.1 1976.7 1998.8 C
+1976.7 1997.2 1976.6 1998.6 1976.4 1999 C
+1977.2 1999.5 1978 1999.8 1978.6 2000.7 C
+1978.8 2001.5 1978.3 2002.7 1977.6 2002.4 C
+1976 2001.8 1977 1998.7 1974.3 1999.5 C
+1974.1 1999.3 1973.6 1998.9 1973.1 1999 C
+1975.8 2001.2 1978.2 2004.4 1980.5 2006.9 C
+1981.1 2007.1 1982.1 2006.5 1982.2 2007.4 C
+1982 2006.8 1981.1 2005.7 1981.2 2005.2 C
+f 
+S 
+n
+1966.8 1976.4 m
+1969.4 1973 1974.4 1974.6 1976.2 1970.4 C
+1972.7 1974 1968 1975.1 1964 1977.4 C
+1960.9 1979.9 1957.1 1981.8 1953.9 1982.7 C
+1958.4 1981.1 1962.6 1978.8 1966.8 1976.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1948.4 2093.8 m
+1949.8 2093.1 1951.2 2092.5 1952.7 2091.9 C
+1951.2 2092.5 1949.8 2093.1 1948.4 2093.8 C
+[0 0.2 1 0]  vc
+f 
+S 
+n
+1948.1 2093.6 m
+1947.3 2092.8 1946.5 2091.9 1945.7 2091.2 C
+1946.5 2091.9 1947.3 2092.8 1948.1 2093.6 C
+f 
+S 
+n
+vmrs
+1942.1 2087.8 m
+1943.5 2088.4 1944.3 2089.5 1945.2 2090.7 C
+1944.8 2089.3 1943.3 2088.3 1942.1 2087.8 C
+[0 0.2 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1933.5 2078.4 m
+1933.5 2078 1933.2 2079 1933.7 2079.4 C
+1935 2080.4 1936.2 2081.3 1937.1 2082.8 C
+1936.7 2080.7 1933.7 2080.7 1933.5 2078.4 C
+f 
+S 
+n
+1982.9 2080.6 m
+1984.4 2079.9 1985.8 2079.3 1987.2 2078.7 C
+1985.8 2079.3 1984.4 2079.9 1982.9 2080.6 C
+f 
+S 
+n
+1982.7 2080.4 m
+1981.9 2079.6 1981.1 2078.7 1980.3 2078 C
+1981.1 2078.7 1981.9 2079.6 1982.7 2080.4 C
+f 
+S 
+n
+1977.4 2075.1 m
+1977.9 2075.3 1979.1 2076.4 1979.8 2077.5 C
+1979 2076.8 1978.7 2075.1 1977.4 2075.1 C
+f 
+S 
+n
+1952.2 2051.3 m
+1953.6 2050.7 1955.1 2050.1 1956.5 2049.4 C
+1955.1 2050.1 1953.6 2050.7 1952.2 2051.3 C
+f 
+S 
+n
+1952 2051.1 m
+1951.2 2050.3 1950.3 2049.5 1949.6 2048.7 C
+1950.3 2049.5 1951.2 2050.3 1952 2051.1 C
+f 
+S 
+n
+1946 2045.3 m
+1947.3 2045.9 1948.1 2047 1949.1 2048.2 C
+1948.6 2046.8 1947.1 2045.8 1946 2045.3 C
+f 
+S 
+n
+1937.3 2036 m
+1937.4 2035.5 1937 2036.5 1937.6 2036.9 C
+1938.8 2037.9 1940.1 2038.8 1940.9 2040.3 C
+1940.6 2038.2 1937.6 2038.2 1937.3 2036 C
+f 
+S 
+n
+1935.2 2073.2 m
+1936.4 2069.9 1935.8 2061.8 1935.6 2056.4 C
+1935.8 2055.9 1936.3 2055.7 1936.1 2055.2 C
+1935.7 2054.7 1935 2055 1934.4 2054.9 C
+1934.4 2061.5 1934.4 2068.7 1934.4 2074.6 C
+1935.7 2075.1 1936 2073.7 1935.2 2073.2 C
+[0 0.01 1 0]  vc
+f 
+S 
+n
+vmrs
+1939 2030.7 m
+1940.3 2027.4 1939.7 2019.3 1939.5 2013.9 C
+1939.7 2013.5 1940.1 2013.2 1940 2012.7 C
+1939.5 2012.3 1938.8 2012.5 1938.3 2012.4 C
+1938.3 2019 1938.3 2026.2 1938.3 2032.1 C
+1939.5 2032.7 1939.8 2031.2 1939 2030.7 C
+[0 0.01 1 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1975.2 2077.2 m
+1975.3 2077.3 1975.4 2077.4 1975.5 2077.5 C
+1974.7 2073.2 1974.9 2067.5 1975.2 2063.6 C
+1975.4 2064 1974.6 2063.9 1974.8 2064.3 C
+1974.9 2069.9 1974.3 2076.5 1975.2 2081.1 C
+1974.9 2079.9 1974.9 2078.4 1975.2 2077.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1930.8 2067.4 m
+1931.5 2070.1 1929.6 2072.1 1930.6 2074.6 C
+1931 2072.6 1930.8 2069.8 1930.8 2067.4 C
+f 
+S 
+n
+2010 2050.1 m
+2009.8 2050.5 2009.5 2050.9 2009.3 2051.1 C
+2009.5 2056.7 2008.9 2063.3 2009.8 2067.9 C
+2009.5 2062.1 2009.3 2054.7 2010 2050.1 C
+f 
+S 
+n
+1930.1 2060.9 m
+1929.3 2057.1 1930.7 2054.8 1929.9 2051.3 C
+1930.2 2050.2 1931.1 2049.6 1931.8 2049.2 C
+1931.4 2049.6 1930.4 2049.5 1930.1 2050.1 C
+1928.4 2054.8 1933.4 2063.5 1925.3 2064.3 C
+1927.2 2063.9 1928.5 2062.1 1930.1 2060.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1929.6 2061.2 m
+1929.6 2057.6 1929.6 2054.1 1929.6 2050.6 C
+1930 2049.9 1930.5 2049.4 1931.1 2049.2 C
+1930 2048.6 1930.5 2050.2 1929.4 2049.6 C
+1928 2054.4 1932.8 2063 1925.3 2064 C
+1926.9 2063.3 1928.3 2062.4 1929.6 2061.2 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1930.8 2061.6 m
+1930.5 2058 1931.6 2054 1930.8 2051.3 C
+1930.3 2054.5 1930.9 2058.5 1930.4 2061.9 C
+1930.5 2061.2 1931 2062.2 1930.8 2061.6 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1941.2 2045.1 m
+1939.7 2042.6 1937.3 2041.2 1935.4 2039.3 C
+1934.2 2040 1933.7 2036.4 1934 2039.3 C
+1934.9 2040.1 1936.1 2039.9 1936.8 2040.8 C
+1935.3 2044.2 1942.3 2041.7 1939.5 2046 C
+1937.1 2048.5 1940.5 2045.6 1941.2 2045.1 C
+f 
+S 
+n
+1910 2045.8 m
+1910 2039.4 1910 2033 1910 2026.6 C
+1910 2033 1910 2039.4 1910 2045.8 C
+f 
+S 
+n
+1978.8 2022.3 m
+1979.1 2021.7 1979.4 2020.4 1978.6 2021.6 C
+1978.6 2026.9 1978.6 2033 1978.6 2037.6 C
+1979.2 2037 1979.1 2038.2 1979.1 2038.6 C
+1978.7 2033.6 1978.9 2026.8 1978.8 2022.3 C
+f 
+S 
+n
+vmrs
+2026.1 2041.2 m
+2026.1 2034.8 2026.1 2028.3 2026.1 2021.8 C
+2026.1 2028.5 2026.3 2035.4 2025.9 2042 C
+2024.4 2042.9 2022.9 2044.1 2021.3 2044.8 C
+2023.1 2044 2025.1 2042.8 2026.1 2041.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+2026.4 2021.8 m
+2026.3 2028.5 2026.5 2035.4 2026.1 2042 C
+2025.6 2042.8 2024.7 2042.7 2024.2 2043.4 C
+2024.7 2042.7 2025.5 2042.7 2026.1 2042.2 C
+2026.5 2035.5 2026.3 2027.9 2026.4 2021.8 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+2025.6 2038.4 m
+2025.6 2033 2025.6 2027.6 2025.6 2022.3 C
+2025.6 2027.6 2025.6 2033 2025.6 2038.4 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1934 2023.5 m
+1934 2024.7 1933.8 2026 1934.2 2027.1 C
+1934 2025.5 1934.7 2024.6 1934 2023.5 C
+f 
+S 
+n
+1928.2 2023.5 m
+1928 2024.6 1927.4 2023.1 1926.8 2023.2 C
+1926.2 2021 1921.4 2019.3 1923.2 2018 C
+1922.7 2016.5 1923.2 2019.3 1922.2 2018.2 C
+1924.4 2020.4 1926.2 2023.3 1928.9 2024.9 C
+1927.9 2024.2 1929.8 2023.5 1928.2 2023.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1934 2019.2 m
+1932 2019.6 1930.8 2022.6 1928.7 2021.8 C
+1924.5 2016.5 1918.2 2011.8 1914 2006.7 C
+1914 2005.7 1914 2004.6 1914 2003.6 C
+1913.6 2004.3 1913.9 2005.8 1913.8 2006.9 C
+1919 2012.4 1924.1 2016.5 1929.2 2022.3 C
+1931 2021.7 1932.2 2019.8 1934 2019.2 C
+f 
+S 
+n
+1928.7 2024.9 m
+1926.3 2022.7 1924.1 2020.4 1921.7 2018.2 C
+1924.1 2020.4 1926.3 2022.7 1928.7 2024.9 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914.3 2006.7 m
+1918.7 2011.8 1924.5 2016.4 1928.9 2021.6 C
+1924.2 2016.1 1919 2012.1 1914.3 2006.7 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1924.8 2020.8 m
+1921.2 2016.9 1925.6 2022.5 1926 2021.1 C
+1924.2 2021 1926.7 2019.6 1924.8 2020.8 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1934 2018.4 m
+1933.2 2014.7 1934.5 2012.3 1933.7 2008.8 C
+1934 2007.8 1935 2007.2 1935.6 2006.7 C
+1935.3 2007.1 1934.3 2007 1934 2007.6 C
+1932.2 2012.3 1937.2 2021 1929.2 2021.8 C
+1931.1 2021.4 1932.3 2019.6 1934 2018.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+vmrs
+1933.5 2018.7 m
+1933.5 2015.1 1933.5 2011.7 1933.5 2008.1 C
+1933.8 2007.4 1934.3 2006.9 1934.9 2006.7 C
+1933.8 2006.1 1934.3 2007.7 1933.2 2007.2 C
+1931.9 2012 1936.7 2020.5 1929.2 2021.6 C
+1930.7 2020.8 1932.2 2019.9 1933.5 2018.7 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934.7 2019.2 m
+1934.3 2015.6 1935.4 2011.5 1934.7 2008.8 C
+1934.1 2012 1934.7 2016 1934.2 2019.4 C
+1934.4 2018.7 1934.8 2019.8 1934.7 2019.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1917.6 2013.6 m
+1917.8 2011.1 1916.8 2014.2 1917.2 2012.2 C
+1916.3 2012.9 1914.8 2011.8 1914.3 2010.8 C
+1914.2 2010.5 1914.4 2010.4 1914.5 2010.3 C
+1913.9 2008.8 1913.9 2011.9 1914.3 2012 C
+1916.3 2012 1917.6 2013.6 1916.7 2015.6 C
+1913.7 2017.4 1919.6 2014.8 1917.6 2013.6 C
+f 
+S 
+n
+1887.2 2015.3 m
+1887.2 2008.9 1887.2 2002.5 1887.2 1996.1 C
+1887.2 2002.5 1887.2 2008.9 1887.2 2015.3 C
+f 
+S 
+n
+1916.7 2014.4 m
+1917 2012.1 1913 2013 1913.8 2010.8 C
+1912.1 2009.8 1910.9 2009.4 1910.7 2007.9 C
+1910.4 2010.6 1913.4 2010.4 1914 2012.4 C
+1914.9 2012.8 1916.6 2012.9 1916.4 2014.4 C
+1916.9 2015.1 1914.5 2016.6 1916.2 2015.8 C
+1916.4 2015.3 1916.7 2015 1916.7 2014.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1914 2009.3 m
+1912.8 2010.9 1909.6 2005.3 1911.9 2009.8 C
+1912.3 2009.6 1913.6 2010.2 1914 2009.3 C
+[0.92 0.92 0 0.67]  vc
+f 
+S 
+n
+1951.2 1998.8 m
+1949 1996.4 1951.5 1994 1950.3 1991.8 C
+1949.1 1989.1 1954 1982.7 1948.8 1981.2 C
+1949.2 1981.5 1951 1982.4 1950.8 1983.6 C
+1951.9 1988.6 1947.1 1986.5 1948.1 1990.4 C
+1948.5 1990.3 1948.7 1990.7 1948.6 1991.1 C
+1949 1992.5 1947.3 1991.9 1948.1 1992.5 C
+1947.1 1992.7 1945.7 1993.5 1945.2 1994.7 C
+1944.5 1996.8 1947.7 2000.5 1943.8 2001.4 C
+1943.4 2002 1943.7 2004 1942.4 2004.5 C
+1945.2 2002.2 1948.9 2000.9 1951.2 1998.8 C
+f 
+S 
+n
+1994.9 1993 m
+1995.1 1996.5 1994.5 2000.3 1995.4 2003.6 C
+1994.5 2000.3 1995.1 1996.5 1994.9 1993 C
+f 
+S 
+n
+1913.8 2003.3 m
+1913.8 1996.9 1913.8 1990.5 1913.8 1984.1 C
+1913.8 1990.5 1913.8 1996.9 1913.8 2003.3 C
+f 
+S 
+n
+1941.9 1998 m
+1940.5 1997.3 1940.7 1999.4 1940.7 2000 C
+1942.8 2001.3 1942.6 1998.8 1941.9 1998 C
+[0 0 0 0]  vc
+f 
+S 
+n
+vmrs
+1942.1 1999.2 m
+1942.2 1998.9 1941.8 1998.8 1941.6 1998.5 C
+1940.4 1998 1940.7 1999.7 1940.7 2000 C
+1941.6 2000.3 1942.6 2000.4 1942.1 1999.2 C
+[0.92 0.92 0 0.67]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940 1997.1 m
+1939.8 1996 1939.7 1995.9 1939.2 1995.2 C
+1939.1 1995.3 1938.5 1997.9 1937.8 1996.4 C
+1938 1997.3 1939.4 1998.6 1940 1997.1 C
+f 
+S 
+n
+1911.2 1995.9 m
+1911.2 1991.6 1911.3 1987.2 1911.4 1982.9 C
+1911.3 1987.2 1911.2 1991.6 1911.2 1995.9 C
+f 
+S 
+n
+1947.2 1979.1 m
+1945.1 1978.8 1944.6 1975.7 1942.4 1975 C
+1940.5 1972.6 1942.2 1973.7 1942.4 1975.7 C
+1945.8 1975.5 1944.2 1979.8 1947.6 1979.6 C
+1948.3 1982.3 1948.5 1980 1947.2 1979.1 C
+f 
+S 
+n
+1939.5 1973.3 m
+1940.1 1972.6 1939.8 1974.2 1940.2 1973.1 C
+1939.1 1972.8 1938.8 1968.5 1935.9 1969.7 C
+1937.4 1969.2 1938.5 1970.6 1939 1971.4 C
+1939.2 1972.7 1938.6 1973.9 1939.5 1973.3 C
+f 
+S 
+n
+1975.2 2073.2 m
+1975.2 2070.2 1975.2 2067.2 1975.2 2064.3 C
+1975.2 2067.2 1975.2 2070.2 1975.2 2073.2 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1929.9 2065.7 m
+1928.1 2065.6 1926 2068.8 1924.1 2066.9 C
+1918.1 2060.9 1912.9 2055.7 1907.1 2049.9 C
+1906.7 2047.1 1906.9 2043.9 1906.8 2041 C
+1906.8 2043.9 1906.8 2046.8 1906.8 2049.6 C
+1913.2 2055.5 1918.7 2061.9 1925.1 2067.6 C
+1927.1 2067.9 1928.6 2064.4 1930.1 2066.2 C
+1929.7 2070.3 1929.9 2074.7 1929.9 2078.9 C
+1929.6 2074.4 1930.5 2070.1 1929.9 2065.7 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1930.1 2061.6 m
+1928.1 2062.1 1927 2065.1 1924.8 2064.3 C
+1920.7 2058.9 1914.4 2054.3 1910.2 2049.2 C
+1910.2 2048.1 1910.2 2047.1 1910.2 2046 C
+1909.8 2046.8 1910 2048.3 1910 2049.4 C
+1915.1 2054.9 1920.3 2059 1925.3 2064.8 C
+1927.1 2064.2 1928.4 2062.3 1930.1 2061.6 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1932 2049.9 m
+1932.3 2050.3 1932 2050.4 1932.8 2050.4 C
+1932 2050.4 1932.2 2049.2 1931.3 2049.6 C
+1931.4 2050.5 1930.3 2050.4 1930.4 2051.3 C
+1931.1 2051.1 1930.7 2049.4 1932 2049.9 C
+f 
+S 
+n
+1938.3 2046 m
+1936.3 2046.8 1935.2 2047.2 1934.2 2048.9 C
+1935.3 2047.7 1936.8 2046.2 1938.3 2046 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+vmrs
+1938.3 2047 m
+1937.9 2046.9 1936.6 2047.1 1936.1 2048 C
+1936.5 2047.5 1937.3 2046.7 1938.3 2047 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.2 2043.2 m
+1910.1 2037.5 1910 2031.8 1910 2026.1 C
+1910 2031.8 1910.1 2037.5 1910.2 2043.2 C
+f 
+S 
+n
+1933.5 2032.1 m
+1933.7 2035.2 1932.8 2035.8 1933.7 2038.6 C
+1933.3 2036.6 1934.6 2018 1933.5 2032.1 C
+f 
+S 
+n
+1907.3 2021.8 m
+1906.6 2025.9 1909.4 2032.6 1903.2 2034 C
+1902.8 2034.1 1902.4 2033.9 1902 2033.8 C
+1897.9 2028.5 1891.6 2023.8 1887.4 2018.7 C
+1887.4 2017.7 1887.4 2016.6 1887.4 2015.6 C
+1887 2016.3 1887.2 2017.8 1887.2 2018.9 C
+1892.3 2024.4 1897.5 2028.5 1902.5 2034.3 C
+1904.3 2033.6 1905.7 2032 1907.3 2030.9 C
+1907.3 2027.9 1907.3 2024.9 1907.3 2021.8 C
+f 
+S 
+n
+1933.7 2023.2 m
+1932 2021.7 1931.1 2024.9 1929.4 2024.9 C
+1931.2 2024.7 1932.4 2021.5 1933.7 2023.2 C
+f 
+S 
+n
+1989.2 2024.4 m
+1987.4 2023.7 1985.8 2022.2 1985.1 2020.4 C
+1984.6 2020.1 1986 2018.9 1985.1 2019.2 C
+1985.6 2020.8 1984.1 2019.4 1984.6 2021.1 C
+1986.3 2022.3 1988.1 2025.3 1989.2 2024.4 C
+f 
+S 
+n
+1904.4 2031.9 m
+1903 2029.7 1905.3 2027.7 1904.2 2025.9 C
+1904.5 2025 1903.7 2023 1904 2021.3 C
+1904 2022.3 1903.2 2022 1902.5 2022 C
+1901.3 2022.3 1902.2 2020.1 1901.6 2019.6 C
+1902.5 2019.8 1902.6 2018.3 1903.5 2018.9 C
+1903.7 2021.8 1905.6 2016.8 1905.6 2020.6 C
+1905.9 2020 1906.3 2020.8 1906.1 2021.1 C
+1905.8 2022.7 1906.7 2020.4 1906.4 2019.9 C
+1906.4 2018.5 1908.2 2017.8 1906.8 2016.5 C
+1906.9 2015.7 1907.7 2017.1 1907.1 2016.3 C
+1908.5 2015.8 1910.3 2015.1 1911.6 2016 C
+1912.2 2016.2 1911.9 2018 1911.6 2018 C
+1914.5 2017.1 1910.4 2013.6 1913.3 2013.4 C
+1912.4 2011.3 1910.5 2011.8 1909.5 2010 C
+1910 2010.5 1909 2010.8 1908.8 2011.2 C
+1907.5 2009.9 1906.1 2011.7 1904.9 2011.5 C
+1904.7 2010.9 1904.3 2010.5 1904.4 2009.8 C
+1905 2010.2 1904.6 2008.6 1905.4 2008.1 C
+1906.6 2007.5 1907.7 2008.4 1908.5 2007.4 C
+1908.9 2008.5 1909.7 2008.1 1909 2007.2 C
+1908.1 2006.5 1905.9 2007.3 1905.4 2007.4 C
+1903.9 2007.3 1905.2 2008.5 1904.2 2008.4 C
+1904.6 2009.9 1902.8 2010.3 1902.3 2010.5 C
+1901.5 2009.9 1900.4 2010 1899.4 2010 C
+1898.6 2011.2 1898.2 2013.4 1896.5 2013.4 C
+1896 2012.9 1894.4 2012.9 1893.6 2012.9 C
+1893.1 2013.9 1892.9 2015.5 1891.5 2016 C
+1890.3 2016.1 1889.2 2014 1888.6 2015.8 C
+1890 2016 1891 2016.9 1892.9 2016.5 C
+1894.1 2017.2 1892.8 2018.3 1893.2 2018.9 C
+1892.6 2018.9 1891.1 2019.8 1890.5 2020.6 C
+1891.1 2023.6 1893.2 2019.8 1893.9 2022.5 C
+1894.1 2023.3 1892.7 2023.6 1893.9 2024 C
+1894.2 2024.3 1897.4 2023.8 1896.5 2026.1 C
+1896 2025.6 1897.4 2028.1 1897.5 2027.1 C
+1898.4 2027.4 1899.3 2027 1899.6 2028.5 C
+1899.5 2028.6 1899.4 2028.8 1899.2 2028.8 C
+1899.3 2029.2 1899.6 2029.8 1900.1 2030.2 C
+1900.4 2029.6 1901 2030 1901.8 2030.2 C
+1903.1 2032.1 1900.4 2031.5 1902.8 2033.1 C
+1903.3 2032.7 1904.5 2032 1904.4 2031.9 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1909.2 2019.4 m
+1908.8 2020.3 1910.2 2019.8 1909.2 2019.2 C
+1908.3 2019.3 1907.6 2020.2 1907.6 2021.3 C
+1908.5 2021 1907.6 2019 1909.2 2019.4 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1915.5 2015.6 m
+1913.5 2016.3 1912.4 2016.8 1911.4 2018.4 C
+1912.5 2017.2 1914 2015.7 1915.5 2015.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1915.5 2016.5 m
+1915.1 2016.4 1913.8 2016.6 1913.3 2017.5 C
+1913.7 2017 1914.5 2016.2 1915.5 2016.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1887.4 2012.7 m
+1887.3 2007 1887.2 2001.3 1887.2 1995.6 C
+1887.2 2001.3 1887.3 2007 1887.4 2012.7 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1935.9 2007.4 m
+1936.2 2007.8 1935.8 2007.9 1936.6 2007.9 C
+1935.9 2007.9 1936.1 2006.7 1935.2 2007.2 C
+1935.2 2008.1 1934.1 2007.9 1934.2 2008.8 C
+1935 2008.7 1934.6 2006.9 1935.9 2007.4 C
+f 
+S 
+n
+1942.1 2003.6 m
+1940.1 2004.3 1939.1 2004.8 1938 2006.4 C
+1939.1 2005.2 1940.6 2003.7 1942.1 2003.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1942.1 2004.5 m
+1941.8 2004.4 1940.4 2004.6 1940 2005.5 C
+1940.4 2005 1941.2 2004.2 1942.1 2004.5 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+1914 2000.7 m
+1914 1995 1913.9 1989.3 1913.8 1983.6 C
+1913.9 1989.3 1914 1995 1914 2000.7 C
+f 
+S 
+n
+1941.6 1998.3 m
+1943.4 2001.9 1942.4 1996 1940.9 1998.3 C
+1941.2 1998.3 1941.4 1998.3 1941.6 1998.3 C
+f 
+S 
+n
+1954.8 1989.9 m
+1953.9 1989.6 1954.7 1991.6 1953.9 1991.1 C
+1954.5 1993.1 1953.6 1998 1954.6 1993.2 C
+1954 1992.2 1954.7 1990.7 1954.8 1989.9 C
+f 
+S 
+n
+1947.6 1992.5 m
+1946.2 1993.5 1944.9 1993 1944.8 1994.7 C
+1945.5 1994 1947 1992.2 1947.6 1992.5 C
+f 
+S 
+n
+1910.7 1982.2 m
+1910.3 1981.8 1909.7 1982 1909.2 1982 C
+1909.7 1982 1910.3 1981.9 1910.7 1982.2 C
+1911 1987.1 1910 1992.6 1910.7 1997.3 C
+1910.7 1992.3 1910.7 1987.2 1910.7 1982.2 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1910.9 1992.8 m
+1910.9 1991.3 1910.9 1989.7 1910.9 1988.2 C
+1910.9 1989.7 1910.9 1991.3 1910.9 1992.8 C
+[0.18 0.18 0 0.78]  vc
+f 
+S 
+n
+vmrs
+1953.6 1983.6 m
+1954.1 1985.3 1953.2 1988.6 1954.8 1989.4 C
+1954.1 1987.9 1954.4 1985.4 1953.6 1983.6 C
+[0.18 0.18 0 0.78]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.7 1982 m
+1911.6 1982.9 1911 1984.4 1911.2 1985.6 C
+1911 1984.4 1911.6 1982.9 1910.7 1982 C
+f 
+S 
+n
+1947.2 1979.6 m
+1947.5 1980.6 1948.3 1980.6 1947.4 1979.6 C
+1946.2 1979.4 1945.7 1978.8 1947.2 1979.6 C
+f 
+S 
+n
+1930.4 2061.4 m
+1930.4 2058 1930.4 2053.5 1930.4 2051.1 C
+1930.7 2054.6 1929.8 2057.4 1930.1 2061.2 C
+1929.5 2061.9 1929.7 2061.2 1930.4 2061.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1939.5 2044.8 m
+1940 2041.5 1935.2 2044.3 1936.4 2040.8 C
+1934.9 2040.9 1934.1 2039.7 1933.5 2038.6 C
+1933.3 2035.4 1933.2 2040 1934 2040.3 C
+1936.2 2040.6 1936.3 2043.6 1938.5 2043.4 C
+1939.7 2044.2 1939.4 2045.6 1938.3 2046.5 C
+1939.1 2046.6 1939.6 2045.6 1939.5 2044.8 C
+f 
+S 
+n
+1910.4 2045.3 m
+1910.4 2039.5 1910.4 2033.6 1910.4 2027.8 C
+1910.4 2033.6 1910.4 2039.5 1910.4 2045.3 C
+f 
+S 
+n
+1906.8 2030.9 m
+1907.6 2026.8 1905 2020.8 1909 2018.7 C
+1906.5 2018.9 1906.8 2022.4 1906.8 2024.7 C
+1906.4 2028.2 1907.9 2032 1903 2033.8 C
+1902.2 2034 1903.8 2033.4 1904.2 2033.1 C
+1905.1 2032.4 1905.9 2031.5 1906.8 2030.9 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1907.1 2030.7 m
+1907.1 2028.8 1907.1 2027 1907.1 2025.2 C
+1907.1 2027 1907.1 2028.8 1907.1 2030.7 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1932 2023.2 m
+1932.2 2023.6 1931.7 2023.7 1931.6 2024 C
+1932 2023.7 1932.3 2022.8 1933 2023 C
+1933.9 2024.3 1933.3 2026.2 1933.5 2027.8 C
+1933.5 2026.4 1934.9 2022.2 1932 2023.2 C
+f 
+S 
+n
+2026.1 2021.6 m
+2026.1 2020.8 2026.1 2019.9 2026.1 2019.2 C
+2026.1 2019.9 2026.1 2020.8 2026.1 2021.6 C
+f 
+S 
+n
+vmrs
+1934.2 2018.9 m
+1934.2 2015.5 1934.2 2011 1934.2 2008.6 C
+1934.5 2012.1 1933.7 2014.9 1934 2018.7 C
+1933.4 2019.5 1933.5 2018.7 1934.2 2018.9 C
+[0.65 0.65 0 0.42]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1887.6 2014.8 m
+1887.6 2009 1887.6 2003.1 1887.6 1997.3 C
+1887.6 2003.1 1887.6 2009 1887.6 2014.8 C
+f 
+S 
+n
+1914.3 2002.8 m
+1914.3 1997 1914.3 1991.1 1914.3 1985.3 C
+1914.3 1991.1 1914.3 1997 1914.3 2002.8 C
+f 
+S 
+n
+1995.4 1992.3 m
+1995.4 1991.5 1995.4 1990.7 1995.4 1989.9 C
+1995.4 1990.7 1995.4 1991.5 1995.4 1992.3 C
+f 
+S 
+n
+1896 1988.4 m
+1896.9 1988 1897.8 1987.7 1898.7 1987.2 C
+1897.8 1987.7 1896.9 1988 1896 1988.4 C
+f 
+S 
+n
+1899.4 1986.8 m
+1900.4 1986.3 1901.3 1985.8 1902.3 1985.3 C
+1901.3 1985.8 1900.4 1986.3 1899.4 1986.8 C
+f 
+S 
+n
+1902.8 1985.1 m
+1905.2 1984 1905.2 1984 1902.8 1985.1 C
+f 
+S 
+n
+1949.1 1983.4 m
+1950.2 1984.4 1947.8 1984.6 1949.3 1985.1 C
+1949.5 1984.4 1949.6 1984.1 1949.1 1983.4 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1906.1 1983.4 m
+1908.6 1982 1908.6 1982 1906.1 1983.4 C
+[0.65 0.65 0 0.42]  vc
+f 
+S 
+n
+1922.7 1976.4 m
+1923.6 1976 1924.4 1975.7 1925.3 1975.2 C
+1924.4 1975.7 1923.6 1976 1922.7 1976.4 C
+f 
+S 
+n
+vmrs
+1926 1974.8 m
+1927 1974.3 1928 1973.8 1928.9 1973.3 C
+1928 1973.8 1927 1974.3 1926 1974.8 C
+[0.65 0.65 0 0.42]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1929.4 1973.1 m
+1931.9 1972 1931.9 1972 1929.4 1973.1 C
+f 
+S 
+n
+1932.8 1971.4 m
+1935.3 1970 1935.3 1970 1932.8 1971.4 C
+f 
+S 
+n
+1949.6 2097.2 m
+1951.1 2096.4 1952.6 2095.5 1954.1 2094.8 C
+1952.6 2095.5 1951.1 2096.4 1949.6 2097.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1955.1 2094.3 m
+1956.7 2093.5 1958.3 2092.7 1959.9 2091.9 C
+1958.3 2092.7 1956.7 2093.5 1955.1 2094.3 C
+f 
+S 
+n
+1960.4 2091.6 m
+1961.3 2091.2 1962.1 2090.9 1963 2090.4 C
+1962.1 2090.9 1961.3 2091.2 1960.4 2091.6 C
+f 
+S 
+n
+1963.5 2090.2 m
+1964.4 2089.7 1965.2 2089.2 1966.1 2088.8 C
+1965.2 2089.2 1964.4 2089.7 1963.5 2090.2 C
+f 
+S 
+n
+1966.6 2088.5 m
+1969.5 2087.1 1972.4 2085.8 1975.2 2084.4 C
+1972.4 2085.8 1969.5 2087.1 1966.6 2088.5 C
+f 
+S 
+n
+1965.2 2086.1 m
+1965.9 2085.7 1966.8 2085.3 1967.6 2084.9 C
+1966.8 2085.3 1965.9 2085.7 1965.2 2086.1 C
+f 
+S 
+n
+1968.3 2084.7 m
+1969.2 2084.3 1970 2083.9 1970.9 2083.5 C
+1970 2083.9 1969.2 2084.3 1968.3 2084.7 C
+f 
+S 
+n
+vmrs
+1984.1 2084 m
+1985.6 2083.2 1987.2 2082.3 1988.7 2081.6 C
+1987.2 2082.3 1985.6 2083.2 1984.1 2084 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1976 2078.7 m
+1978.1 2080.1 1980 2082 1982 2083.7 C
+1980 2081.9 1977.9 2080.3 1976 2078.2 C
+1975.5 2079.9 1975.8 2081.9 1975.7 2083.7 C
+1975.8 2082 1975.5 2080.2 1976 2078.7 C
+f 
+S 
+n
+1989.6 2081.1 m
+1991.3 2080.3 1992.8 2079.5 1994.4 2078.7 C
+1992.8 2079.5 1991.3 2080.3 1989.6 2081.1 C
+f 
+S 
+n
+1933.2 2074.6 m
+1932.4 2076.2 1932.8 2077.5 1933 2078.7 C
+1933 2077.6 1932.9 2074.8 1933.2 2074.6 C
+f 
+S 
+n
+1994.9 2078.4 m
+1995.8 2078 1996.7 2077.7 1997.6 2077.2 C
+1996.7 2077.7 1995.8 2078 1994.9 2078.4 C
+f 
+S 
+n
+1998 2077 m
+1998.9 2076.5 1999.8 2076 2000.7 2075.6 C
+1999.8 2076 1998.9 2076.5 1998 2077 C
+f 
+S 
+n
+2001.2 2075.3 m
+2004 2073.9 2006.9 2072.6 2009.8 2071.2 C
+2006.9 2072.6 2004 2073.9 2001.2 2075.3 C
+f 
+S 
+n
+1980.5 2060.7 m
+1979.9 2060.7 1976.7 2062.8 1975.7 2064.5 C
+1975.7 2067.5 1975.7 2070.5 1975.7 2073.4 C
+1976.3 2068.7 1973.9 2061.6 1980.5 2060.7 C
+f 
+S 
+n
+1999.7 2072.9 m
+2000.5 2072.5 2001.3 2072.1 2002.1 2071.7 C
+2001.3 2072.1 2000.5 2072.5 1999.7 2072.9 C
+f 
+S 
+n
+2002.8 2071.5 m
+2003.7 2071.1 2004.6 2070.7 2005.5 2070.3 C
+2004.6 2070.7 2003.7 2071.1 2002.8 2071.5 C
+f 
+S 
+n
+vmrs
+2015.1 2047.5 m
+2014.4 2047.5 2011.2 2049.6 2010.3 2051.3 C
+2010.3 2057.7 2010.3 2064.1 2010.3 2070.5 C
+2010.3 2063.9 2010.1 2057.1 2010.5 2050.6 C
+2012 2049.3 2013.5 2048.3 2015.1 2047.5 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1910.4 2049.2 m
+1914.8 2054.3 1920.7 2058.9 1925.1 2064 C
+1920.4 2058.6 1915.1 2054.6 1910.4 2049.2 C
+f 
+S 
+n
+1988.2 2057.3 m
+1989.1 2056.8 1989.9 2056.2 1990.8 2055.6 C
+1989.9 2056.2 1989.1 2056.8 1988.2 2057.3 C
+f 
+S 
+n
+1991.6 2051.3 m
+1991.6 2046.3 1991.6 2041.2 1991.6 2036.2 C
+1991.6 2041.2 1991.6 2046.3 1991.6 2051.3 C
+f 
+S 
+n
+1935.6 2047.5 m
+1932.9 2051.7 1939.7 2043.8 1935.6 2047.5 C
+f 
+S 
+n
+1938.8 2043.9 m
+1938.1 2043.3 1938.2 2043.7 1937.3 2043.4 C
+1938.7 2043 1938.2 2044.9 1939 2045.3 C
+1938.2 2045.3 1938.7 2046.6 1937.8 2046.5 C
+1939.1 2046.2 1939.1 2044.5 1938.8 2043.9 C
+f 
+S 
+n
+1972.4 2045.6 m
+1973.4 2045 1974.5 2044.4 1975.5 2043.9 C
+1974.5 2044.4 1973.4 2045 1972.4 2045.6 C
+f 
+S 
+n
+1969 2043.6 m
+1969.8 2043.2 1970.6 2042.9 1971.4 2042.4 C
+1970.6 2042.9 1969.8 2043.2 1969 2043.6 C
+f 
+S 
+n
+1972.1 2042.2 m
+1973 2041.8 1973.9 2041.4 1974.8 2041 C
+1973.9 2041.4 1973 2041.8 1972.1 2042.2 C
+f 
+S 
+n
+1906.6 2035 m
+1905 2034.7 1904.8 2036.6 1903.5 2036.9 C
+1904.9 2037 1905.8 2033.4 1907.1 2035.7 C
+1907.1 2037.2 1907.1 2038.6 1907.1 2040 C
+1906.9 2038.4 1907.5 2036.4 1906.6 2035 C
+f 
+S 
+n
+vmrs
+1937.1 2032.1 m
+1936.2 2033.7 1936.6 2035 1936.8 2036.2 C
+1936.8 2035.1 1936.8 2032.4 1937.1 2032.1 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1887.6 2018.7 m
+1892 2023.8 1897.9 2028.4 1902.3 2033.6 C
+1897.6 2028.1 1892.3 2024.1 1887.6 2018.7 C
+f 
+S 
+n
+1999.7 2031.4 m
+1998.7 2030.3 1997.6 2029.2 1996.6 2028 C
+1997.6 2029.2 1998.7 2030.3 1999.7 2031.4 C
+f 
+S 
+n
+1912.8 2017 m
+1910.6 2021.1 1913.6 2015.3 1914.5 2016 C
+1914 2016.3 1913.4 2016.7 1912.8 2017 C
+f 
+S 
+n
+1939.5 2005 m
+1936.7 2009.2 1943.6 2001.3 1939.5 2005 C
+f 
+S 
+n
+1942.6 2001.4 m
+1941.9 2000.8 1942 2001.2 1941.2 2000.9 C
+1942.5 2000.6 1942.1 2002.4 1942.8 2002.8 C
+1942 2002.8 1942.5 2004.1 1941.6 2004 C
+1943 2003.7 1942.9 2002.1 1942.6 2001.4 C
+f 
+S 
+n
+2006.2 2000.7 m
+2005.4 2001.5 2004 2002.8 2004 2002.8 C
+2004.5 2002.4 2005.5 2001.4 2006.2 2000.7 C
+f 
+S 
+n
+1998.5 2001.6 m
+1997.7 2002 1996.8 2002.4 1995.9 2002.6 C
+1995.5 1999.3 1995.7 1995.7 1995.6 1992.3 C
+1995.6 1995.7 1995.6 1999.2 1995.6 2002.6 C
+1996.6 2002.4 1997.7 2002.2 1998.5 2001.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1996.1 2002.8 m
+1995.9 2002.8 1995.8 2002.8 1995.6 2002.8 C
+1995.2 1999.5 1995.5 1995.9 1995.4 1992.5 C
+1995.4 1995.9 1995.4 1999.4 1995.4 2002.8 C
+1996.4 2003.1 1998.2 2001.6 1996.1 2002.8 C
+[0.07 0.06 0 0.58]  vc
+f 
+S 
+n
+1969 2002.1 m
+1968 2001 1966.9 1999.9 1965.9 1998.8 C
+1966.9 1999.9 1968 2001 1969 2002.1 C
+f 
+S 
+n
+vmrs
+2000 2001.2 m
+2002.1 2000 2004.1 1998.9 2006.2 1997.8 C
+2004.1 1998.9 2002.1 2000 2000 2001.2 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1895.8 1984.8 m
+1898.3 1983.6 1900.8 1982.3 1903.2 1981 C
+1900.8 1982.3 1898.3 1983.6 1895.8 1984.8 C
+f 
+S 
+n
+1905.2 1980.3 m
+1906.4 1979.9 1907.6 1979.5 1908.8 1979.1 C
+1907.6 1979.5 1906.4 1979.9 1905.2 1980.3 C
+f 
+S 
+n
+1964.7 1977.4 m
+1963.8 1977.5 1962.5 1980.2 1960.8 1980 C
+1962.5 1980.2 1963.3 1978 1964.7 1977.4 C
+f 
+S 
+n
+1952 1979.6 m
+1955.2 1979.2 1955.2 1979.2 1952 1979.6 C
+f 
+S 
+n
+1937.8 1966.4 m
+1941.2 1969.5 1946.1 1976.4 1951.5 1979.3 C
+1946.1 1976.7 1942.8 1970.4 1937.8 1966.4 C
+f 
+S 
+n
+1911.9 1978.6 m
+1914.3 1977.4 1916.7 1976.2 1919.1 1975 C
+1916.7 1976.2 1914.3 1977.4 1911.9 1978.6 C
+f 
+S 
+n
+1975.5 1971.4 m
+1974.6 1972.2 1973.3 1973.6 1973.3 1973.6 C
+1973.7 1973.1 1974.8 1972.1 1975.5 1971.4 C
+f 
+S 
+n
+1922.4 1972.8 m
+1924.9 1971.6 1927.4 1970.3 1929.9 1969 C
+1927.4 1970.3 1924.9 1971.6 1922.4 1972.8 C
+f 
+S 
+n
+1969.2 1971.9 m
+1971.1 1970.9 1972.9 1969.8 1974.8 1968.8 C
+1972.9 1969.8 1971.1 1970.9 1969.2 1971.9 C
+f 
+S 
+n
+vmrs
+1931.8 1968.3 m
+1933 1967.9 1934.2 1967.5 1935.4 1967.1 C
+1934.2 1967.5 1933 1967.9 1931.8 1968.3 C
+[0.07 0.06 0 0.58]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1940.7 2072.4 m
+1941.5 2072.4 1942.3 2072.3 1943.1 2072.2 C
+1942.3 2072.3 1941.5 2072.4 1940.7 2072.4 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1948.6 2069.3 m
+1947 2069.5 1945.7 2068.9 1944.8 2069.8 C
+1945.9 2068.5 1948.4 2070.2 1948.6 2069.3 C
+f 
+S 
+n
+1954.6 2066.4 m
+1954.7 2067.9 1955.6 2067.3 1955.6 2068.8 C
+1955.4 2067.8 1956 2066.6 1954.6 2066.4 C
+f 
+S 
+n
+1929.2 2061.2 m
+1927.8 2062.1 1926.3 2064.1 1924.8 2063.3 C
+1926.3 2064.6 1928 2062 1929.2 2061.2 C
+f 
+S 
+n
+1924.4 2067.4 m
+1918.5 2061.6 1912.7 2055.9 1906.8 2050.1 C
+1912.7 2055.9 1918.5 2061.6 1924.4 2067.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1924.6 2062.8 m
+1923.9 2062.1 1923.2 2061.2 1922.4 2060.4 C
+1923.2 2061.2 1923.9 2062.1 1924.6 2062.8 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1919.3 2057.3 m
+1917.5 2055.6 1915.7 2053.8 1913.8 2052 C
+1915.7 2053.8 1917.5 2055.6 1919.3 2057.3 C
+f 
+S 
+n
+1929.2 2055.2 m
+1929.2 2054.2 1929.2 2053.2 1929.2 2052.3 C
+1929.2 2053.2 1929.2 2054.2 1929.2 2055.2 C
+f 
+S 
+n
+1926.3 2049.6 m
+1925.4 2049 1925.4 2050.5 1924.4 2050.4 C
+1925.3 2051.3 1924.5 2051.9 1925.6 2052.5 C
+1926.9 2052.6 1926 2050.6 1926.3 2049.6 C
+f 
+S 
+n
+vmrs
+1911.2 2046.8 m
+1910.1 2048.9 1911.9 2050.1 1913.1 2051.3 C
+1912.1 2049.9 1910.6 2048.8 1911.2 2046.8 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934 2048.7 m
+1932.6 2048.7 1930.1 2047.7 1929.6 2049.4 C
+1930.9 2048.6 1933.3 2049 1934 2048.7 C
+f 
+S 
+n
+1980 2048.4 m
+1979.5 2046.8 1976.3 2047.9 1977.2 2045.6 C
+1976.8 2045.1 1976.1 2044.7 1975.2 2044.8 C
+1973.7 2046 1976.3 2046.4 1976.7 2047.5 C
+1977.8 2047.2 1978.2 2050 1979.6 2049.2 C
+1980 2049 1979.6 2048.6 1980 2048.4 C
+f 
+S 
+n
+1938.3 2045.6 m
+1938.2 2044.4 1936.8 2043.8 1935.9 2043.4 C
+1936.4 2044.4 1939.1 2044.3 1937.6 2045.8 C
+1937 2046.1 1935.9 2046.1 1935.9 2046.8 C
+1936.7 2046.3 1937.8 2046.2 1938.3 2045.6 C
+f 
+S 
+n
+1932.5 2040 m
+1932.8 2038.1 1932 2038.9 1932.3 2040.3 C
+1933.1 2040.3 1932.7 2041.7 1933.7 2041.5 C
+1933.1 2041 1932.9 2040.5 1932.5 2040 C
+f 
+S 
+n
+2014.6 2035.2 m
+2014.1 2033.6 2010.9 2034.7 2011.7 2032.4 C
+2011.3 2031.9 2009.4 2030.7 2009.3 2032.1 C
+2009.5 2033.7 2012.9 2033.8 2012.4 2035.7 C
+2013 2036.4 2014.2 2036.5 2014.6 2035.2 C
+f 
+S 
+n
+1906.4 2030.7 m
+1905 2031.6 1903.5 2033.6 1902 2032.8 C
+1903.4 2034 1905.6 2031.4 1906.4 2030.7 C
+f 
+S 
+n
+1901.8 2037.2 m
+1899.5 2034.8 1897.2 2032.5 1894.8 2030.2 C
+1897.2 2032.5 1899.5 2034.8 1901.8 2037.2 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1901.8 2032.4 m
+1901.1 2031.6 1900.4 2030.7 1899.6 2030 C
+1900.4 2030.7 1901.1 2031.6 1901.8 2032.4 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1944.5 2030 m
+1945.3 2029.9 1946.1 2029.8 1946.9 2029.7 C
+1946.1 2029.8 1945.3 2029.9 1944.5 2030 C
+f 
+S 
+n
+vmrs
+1997.8 2027.8 m
+1997.7 2027.9 1997.6 2028.1 1997.3 2028 C
+1997.4 2029.1 1998.5 2029.5 1999.2 2030 C
+2000.1 2029.5 1998.9 2028 1997.8 2027.8 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1906.4 2029.2 m
+1906.4 2026.6 1906.4 2024 1906.4 2021.3 C
+1906.4 2024 1906.4 2026.6 1906.4 2029.2 C
+f 
+S 
+n
+2006.2 2025.9 m
+2006 2025.9 2005.8 2025.8 2005.7 2025.6 C
+2005.7 2025.5 2005.7 2025.3 2005.7 2025.2 C
+2004.6 2025.8 2002.7 2024.7 2001.9 2026.1 C
+2001.9 2027.9 2007.8 2029.2 2006.2 2025.9 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1952.4 2026.8 m
+1950.9 2027 1949.6 2026.4 1948.6 2027.3 C
+1949.7 2026.1 1952.2 2027.7 1952.4 2026.8 C
+[0 0 0 0.18]  vc
+f 
+S 
+n
+1896.5 2026.8 m
+1894.7 2025.1 1892.9 2023.3 1891 2021.6 C
+1892.9 2023.3 1894.7 2025.1 1896.5 2026.8 C
+f 
+S 
+n
+1958.4 2024 m
+1958.5 2025.5 1959.4 2024.8 1959.4 2026.4 C
+1959.3 2025.3 1959.8 2024.1 1958.4 2024 C
+f 
+S 
+n
+1903.5 2019.2 m
+1902.6 2018.6 1902.6 2020 1901.6 2019.9 C
+1902.5 2020.8 1901.7 2021.4 1902.8 2022 C
+1904.1 2022.2 1903.2 2020.1 1903.5 2019.2 C
+f 
+S 
+n
+1933 2018.7 m
+1931.7 2019.6 1930.1 2021.6 1928.7 2020.8 C
+1930.1 2022.1 1931.8 2019.5 1933 2018.7 C
+f 
+S 
+n
+1888.4 2016.3 m
+1887.3 2018.4 1889.1 2019.6 1890.3 2020.8 C
+1889.3 2019.5 1887.8 2018.3 1888.4 2016.3 C
+f 
+S 
+n
+1928.4 2020.4 m
+1927.7 2019.6 1927 2018.7 1926.3 2018 C
+1927 2018.7 1927.7 2019.6 1928.4 2020.4 C
+f 
+S 
+n
+vmrs
+1911.2 2018.2 m
+1909.8 2018.3 1907.3 2017.2 1906.8 2018.9 C
+1908.1 2018.1 1910.5 2018.6 1911.2 2018.2 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1915.5 2015.1 m
+1915.4 2013.9 1914 2013.3 1913.1 2012.9 C
+1913.6 2013.9 1916.3 2013.8 1914.8 2015.3 C
+1914.2 2015.6 1913.1 2015.6 1913.1 2016.3 C
+1913.9 2015.9 1915 2015.7 1915.5 2015.1 C
+f 
+S 
+n
+1923.2 2014.8 m
+1921.3 2013.1 1919.5 2011.3 1917.6 2009.6 C
+1919.5 2011.3 1921.3 2013.1 1923.2 2014.8 C
+f 
+S 
+n
+1933 2012.7 m
+1933 2011.7 1933 2010.8 1933 2009.8 C
+1933 2010.8 1933 2011.7 1933 2012.7 C
+f 
+S 
+n
+1909.7 2008.1 m
+1908.9 2009.2 1910.1 2009.9 1910.4 2011 C
+1911.1 2010.7 1908.9 2009.7 1909.7 2008.1 C
+f 
+S 
+n
+1930.1 2007.2 m
+1929.2 2006.6 1929.2 2008 1928.2 2007.9 C
+1929.1 2008.8 1928.4 2009.4 1929.4 2010 C
+1930.7 2010.2 1929.9 2008.1 1930.1 2007.2 C
+f 
+S 
+n
+1915 2004.3 m
+1914 2006.4 1915.7 2007.6 1916.9 2008.8 C
+1915.9 2007.5 1914.4 2006.3 1915 2004.3 C
+f 
+S 
+n
+1937.8 2006.2 m
+1936.4 2006.3 1934 2005.2 1933.5 2006.9 C
+1934.7 2006.1 1937.1 2006.6 1937.8 2006.2 C
+f 
+S 
+n
+1983.9 2006 m
+1983.3 2004.3 1980.2 2005.4 1981 2003.1 C
+1980.6 2002.7 1978.7 2001.5 1978.6 2002.8 C
+1978.8 2004.4 1982.1 2004.5 1981.7 2006.4 C
+1982.3 2007.2 1983.5 2007.2 1983.9 2006 C
+f 
+S 
+n
+1942.1 2003.1 m
+1942 2001.9 1940.6 2001.3 1939.7 2000.9 C
+1940.2 2001.9 1943 2001.8 1941.4 2003.3 C
+1940.9 2003.6 1939.7 2003.6 1939.7 2004.3 C
+1940.5 2003.9 1941.6 2003.7 1942.1 2003.1 C
+f 
+S 
+n
+vmrs
+1967.1 1998.5 m
+1967 1998.6 1966.8 1998.8 1966.6 1998.8 C
+1966.7 1999.8 1967.8 2000.2 1968.5 2000.7 C
+1969.4 2000.2 1968.2 1998.8 1967.1 1998.5 C
+[0 0 0 0.18]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1936.4 1997.6 m
+1936.7 1995.6 1935.8 1996.4 1936.1 1997.8 C
+1936.9 1997.9 1936.5 1999.2 1937.6 1999 C
+1937 1998.5 1936.8 1998 1936.4 1997.6 C
+f 
+S 
+n
+1975.5 1996.6 m
+1975.2 1996.7 1975.1 1996.5 1975 1996.4 C
+1975 1996.2 1975 1996.1 1975 1995.9 C
+1973.9 1996.5 1972 1995.5 1971.2 1996.8 C
+1971.2 1998.6 1977 1999.9 1975.5 1996.6 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1949.3 2097.4 m
+1950.3 2096.9 1951.2 2096.4 1952.2 2096 C
+1951.2 2096.4 1950.3 2096.9 1949.3 2097.4 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1960.8 2091.6 m
+1961.7 2091.2 1962.6 2090.9 1963.5 2090.4 C
+1962.6 2090.9 1961.7 2091.2 1960.8 2091.6 C
+f 
+S 
+n
+1964.4 2090 m
+1965.7 2089.2 1967 2088.5 1968.3 2087.8 C
+1967 2088.5 1965.7 2089.2 1964.4 2090 C
+f 
+S 
+n
+1976 2083.7 m
+1976.3 2082.3 1975.2 2079.1 1976.9 2079.4 C
+1978.8 2080.7 1980.3 2082.9 1982.2 2084.2 C
+1980.6 2083.1 1978.2 2080.2 1976 2078.9 C
+1975.6 2081.2 1977 2084.9 1973.8 2085.4 C
+1972.2 2086.1 1970.7 2087 1969 2087.6 C
+1971.4 2086.5 1974.1 2085.6 1976 2083.7 C
+f 
+S 
+n
+1983.9 2084.2 m
+1984.8 2083.7 1985.8 2083.2 1986.8 2082.8 C
+1985.8 2083.2 1984.8 2083.7 1983.9 2084.2 C
+f 
+S 
+n
+1995.4 2078.4 m
+1996.3 2078 1997.1 2077.7 1998 2077.2 C
+1997.1 2077.7 1996.3 2078 1995.4 2078.4 C
+f 
+S 
+n
+1999 2076.8 m
+2000.3 2076 2001.6 2075.3 2002.8 2074.6 C
+2001.6 2075.3 2000.3 2076 1999 2076.8 C
+f 
+S 
+n
+vmrs
+1929.6 2065.7 m
+1930.1 2065.6 1929.8 2068.6 1929.9 2070 C
+1929.8 2068.6 1930.1 2067 1929.6 2065.7 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1906.6 2049.4 m
+1906.6 2046.7 1906.6 2043.9 1906.6 2041.2 C
+1906.6 2043.9 1906.6 2046.7 1906.6 2049.4 C
+f 
+S 
+n
+2016 2047.5 m
+2014.8 2048 2013.5 2048.3 2012.4 2049.4 C
+2013.5 2048.3 2014.8 2048 2016 2047.5 C
+f 
+S 
+n
+2016.5 2047.2 m
+2017.3 2046.9 2018.1 2046.6 2018.9 2046.3 C
+2018.1 2046.6 2017.3 2046.9 2016.5 2047.2 C
+f 
+S 
+n
+1912.4 2028.5 m
+1911.8 2032.4 1912.4 2037.2 1911.9 2041.2 C
+1911.5 2037.2 1911.7 2032.9 1911.6 2028.8 C
+1911.6 2033.5 1911.6 2038.9 1911.6 2042.9 C
+1912.5 2042.2 1911.6 2043.9 1912.6 2043.6 C
+1912.9 2039.3 1913.1 2033.3 1912.4 2028.5 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1906.8 2040.8 m
+1906.8 2039 1906.8 2037.2 1906.8 2035.5 C
+1906.8 2037.2 1906.8 2039 1906.8 2040.8 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1905.9 2035.2 m
+1904.9 2036.4 1903.7 2037.2 1902.3 2037.4 C
+1903.7 2037.2 1904.9 2036.4 1905.9 2035.2 C
+f 
+S 
+n
+1906.1 2031.2 m
+1907 2031.1 1906.4 2028 1906.6 2030.7 C
+1905.5 2032.1 1904 2032.8 1902.5 2033.6 C
+1903.9 2033.2 1905 2032.1 1906.1 2031.2 C
+f 
+S 
+n
+1908.3 2018.7 m
+1905.2 2018.6 1907.1 2023.2 1906.6 2025.4 C
+1906.8 2023 1905.9 2019.5 1908.3 2018.7 C
+f 
+S 
+n
+1889.6 1998 m
+1889 2001.9 1889.6 2006.7 1889.1 2010.8 C
+1888.7 2006.7 1888.9 2002.4 1888.8 1998.3 C
+1888.8 2003 1888.8 2008.4 1888.8 2012.4 C
+1889.7 2011.7 1888.8 2013.4 1889.8 2013.2 C
+1890.1 2008.8 1890.3 2002.8 1889.6 1998 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+vmrs
+1999 2001.4 m
+2001 2000.3 2003 1999.2 2005 1998 C
+2003 1999.2 2001 2000.3 1999 2001.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1916.2 1986 m
+1915.7 1989.9 1916.3 1994.7 1915.7 1998.8 C
+1915.3 1994.7 1915.5 1990.4 1915.5 1986.3 C
+1915.5 1991 1915.5 1996.4 1915.5 2000.4 C
+1916.3 1999.7 1915.5 2001.4 1916.4 2001.2 C
+1916.7 1996.8 1917 1990.8 1916.2 1986 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1886.9 1989.6 m
+1887.8 1989.2 1888.7 1988.9 1889.6 1988.4 C
+1888.7 1988.9 1887.8 1989.2 1886.9 1989.6 C
+[0.4 0.4 0 0]  vc
+f 
+S 
+n
+1892.4 1986.8 m
+1895.1 1985.1 1897.9 1983.6 1900.6 1982 C
+1897.9 1983.6 1895.1 1985.1 1892.4 1986.8 C
+f 
+S 
+n
+1907.3 1979.3 m
+1908.5 1978.9 1909.7 1978.5 1910.9 1978.1 C
+1909.7 1978.5 1908.5 1978.9 1907.3 1979.3 C
+f 
+S 
+n
+1938.5 1966.6 m
+1942.6 1970.1 1945.9 1976.4 1951.7 1979.1 C
+1946.2 1976.1 1943.1 1970.9 1938.5 1966.6 C
+f 
+S 
+n
+1955.1 1978.6 m
+1955.9 1978.2 1956.7 1977.8 1957.5 1977.4 C
+1956.7 1977.8 1955.9 1978.2 1955.1 1978.6 C
+f 
+S 
+n
+1913.6 1977.6 m
+1914.5 1977.2 1915.3 1976.9 1916.2 1976.4 C
+1915.3 1976.9 1914.5 1977.2 1913.6 1977.6 C
+f 
+S 
+n
+1919.1 1974.8 m
+1921.8 1973.1 1924.5 1971.6 1927.2 1970 C
+1924.5 1971.6 1921.8 1973.1 1919.1 1974.8 C
+f 
+S 
+n
+1963.5 1974.5 m
+1964.5 1974 1965.6 1973.4 1966.6 1972.8 C
+1965.6 1973.4 1964.5 1974 1963.5 1974.5 C
+f 
+S 
+n
+vmrs
+1967.8 1972.4 m
+1970 1971.2 1972.1 1970 1974.3 1968.8 C
+1972.1 1970 1970 1971.2 1967.8 1972.4 C
+[0.4 0.4 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1934 1967.3 m
+1935.2 1966.9 1936.4 1966.5 1937.6 1966.1 C
+1936.4 1966.5 1935.2 1966.9 1934 1967.3 C
+f 
+S 
+n
+1928.9 2061.2 m
+1928.9 2059.2 1928.9 2057.3 1928.9 2055.4 C
+1928.9 2057.3 1928.9 2059.2 1928.9 2061.2 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1917.2 2047 m
+1917.8 2046.5 1919.6 2046.8 1920 2047.2 C
+1920 2046.5 1920.9 2046.8 1921 2046.3 C
+1921.9 2047.3 1921.3 2044.1 1921.5 2044.1 C
+1919.7 2044.8 1915.7 2043.5 1916.2 2046 C
+1916.2 2048.3 1917 2045.9 1917.2 2047 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1922 2044.1 m
+1923.5 2043.2 1927 2045.4 1927.5 2042.9 C
+1927.1 2042.6 1927.3 2040.9 1927.2 2041.5 C
+1924.9 2042.3 1920.9 2040.6 1922 2044.1 C
+f 
+S 
+n
+1934.9 2043.9 m
+1935.2 2043.4 1934.4 2042.7 1934 2042.2 C
+1933.2 2041.8 1932.4 2042.8 1932.8 2043.2 C
+1932.9 2044 1934.3 2043.3 1934.9 2043.9 C
+f 
+S 
+n
+1906.1 2030.7 m
+1906.1 2028.8 1906.1 2027 1906.1 2025.2 C
+1906.1 2027 1906.1 2028.8 1906.1 2030.7 C
+[0.21 0.21 0 0]  vc
+f 
+S 
+n
+1932.8 2018.7 m
+1932.8 2016.8 1932.8 2014.8 1932.8 2012.9 C
+1932.8 2014.8 1932.8 2016.8 1932.8 2018.7 C
+f 
+S 
+n
+1894.4 2016.5 m
+1895 2016 1896.8 2016.3 1897.2 2016.8 C
+1897.2 2016 1898.1 2016.3 1898.2 2015.8 C
+1899.1 2016.8 1898.5 2013.6 1898.7 2013.6 C
+1896.9 2014.4 1892.9 2013 1893.4 2015.6 C
+1893.4 2017.8 1894.2 2015.4 1894.4 2016.5 C
+[0 0 0 0]  vc
+f 
+S 
+n
+1899.2 2013.6 m
+1900.7 2012.7 1904.2 2014.9 1904.7 2012.4 C
+1904.3 2012.1 1904.5 2010.5 1904.4 2011 C
+1902.1 2011.8 1898.1 2010.1 1899.2 2013.6 C
+f 
+S 
+n
+vmrs
+1912.1 2013.4 m
+1912.4 2012.9 1911.6 2012.3 1911.2 2011.7 C
+1910.4 2011.4 1909.6 2012.3 1910 2012.7 C
+1910.1 2013.5 1911.5 2012.9 1912.1 2013.4 C
+[0 0 0 0]  vc
+f 
+0.4 w
+2 J
+2 M
+S 
+n
+1921 2004.5 m
+1921.6 2004 1923.4 2004.3 1923.9 2004.8 C
+1923.8 2004 1924.8 2004.3 1924.8 2003.8 C
+1925.7 2004.8 1925.1 2001.6 1925.3 2001.6 C
+1923.6 2002.4 1919.6 2001 1920 2003.6 C
+1920 2005.8 1920.8 2003.4 1921 2004.5 C
+f 
+S 
+n
+1925.8 2001.6 m
+1927.3 2000.7 1930.8 2002.9 1931.3 2000.4 C
+1930.9 2000.1 1931.1 1998.5 1931.1 1999 C
+1928.7 1999.8 1924.8 1998.1 1925.8 2001.6 C
+f 
+S 
+n
+1938.8 2001.4 m
+1939 2000.9 1938.2 2000.3 1937.8 1999.7 C
+1937.1 1999.4 1936.2 2000.3 1936.6 2000.7 C
+1936.7 2001.5 1938.1 2000.9 1938.8 2001.4 C
+f 
+S 
+n
+1908.6691 2008.1348 m
+1897.82 2010.0477 L
+1894.1735 1989.3671 L
+1905.0226 1987.4542 L
+1908.6691 2008.1348 L
+n
+q
+_bfh
+%%IncludeResource: font Symbol
+_efh
+{
+f0 [19.696045 -3.4729 3.4729 19.696045 0 0] makesetfont
+1895.041763 1994.291153 m
+0 0 32 0 0 (l) ts
+}
+true