misc tuning and modernization
authorhaftmann
Fri, 14 Jun 2019 08:34:28 +0000
changeset 70349 697450fd25c1
parent 70348 bde161c740ca
child 70350 571ae57313a4
misc tuning and modernization
src/HOL/Library/Log_Nat.thy
--- a/src/HOL/Library/Log_Nat.thy	Fri Jun 14 08:34:28 2019 +0000
+++ b/src/HOL/Library/Log_Nat.thy	Fri Jun 14 08:34:28 2019 +0000
@@ -9,15 +9,37 @@
 imports Complex_Main
 begin
 
-definition floorlog :: "nat \<Rightarrow> nat \<Rightarrow> nat" where
-"floorlog b a = (if a > 0 \<and> b > 1 then nat \<lfloor>log b a\<rfloor> + 1 else 0)"
+subsection \<open>Preliminaries\<close>
+
+lemma divide_nat_diff_div_nat_less_one:
+  "real x / real b - real (x div b) < 1" for x b :: nat
+proof (cases "b = 0")
+  case True
+  then show ?thesis
+    by simp
+next
+  case False
+  then have "real (x div b) + real (x mod b) / real b - real (x div b) < 1"
+    by (simp add: field_simps)
+  then show ?thesis
+    by (simp add: real_of_nat_div_aux [symmetric])
+qed
+
+lemma powr_eq_one_iff [simp]:
+  "a powr x = 1 \<longleftrightarrow> x = 0" if "a > 1" for a x :: real
+  using that by (auto simp: powr_def split: if_splits)
+
+
+subsection \<open>Floorlog\<close>
+
+definition floorlog :: "nat \<Rightarrow> nat \<Rightarrow> nat"
+  where "floorlog b a = (if a > 0 \<and> b > 1 then nat \<lfloor>log b a\<rfloor> + 1 else 0)"
 
 lemma floorlog_mono: "x \<le> y \<Longrightarrow> floorlog b x \<le> floorlog b y"
-by(auto simp: floorlog_def floor_mono nat_mono)
+  by (auto simp: floorlog_def floor_mono nat_mono)
 
 lemma floorlog_bounds:
-  assumes "x > 0" "b > 1"
-  shows "b ^ (floorlog b x - 1) \<le> x \<and> x < b ^ (floorlog b x)"
+  "b ^ (floorlog b x - 1) \<le> x \<and> x < b ^ (floorlog b x)" if "x > 0" "b > 1"
 proof
   show "b ^ (floorlog b x - 1) \<le> x"
   proof -
@@ -35,9 +57,9 @@
   proof -
     have "x \<le> b powr (log b x)" using \<open>x > 0\<close> \<open>b > 1\<close> by simp
     also have "\<dots> < b powr (\<lfloor>log b x\<rfloor> + 1)"
-      using assms by (intro powr_less_mono) auto
+      using that by (intro powr_less_mono) auto
     also have "\<dots> = b ^ nat (\<lfloor>log b (real_of_int x)\<rfloor> + 1)"
-      using assms by (simp flip: powr_realpow)
+      using that by (simp flip: powr_realpow)
     finally
     have "x < b ^ nat (\<lfloor>log b (int x)\<rfloor> + 1)"
       by (rule of_nat_less_imp_less)
@@ -46,124 +68,110 @@
   qed
 qed
 
-lemma floorlog_power[simp]:
-  assumes "a > 0" "b > 1"
-  shows "floorlog b (a * b ^ c) = floorlog b a + c"
+lemma floorlog_power [simp]:
+  "floorlog b (a * b ^ c) = floorlog b a + c" if "a > 0" "b > 1"
 proof -
   have "\<lfloor>log b a + real c\<rfloor> = \<lfloor>log b a\<rfloor> + c" by arith
-  then show ?thesis using assms
+  then show ?thesis using that
     by (auto simp: floorlog_def log_mult powr_realpow[symmetric] nat_add_distrib)
 qed
 
 lemma floor_log_add_eqI:
-  fixes a::nat and b::nat and r::real
-  assumes "b > 1" "a \<ge> 1" "0 \<le> r" "r < 1"
-  shows "\<lfloor>log b (a + r)\<rfloor> = \<lfloor>log b a\<rfloor>"
+  "\<lfloor>log b (a + r)\<rfloor> = \<lfloor>log b a\<rfloor>" if "b > 1" "a \<ge> 1" "0 \<le> r" "r < 1"
+    for a b :: nat and r :: real
 proof (rule floor_eq2)
-  have "log b a \<le> log b (a + r)" using assms by force
+  have "log b a \<le> log b (a + r)" using that by force
   then show "\<lfloor>log b a\<rfloor> \<le> log b (a + r)" by arith
 next
   define l::int where "l = int b ^ (nat \<lfloor>log b a\<rfloor> + 1)"
   have l_def_real: "l = b powr (\<lfloor>log b a\<rfloor> + 1)"
-    using assms by (simp add: l_def powr_add powr_real_of_int)
+    using that by (simp add: l_def powr_add powr_real_of_int)
   have "a < l"
   proof -
-    have "a = b powr (log b a)" using assms by simp
+    have "a = b powr (log b a)" using that by simp
     also have "\<dots> < b powr floor ((log b a) + 1)"
-      using assms(1) by auto
+      using that(1) by auto
     also have "\<dots> = l"
-      using assms by (simp add: l_def powr_real_of_int powr_add)
+      using that by (simp add: l_def powr_real_of_int powr_add)
     finally show ?thesis by simp
   qed
-  then have "a + r < l" using assms by simp
-  then have "log b (a + r) < log b l" using assms by simp
+  then have "a + r < l" using that by simp
+  then have "log b (a + r) < log b l" using that by simp
   also have "\<dots> = real_of_int \<lfloor>log b a\<rfloor> + 1"
-    using assms by (simp add: l_def_real)
+    using that by (simp add: l_def_real)
   finally show "log b (a + r) < real_of_int \<lfloor>log b a\<rfloor> + 1" .
 qed
 
-lemma divide_nat_diff_div_nat_less_one:
-  fixes x b::nat shows "x / b - x div b < 1"
-proof -
-  have "int 0 \<noteq> \<lfloor>1::real\<rfloor>" by simp
-  thus ?thesis
-    by (metis add_diff_cancel_left' floor_divide_of_nat_eq less_eq_real_def
-        mod_div_trivial real_of_nat_div3 real_of_nat_div_aux)
-qed
-
 lemma floor_log_div:
-  fixes b x :: nat assumes "b > 1" "x > 0" "x div b > 0"
-  shows "\<lfloor>log b x\<rfloor> = \<lfloor>log b (x div b)\<rfloor> + 1"
+  "\<lfloor>log b x\<rfloor> = \<lfloor>log b (x div b)\<rfloor> + 1" if "b > 1" "x > 0" "x div b > 0"
+    for b x :: nat
 proof-
-  have "\<lfloor>log b x\<rfloor> = \<lfloor>log b (x / b * b)\<rfloor>" using assms by simp
+  have "\<lfloor>log b x\<rfloor> = \<lfloor>log b (x / b * b)\<rfloor>" using that by simp
   also have "\<dots> = \<lfloor>log b (x / b) + log b b\<rfloor>"
-    using assms by (subst log_mult) auto
-  also have "\<dots> = \<lfloor>log b (x / b)\<rfloor> + 1" using assms by simp
+    using that by (subst log_mult) auto
+  also have "\<dots> = \<lfloor>log b (x / b)\<rfloor> + 1" using that by simp
   also have "\<lfloor>log b (x / b)\<rfloor> = \<lfloor>log b (x div b + (x / b - x div b))\<rfloor>" by simp
   also have "\<dots> = \<lfloor>log b (x div b)\<rfloor>"
-    using assms real_of_nat_div4 divide_nat_diff_div_nat_less_one
+    using that real_of_nat_div4 divide_nat_diff_div_nat_less_one
     by (intro floor_log_add_eqI) auto
   finally show ?thesis .
 qed
 
-lemma compute_floorlog[code]:
+lemma compute_floorlog [code]:
   "floorlog b x = (if x > 0 \<and> b > 1 then floorlog b (x div b) + 1 else 0)"
-by (auto simp: floorlog_def floor_log_div[of b x] div_eq_0_iff nat_add_distrib
+  by (auto simp: floorlog_def floor_log_div[of b x] div_eq_0_iff nat_add_distrib
     intro!: floor_eq2)
 
 lemma floor_log_eq_if:
-  fixes b x y :: nat
-  assumes "x div b = y div b" "b > 1" "x > 0" "x div b \<ge> 1"
-  shows "floor(log b x) = floor(log b y)"
+  "\<lfloor>log b x\<rfloor> = \<lfloor>log b y\<rfloor>" if "x div b = y div b" "b > 1" "x > 0" "x div b \<ge> 1"
+    for b x y :: nat
 proof -
-  have "y > 0" using assms by(auto intro: ccontr)
-  thus ?thesis using assms by (simp add: floor_log_div)
+  have "y > 0" using that by (auto intro: ccontr)
+  thus ?thesis using that by (simp add: floor_log_div)
 qed
 
 lemma floorlog_eq_if:
-  fixes b x y :: nat
-  assumes "x div b = y div b" "b > 1" "x > 0" "x div b \<ge> 1"
-  shows "floorlog b x = floorlog b y"
+  "floorlog b x = floorlog b y" if "x div b = y div b" "b > 1" "x > 0" "x div b \<ge> 1"
+    for b x y :: nat
 proof -
-  have "y > 0" using assms by(auto intro: ccontr)
-  thus ?thesis using assms
-    by(auto simp add: floorlog_def eq_nat_nat_iff intro: floor_log_eq_if)
+  have "y > 0" using that by (auto intro: ccontr)
+  then show ?thesis using that
+    by (auto simp add: floorlog_def eq_nat_nat_iff intro: floor_log_eq_if)
 qed
 
-
-lemma powr_eq_one_iff[simp]: "a powr x = 1 \<longleftrightarrow> (x = 0)"
-  if "a > 1"
-  for a x::real
-  using that
-  by (auto simp: powr_def split: if_splits)
-
-lemma floorlog_leD: "floorlog b x \<le> w \<Longrightarrow> b > 1 \<Longrightarrow> x < b ^ w"
+lemma floorlog_leD:
+  "floorlog b x \<le> w \<Longrightarrow> b > 1 \<Longrightarrow> x < b ^ w"
   by (metis floorlog_bounds leD linorder_neqE_nat order.strict_trans power_strict_increasing_iff
       zero_less_one zero_less_power)
 
-lemma floorlog_leI: "x < b ^ w \<Longrightarrow> 0 \<le> w \<Longrightarrow> b > 1 \<Longrightarrow> floorlog b x \<le> w"
+lemma floorlog_leI:
+  "x < b ^ w \<Longrightarrow> 0 \<le> w \<Longrightarrow> b > 1 \<Longrightarrow> floorlog b x \<le> w"
   by (drule less_imp_of_nat_less[where 'a=real])
     (auto simp: floorlog_def Suc_le_eq nat_less_iff floor_less_iff log_of_power_less)
 
 lemma floorlog_eq_zero_iff:
-  "floorlog b x = 0 \<longleftrightarrow> (b \<le> 1 \<or> x \<le> 0)"
+  "floorlog b x = 0 \<longleftrightarrow> b \<le> 1 \<or> x \<le> 0"
   by (auto simp: floorlog_def)
 
-lemma floorlog_le_iff: "floorlog b x \<le> w \<longleftrightarrow> b \<le> 1 \<or> b > 1 \<and> 0 \<le> w \<and> x < b ^ w"
+lemma floorlog_le_iff:
+  "floorlog b x \<le> w \<longleftrightarrow> b \<le> 1 \<or> b > 1 \<and> 0 \<le> w \<and> x < b ^ w"
   using floorlog_leD[of b x w] floorlog_leI[of x b w]
   by (auto simp: floorlog_eq_zero_iff[THEN iffD2])
 
-lemma floorlog_ge_SucI: "Suc w \<le> floorlog b x" if "b ^ w \<le> x" "b > 1"
+lemma floorlog_ge_SucI:
+  "Suc w \<le> floorlog b x" if "b ^ w \<le> x" "b > 1"
   using that le_log_of_power[of b w x] power_not_zero
   by (force simp: floorlog_def Suc_le_eq powr_realpow not_less Suc_nat_eq_nat_zadd1
       zless_nat_eq_int_zless int_add_floor less_floor_iff
       simp del: floor_add2)
 
-lemma floorlog_geI: "w \<le> floorlog b x" if "b ^ (w - 1) \<le> x" "b > 1"
+lemma floorlog_geI:
+  "w \<le> floorlog b x" if "b ^ (w - 1) \<le> x" "b > 1"
   using floorlog_ge_SucI[of b "w - 1" x] that
   by auto
 
-lemma floorlog_geD: "b ^ (w - 1) \<le> x" if "w \<le> floorlog b x" "w > 0"
+lemma floorlog_geD:
+  "b ^ (w - 1) \<le> x" if "w \<le> floorlog b x" "w > 0"
 proof -
   have "b > 1" "0 < x"
     using that by (auto simp: floorlog_def split: if_splits)
@@ -195,45 +203,48 @@
 qed
 
 
-definition bitlen :: "int \<Rightarrow> int" where "bitlen a = floorlog 2 (nat a)"
+subsection \<open>Bitlen\<close>
+
+definition bitlen :: "int \<Rightarrow> int"
+  where "bitlen a = floorlog 2 (nat a)"
 
-lemma bitlen_alt_def: "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"
-by (simp add: bitlen_def floorlog_def)
+lemma bitlen_alt_def:
+  "bitlen a = (if a > 0 then \<lfloor>log 2 a\<rfloor> + 1 else 0)"
+  by (simp add: bitlen_def floorlog_def)
 
-lemma bitlen_zero[simp]: "bitlen 0 = 0"
+lemma bitlen_zero [simp]:
+  "bitlen 0 = 0"
   by (auto simp: bitlen_def floorlog_def)
 
-lemma bitlen_nonneg: "0 \<le> bitlen x"
+lemma bitlen_nonneg:
+  "0 \<le> bitlen x"
   by (simp add: bitlen_def)
 
 lemma bitlen_bounds:
-  assumes "x > 0"
-  shows "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)"
+  "2 ^ nat (bitlen x - 1) \<le> x \<and> x < 2 ^ nat (bitlen x)" if "x > 0"
 proof -
-  from assms have "bitlen x \<ge> 1" by (auto simp: bitlen_alt_def)
-  with assms floorlog_bounds[of "nat x" 2] show ?thesis
+  from that have "bitlen x \<ge> 1" by (auto simp: bitlen_alt_def)
+  with that floorlog_bounds[of "nat x" 2] show ?thesis
     by (auto simp add: bitlen_def le_nat_iff nat_less_iff nat_diff_distrib)
 qed
 
-lemma bitlen_pow2[simp]:
-  assumes "b > 0"
-  shows "bitlen (b * 2 ^ c) = bitlen b + c"
-  using assms
-  by (simp add: bitlen_def nat_mult_distrib nat_power_eq)
+lemma bitlen_pow2 [simp]:
+  "bitlen (b * 2 ^ c) = bitlen b + c" if "b > 0"
+  using that by (simp add: bitlen_def nat_mult_distrib nat_power_eq)
 
-lemma compute_bitlen[code]:
+lemma compute_bitlen [code]:
   "bitlen x = (if x > 0 then bitlen (x div 2) + 1 else 0)"
-by (simp add: bitlen_def nat_div_distrib compute_floorlog)
+  by (simp add: bitlen_def nat_div_distrib compute_floorlog)
 
-lemma bitlen_eq_zero_iff: "bitlen x = 0 \<longleftrightarrow> x \<le> 0"
-by (auto simp add: bitlen_alt_def)
+lemma bitlen_eq_zero_iff:
+  "bitlen x = 0 \<longleftrightarrow> x \<le> 0"
+  by (auto simp add: bitlen_alt_def)
    (metis compute_bitlen add.commute bitlen_alt_def bitlen_nonneg less_add_same_cancel2
       not_less zero_less_one)
 
 lemma bitlen_div:
-  assumes "0 < m"
-  shows "1 \<le> real_of_int m / 2^nat (bitlen m - 1)"
-    and "real_of_int m / 2^nat (bitlen m - 1) < 2"
+  "1 \<le> real_of_int m / 2^nat (bitlen m - 1)"
+    and "real_of_int m / 2^nat (bitlen m - 1) < 2" if "0 < m"
 proof -
   let ?B = "2^nat (bitlen m - 1)"
 
@@ -242,11 +253,10 @@
     unfolding of_int_le_iff[symmetric] by auto
   then show "1 \<le> real_of_int m / ?B" by auto
 
-  from assms have "m \<noteq> 0" by auto
-  from assms have "0 \<le> bitlen m - 1" by (auto simp: bitlen_alt_def)
+  from that have "0 \<le> bitlen m - 1" by (auto simp: bitlen_alt_def)
 
-  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF assms] ..
-  also from assms have "\<dots> = 2^nat(bitlen m - 1 + 1)"
+  have "m < 2^nat(bitlen m)" using bitlen_bounds[OF that] ..
+  also from that have "\<dots> = 2^nat(bitlen m - 1 + 1)"
     by (auto simp: bitlen_def)
   also have "\<dots> = ?B * 2"
     unfolding nat_add_distrib[OF \<open>0 \<le> bitlen m - 1\<close> zero_le_one] by auto
@@ -257,21 +267,26 @@
   then show "real_of_int m / ?B < 2" by auto
 qed
 
-lemma bitlen_le_iff_floorlog: "bitlen x \<le> w \<longleftrightarrow> w \<ge> 0 \<and> floorlog 2 (nat x) \<le> nat w"
+lemma bitlen_le_iff_floorlog:
+  "bitlen x \<le> w \<longleftrightarrow> w \<ge> 0 \<and> floorlog 2 (nat x) \<le> nat w"
   by (auto simp: bitlen_def)
 
-lemma bitlen_le_iff_power: "bitlen x \<le> w \<longleftrightarrow> w \<ge> 0 \<and> x < 2 ^ nat w"
+lemma bitlen_le_iff_power:
+  "bitlen x \<le> w \<longleftrightarrow> w \<ge> 0 \<and> x < 2 ^ nat w"
   by (auto simp: bitlen_le_iff_floorlog floorlog_le_iff)
 
-lemma less_power_nat_iff_bitlen: "x < 2 ^ w \<longleftrightarrow> bitlen (int x) \<le> w"
+lemma less_power_nat_iff_bitlen:
+  "x < 2 ^ w \<longleftrightarrow> bitlen (int x) \<le> w"
   using bitlen_le_iff_power[of x w]
   by auto
 
-lemma bitlen_ge_iff_power: "w \<le> bitlen x \<longleftrightarrow> w \<le> 0 \<or> 2 ^ (nat w - 1) \<le> x"
+lemma bitlen_ge_iff_power:
+  "w \<le> bitlen x \<longleftrightarrow> w \<le> 0 \<or> 2 ^ (nat w - 1) \<le> x"
   unfolding bitlen_def
   by (auto simp flip: nat_le_iff intro: floorlog_geI dest: floorlog_geD)
 
-lemma bitlen_twopow_add_eq: "bitlen (2 ^ w + b) = w + 1" if "0 \<le> b" "b < 2 ^ w"
+lemma bitlen_twopow_add_eq:
+  "bitlen (2 ^ w + b) = w + 1" if "0 \<le> b" "b < 2 ^ w"
   by (auto simp: that nat_add_distrib bitlen_le_iff_power bitlen_ge_iff_power intro!: antisym)
 
 end