fixed markup in Poly_Mapping; Free_Abelian_Groups (but not yet imported by Algebra!)
authorpaulson <lp15@cam.ac.uk>
Thu, 04 Apr 2019 16:38:45 +0100
changeset 70045 7b6add80e3a5
parent 70044 da5857dbcbb9
child 70059 06edf32c6057
child 70063 adaa0a6ea4fe
fixed markup in Poly_Mapping; Free_Abelian_Groups (but not yet imported by Algebra!)
src/HOL/Algebra/Free_Abelian_Groups.thy
src/HOL/Groups_Big.thy
src/HOL/Library/Poly_Mapping.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Algebra/Free_Abelian_Groups.thy	Thu Apr 04 16:38:45 2019 +0100
@@ -0,0 +1,758 @@
+section\<open>Free Abelian Groups\<close>
+
+theory Free_Abelian_Groups
+  imports
+    Product_Groups "HOL-Cardinals.Cardinal_Arithmetic"
+   "HOL-Library.Countable_Set" "HOL-Library.Poly_Mapping" "HOL-Library.Equipollence"
+
+begin
+
+(*Move? But where?*)
+lemma eqpoll_Fpow:
+  assumes "infinite A" shows "Fpow A \<approx> A"
+  unfolding eqpoll_iff_card_of_ordIso
+  by (metis assms card_of_Fpow_infinite)
+
+lemma infinite_iff_card_of_countable: "\<lbrakk>countable B; infinite B\<rbrakk> \<Longrightarrow> infinite A \<longleftrightarrow> ( |B| \<le>o |A| )"
+  unfolding infinite_iff_countable_subset card_of_ordLeq countable_def
+  by (force intro: card_of_ordLeqI ordLeq_transitive)
+
+lemma iso_imp_eqpoll_carrier: "G \<cong> H \<Longrightarrow> carrier G \<approx> carrier H"
+  by (auto simp: is_iso_def iso_def eqpoll_def)
+
+subsection\<open>Generalised finite product\<close>
+
+definition
+  gfinprod :: "[('b, 'm) monoid_scheme, 'a \<Rightarrow> 'b, 'a set] \<Rightarrow> 'b"
+  where "gfinprod G f A =
+   (if finite {x \<in> A. f x \<noteq> \<one>\<^bsub>G\<^esub>} then finprod G f {x \<in> A. f x \<noteq> \<one>\<^bsub>G\<^esub>} else \<one>\<^bsub>G\<^esub>)"
+
+context comm_monoid begin
+
+lemma gfinprod_closed [simp]:
+  "f \<in> A \<rightarrow> carrier G \<Longrightarrow> gfinprod G f A \<in> carrier G"
+  unfolding gfinprod_def
+  by (auto simp: image_subset_iff_funcset intro: finprod_closed)
+
+lemma gfinprod_cong:
+  "\<lbrakk>A = B; f \<in> B \<rightarrow> carrier G;
+    \<And>i. i \<in> B =simp=> f i = g i\<rbrakk> \<Longrightarrow> gfinprod G f A = gfinprod G g B"
+  unfolding gfinprod_def
+  by (auto simp: simp_implies_def cong: conj_cong intro: finprod_cong)
+
+lemma gfinprod_eq_finprod [simp]: "\<lbrakk>finite A; f \<in> A \<rightarrow> carrier G\<rbrakk> \<Longrightarrow> gfinprod G f A = finprod G f A"
+  by (auto simp: gfinprod_def intro: finprod_mono_neutral_cong_left)
+
+lemma gfinprod_insert [simp]:
+  assumes "finite {x \<in> A. f x \<noteq> \<one>\<^bsub>G\<^esub>}" "f \<in> A \<rightarrow> carrier G" "f i \<in> carrier G"
+  shows "gfinprod G f (insert i A) = (if i \<in> A then gfinprod G f A else f i \<otimes> gfinprod G f A)"
+proof -
+  have f: "f \<in> {x \<in> A. f x \<noteq> \<one>} \<rightarrow> carrier G"
+    using assms by (auto simp: image_subset_iff_funcset)
+  have "{x. x = i \<and> f x \<noteq> \<one> \<or> x \<in> A \<and> f x \<noteq> \<one>} = (if f i = \<one> then {x \<in> A. f x \<noteq> \<one>} else insert i {x \<in> A. f x \<noteq> \<one>})"
+    by auto
+  then show ?thesis
+    using assms
+    unfolding gfinprod_def by (simp add: conj_disj_distribR insert_absorb f split: if_split_asm)
+qed
+
+lemma gfinprod_distrib:
+  assumes fin: "finite {x \<in> A. f x \<noteq> \<one>\<^bsub>G\<^esub>}" "finite {x \<in> A. g x \<noteq> \<one>\<^bsub>G\<^esub>}"
+     and "f \<in> A \<rightarrow> carrier G" "g \<in> A \<rightarrow> carrier G"
+  shows "gfinprod G (\<lambda>i. f i \<otimes> g i) A = gfinprod G f A \<otimes> gfinprod G g A"
+proof -
+  have "finite {x \<in> A. f x \<otimes> g x \<noteq> \<one>}"
+    by (auto intro: finite_subset [OF _ finite_UnI [OF fin]])
+  then have "gfinprod G (\<lambda>i. f i \<otimes> g i) A = gfinprod G (\<lambda>i. f i \<otimes> g i) ({i \<in> A. f i \<noteq> \<one>\<^bsub>G\<^esub>} \<union> {i \<in> A. g i \<noteq> \<one>\<^bsub>G\<^esub>})"
+    unfolding gfinprod_def
+    using assms by (force intro: finprod_mono_neutral_cong)
+  also have "\<dots> = gfinprod G f A \<otimes> gfinprod G g A"
+  proof -
+    have "finprod G f ({i \<in> A. f i \<noteq> \<one>\<^bsub>G\<^esub>} \<union> {i \<in> A. g i \<noteq> \<one>\<^bsub>G\<^esub>}) = gfinprod G f A"
+      "finprod G g ({i \<in> A. f i \<noteq> \<one>\<^bsub>G\<^esub>} \<union> {i \<in> A. g i \<noteq> \<one>\<^bsub>G\<^esub>}) = gfinprod G g A"
+      using assms by (auto simp: gfinprod_def intro: finprod_mono_neutral_cong_right)
+    moreover have "(\<lambda>i. f i \<otimes> g i) \<in> {i \<in> A. f i \<noteq> \<one>} \<union> {i \<in> A. g i \<noteq> \<one>} \<rightarrow> carrier G"
+      using assms by (force simp: image_subset_iff_funcset)
+    ultimately show ?thesis
+      using assms
+      apply simp
+      apply (subst finprod_multf, auto)
+      done
+  qed
+  finally show ?thesis .
+qed
+
+lemma gfinprod_mono_neutral_cong_left:
+  assumes "A \<subseteq> B"
+    and 1: "\<And>i. i \<in> B - A \<Longrightarrow> h i = \<one>"
+    and gh: "\<And>x. x \<in> A \<Longrightarrow> g x = h x"
+    and h: "h \<in> B \<rightarrow> carrier G"
+  shows "gfinprod G g A = gfinprod G h B"
+proof (cases "finite {x \<in> B. h x \<noteq> \<one>}")
+  case True
+  then have "finite {x \<in> A. h x \<noteq> \<one>}"
+    apply (rule rev_finite_subset)
+    using \<open>A \<subseteq> B\<close> by auto
+  with True assms show ?thesis
+    apply (simp add: gfinprod_def cong: conj_cong)
+    apply (auto intro!: finprod_mono_neutral_cong_left)
+    done
+next
+  case False
+  have "{x \<in> B. h x \<noteq> \<one>} \<subseteq> {x \<in> A. h x \<noteq> \<one>}"
+    using 1 by auto
+  with False have "infinite {x \<in> A. h x \<noteq> \<one>}"
+    using infinite_super by blast
+  with False assms show ?thesis
+    by (simp add: gfinprod_def cong: conj_cong)
+qed
+
+lemma gfinprod_mono_neutral_cong_right:
+  assumes "A \<subseteq> B" "\<And>i. i \<in> B - A \<Longrightarrow> g i = \<one>" "\<And>x. x \<in> A \<Longrightarrow> g x = h x" "g \<in> B \<rightarrow> carrier G"
+  shows "gfinprod G g B = gfinprod G h A"
+  using assms  by (auto intro!: gfinprod_mono_neutral_cong_left [symmetric])
+
+lemma gfinprod_mono_neutral_cong:
+  assumes [simp]: "finite B" "finite A"
+    and *: "\<And>i. i \<in> B - A \<Longrightarrow> h i = \<one>" "\<And>i. i \<in> A - B \<Longrightarrow> g i = \<one>"
+    and gh: "\<And>x. x \<in> A \<inter> B \<Longrightarrow> g x = h x"
+    and g: "g \<in> A \<rightarrow> carrier G"
+    and h: "h \<in> B \<rightarrow> carrier G"
+ shows "gfinprod G g A = gfinprod G h B"
+proof-
+  have "gfinprod G g A = gfinprod G g (A \<inter> B)"
+    by (rule gfinprod_mono_neutral_cong_right) (use assms in auto)
+  also have "\<dots> = gfinprod G h (A \<inter> B)"
+    by (rule gfinprod_cong) (use assms in auto)
+  also have "\<dots> = gfinprod G h B"
+    by (rule gfinprod_mono_neutral_cong_left) (use assms in auto)
+  finally show ?thesis .
+qed
+
+end
+
+lemma (in comm_group) hom_group_sum:
+  assumes hom: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> hom (A i) G" and grp: "\<And>i. i \<in> I \<Longrightarrow> group (A i)"
+  shows "(\<lambda>x. gfinprod G (\<lambda>i. (f i) (x i)) I) \<in> hom (sum_group I A) G"
+  unfolding hom_def
+proof (intro CollectI conjI ballI)
+  show "(\<lambda>x. gfinprod G (\<lambda>i. f i (x i)) I) \<in> carrier (sum_group I A) \<rightarrow> carrier G"
+    using assms
+    by (force simp: hom_def carrier_sum_group intro: gfinprod_closed simp flip: image_subset_iff_funcset)
+next
+  fix x y
+  assume x: "x \<in> carrier (sum_group I A)" and y: "y \<in> carrier (sum_group I A)"
+  then have finx: "finite {i \<in> I. x i \<noteq> \<one>\<^bsub>A i\<^esub>}" and finy: "finite {i \<in> I. y i \<noteq> \<one>\<^bsub>A i\<^esub>}"
+    using assms by (auto simp: carrier_sum_group)
+  have finfx: "finite {i \<in> I. f i (x i) \<noteq> \<one>}"
+    using assms by (auto simp: is_group hom_one [OF hom] intro: finite_subset [OF _ finx])
+  have finfy: "finite {i \<in> I. f i (y i) \<noteq> \<one>}"
+    using assms by (auto simp: is_group hom_one [OF hom] intro: finite_subset [OF _ finy])
+  have carr: "f i (x i) \<in> carrier G"  "f i (y i) \<in> carrier G" if "i \<in> I" for i
+    using hom_carrier [OF hom] that x y assms
+    by (fastforce simp add: carrier_sum_group)+
+  have lam: "(\<lambda>i. f i ( x i \<otimes>\<^bsub>A i\<^esub> y i)) \<in> I \<rightarrow> carrier G"
+    using x y assms by (auto simp: hom_def carrier_sum_group PiE_def Pi_def)
+  have lam': "(\<lambda>i. f i (if i \<in> I then x i \<otimes>\<^bsub>A i\<^esub> y i else undefined)) \<in> I \<rightarrow> carrier G"
+    by (simp add: lam Pi_cong)
+  with lam x y assms
+  show "gfinprod G (\<lambda>i. f i ((x \<otimes>\<^bsub>sum_group I A\<^esub> y) i)) I
+      = gfinprod G (\<lambda>i. f i (x i)) I \<otimes> gfinprod G (\<lambda>i. f i (y i)) I"
+    by (simp add: carrier_sum_group PiE_def Pi_def hom_mult [OF hom]
+                  gfinprod_distrib finfx finfy carr cong: gfinprod_cong)
+qed
+
+subsection\<open>Free Abelian groups on a set, using the "frag" type constructor.          \<close>
+
+definition free_Abelian_group :: "'a set \<Rightarrow> ('a \<Rightarrow>\<^sub>0 int) monoid"
+  where "free_Abelian_group S = \<lparr>carrier = {c. Poly_Mapping.keys c \<subseteq> S}, monoid.mult = (+), one  = 0\<rparr>"
+
+lemma group_free_Abelian_group [simp]: "group (free_Abelian_group S)"
+proof -
+  have "\<And>x. Poly_Mapping.keys x \<subseteq> S \<Longrightarrow> x \<in> Units (free_Abelian_group S)"
+    unfolding free_Abelian_group_def Units_def
+    by clarsimp (metis eq_neg_iff_add_eq_0 neg_eq_iff_add_eq_0 keys_minus)
+  then show ?thesis
+    unfolding free_Abelian_group_def
+    by unfold_locales (auto simp: dest: subsetD [OF keys_add])
+qed
+
+lemma carrier_free_Abelian_group_iff [simp]:
+  shows "x \<in> carrier (free_Abelian_group S) \<longleftrightarrow> Poly_Mapping.keys x \<subseteq> S"
+  by (auto simp: free_Abelian_group_def)
+
+lemma one_free_Abelian_group [simp]: "\<one>\<^bsub>free_Abelian_group S\<^esub> = 0"
+  by (auto simp: free_Abelian_group_def)
+
+lemma mult_free_Abelian_group [simp]: "x \<otimes>\<^bsub>free_Abelian_group S\<^esub> y = x + y"
+  by (auto simp: free_Abelian_group_def)
+
+lemma inv_free_Abelian_group [simp]: "Poly_Mapping.keys x \<subseteq> S \<Longrightarrow> inv\<^bsub>free_Abelian_group S\<^esub> x = -x"
+  by (rule group.inv_equality [OF group_free_Abelian_group]) auto
+
+lemma abelian_free_Abelian_group: "comm_group(free_Abelian_group S)"
+  apply (rule group.group_comm_groupI [OF group_free_Abelian_group])
+  by (simp add: free_Abelian_group_def)
+
+lemma pow_free_Abelian_group [simp]:
+  fixes n::nat
+  shows "Group.pow (free_Abelian_group S) x n = frag_cmul (int n) x"
+  by (induction n) (auto simp: nat_pow_def free_Abelian_group_def frag_cmul_distrib)
+
+lemma int_pow_free_Abelian_group [simp]:
+  fixes n::int
+  assumes "Poly_Mapping.keys x \<subseteq> S"
+  shows "Group.pow (free_Abelian_group S) x n = frag_cmul n x"
+proof (induction n)
+  case (nonneg n)
+  then show ?case
+    by (simp add: int_pow_int)
+next
+  case (neg n)
+  have "x [^]\<^bsub>free_Abelian_group S\<^esub> - int (Suc n)
+     = inv\<^bsub>free_Abelian_group S\<^esub> (x [^]\<^bsub>free_Abelian_group S\<^esub> int (Suc n))"
+    by (rule group.int_pow_neg [OF group_free_Abelian_group]) (use assms in \<open>simp add: free_Abelian_group_def\<close>)
+  also have "\<dots> = frag_cmul (- int (Suc n)) x"
+    by (metis assms inv_free_Abelian_group pow_free_Abelian_group int_pow_int minus_frag_cmul
+              order_trans keys_cmul)
+  finally show ?case .
+qed
+
+lemma frag_of_in_free_Abelian_group [simp]:
+   "frag_of x \<in> carrier(free_Abelian_group S) \<longleftrightarrow> x \<in> S"
+  by simp
+
+lemma free_Abelian_group_induct:
+  assumes major: "Poly_Mapping.keys x \<subseteq> S"
+      and minor: "P(0)"
+           "\<And>x y. \<lbrakk>Poly_Mapping.keys x \<subseteq> S; Poly_Mapping.keys y \<subseteq> S; P x; P y\<rbrakk> \<Longrightarrow> P(x-y)"
+           "\<And>a. a \<in> S \<Longrightarrow> P(frag_of a)"
+         shows "P x"
+proof -
+  have "Poly_Mapping.keys x \<subseteq> S \<and> P x"
+    using major
+  proof (induction x rule: frag_induction)
+    case (diff a b)
+    then show ?case
+      by (meson Un_least minor(2) order.trans keys_diff)
+  qed (auto intro: minor)
+  then show ?thesis ..
+qed
+
+lemma sum_closed_free_Abelian_group:
+    "(\<And>i. i \<in> I \<Longrightarrow> x i \<in> carrier (free_Abelian_group S)) \<Longrightarrow> sum x I \<in> carrier (free_Abelian_group S)"
+  apply (induction I rule: infinite_finite_induct, auto)
+  by (metis (no_types, hide_lams) UnE subsetCE keys_add)
+
+
+lemma (in comm_group) free_Abelian_group_universal:
+  fixes f :: "'c \<Rightarrow> 'a"
+  assumes "f ` S \<subseteq> carrier G"
+  obtains h where "h \<in> hom (free_Abelian_group S) G" "\<And>x. x \<in> S \<Longrightarrow> h(frag_of x) = f x"
+proof
+  have fin: "Poly_Mapping.keys u \<subseteq> S \<Longrightarrow> finite {x \<in> S. f x [^] poly_mapping.lookup u x \<noteq> \<one>}" for u :: "'c \<Rightarrow>\<^sub>0 int"
+    apply (rule finite_subset [OF _ finite_keys [of u]])
+    unfolding keys.rep_eq by force
+  define h :: "('c \<Rightarrow>\<^sub>0 int) \<Rightarrow> 'a"
+    where "h \<equiv> \<lambda>x. gfinprod G (\<lambda>a. f a [^] poly_mapping.lookup x a) S"
+  show "h \<in> hom (free_Abelian_group S) G"
+  proof (rule homI)
+    fix x y
+    assume xy: "x \<in> carrier (free_Abelian_group S)" "y \<in> carrier (free_Abelian_group S)"
+    then show "h (x \<otimes>\<^bsub>free_Abelian_group S\<^esub> y) = h x \<otimes> h y"
+      using assms unfolding h_def free_Abelian_group_def
+      by (simp add: fin gfinprod_distrib image_subset_iff Poly_Mapping.lookup_add int_pow_mult cong: gfinprod_cong)
+  qed (use assms in \<open>force simp: free_Abelian_group_def h_def intro: gfinprod_closed\<close>)
+  show "h(frag_of x) = f x" if "x \<in> S" for x
+  proof -
+    have fin: "(\<lambda>a. f x [^] (1::int)) \<in> {x} \<rightarrow> carrier G" "f x [^] (1::int) \<in> carrier G"
+      using assms that by force+
+    show ?thesis
+      by (cases " f x [^] (1::int) = \<one>") (use assms that in \<open>auto simp: h_def gfinprod_def finprod_singleton\<close>)
+  qed
+qed
+
+lemma eqpoll_free_Abelian_group_infinite:
+  assumes "infinite A" shows "carrier(free_Abelian_group A) \<approx> A"
+proof (rule lepoll_antisym)
+  have "carrier (free_Abelian_group A) \<lesssim> {f::'a\<Rightarrow>int. f ` A \<subseteq> UNIV \<and> {x. f x \<noteq> 0} \<subseteq> A \<and> finite {x. f x \<noteq> 0}}"
+    unfolding lepoll_def
+    by (rule_tac x="Poly_Mapping.lookup" in exI) (auto simp: poly_mapping_eqI lookup_not_eq_zero_eq_in_keys inj_onI)
+  also have "\<dots> \<lesssim> Fpow (A \<times> (UNIV::int set))"
+    by (rule lepoll_restricted_funspace)
+  also have "\<dots> \<approx> A \<times> (UNIV::int set)"
+  proof (rule eqpoll_Fpow)
+    show "infinite (A \<times> (UNIV::int set))"
+      using assms finite_cartesian_productD1 by fastforce
+  qed
+  also have "\<dots> \<approx> A"
+    unfolding eqpoll_iff_card_of_ordIso
+  proof -
+    have "|A \<times> (UNIV::int set)| <=o |A|"
+      by (simp add: assms card_of_Times_ordLeq_infinite flip: infinite_iff_card_of_countable)
+    moreover have "|A| \<le>o |A \<times> (UNIV::int set)|"
+      by simp
+    ultimately have "|A| *c |(UNIV::int set)| =o |A|"
+      by (simp add: cprod_def ordIso_iff_ordLeq)
+    then show "|A \<times> (UNIV::int set)| =o |A|"
+      by (metis Times_cprod ordIso_transitive)
+  qed
+  finally show "carrier (free_Abelian_group A) \<lesssim> A" .
+  have "inj_on frag_of A"
+    by (simp add: frag_of_eq inj_on_def)
+  moreover have "frag_of ` A \<subseteq> carrier (free_Abelian_group A)"
+    by (simp add: image_subsetI)
+  ultimately show "A \<lesssim> carrier (free_Abelian_group A)"
+    by (force simp: lepoll_def)
+qed
+
+proposition (in comm_group) eqpoll_homomorphisms_from_free_Abelian_group:
+   "{f. f \<in> extensional (carrier(free_Abelian_group S)) \<and> f \<in> hom (free_Abelian_group S) G}
+    \<approx> (S \<rightarrow>\<^sub>E carrier G)"  (is "?lhs \<approx> ?rhs")
+  unfolding eqpoll_def bij_betw_def
+proof (intro exI conjI)
+  let ?f = "\<lambda>f. restrict (f \<circ> frag_of) S"
+  show "inj_on ?f ?lhs"
+  proof (clarsimp simp: inj_on_def)
+    fix g h
+    assume
+      g: "g \<in> extensional (carrier (free_Abelian_group S))" "g \<in> hom (free_Abelian_group S) G"
+      and h: "h \<in> extensional (carrier (free_Abelian_group S))" "h \<in> hom (free_Abelian_group S) G"
+      and eq: "restrict (g \<circ> frag_of) S = restrict (h \<circ> frag_of) S"
+    have 0: "0 \<in> carrier (free_Abelian_group S)"
+      by simp
+    interpret hom_g: group_hom "free_Abelian_group S" G g
+      using g by (auto simp: group_hom_def group_hom_axioms_def is_group)
+    interpret hom_h: group_hom "free_Abelian_group S" G h
+      using h by (auto simp: group_hom_def group_hom_axioms_def is_group)
+    have "Poly_Mapping.keys c \<subseteq> S \<Longrightarrow> Poly_Mapping.keys c \<subseteq> S \<and> g c = h c" for c
+    proof (induction c rule: frag_induction)
+      case zero
+      show ?case
+        using hom_g.hom_one hom_h.hom_one by auto
+    next
+      case (one x)
+      then show ?case
+        using eq by (simp add: fun_eq_iff) (metis comp_def)
+    next
+      case (diff a b)
+      then show ?case
+        using hom_g.hom_mult hom_h.hom_mult hom_g.hom_inv hom_h.hom_inv
+        apply (auto simp: dest: subsetD [OF keys_diff])
+        by (metis keys_minus uminus_add_conv_diff)
+    qed
+    then show "g = h"
+      by (meson g h carrier_free_Abelian_group_iff extensionalityI)
+  qed
+  have "f \<in> (\<lambda>f. restrict (f \<circ> frag_of) S) `
+            {f \<in> extensional (carrier (free_Abelian_group S)). f \<in> hom (free_Abelian_group S) G}"
+    if f: "f \<in> S \<rightarrow>\<^sub>E carrier G"
+    for f :: "'c \<Rightarrow> 'a"
+  proof -
+    obtain h where h: "h \<in> hom (free_Abelian_group S) G" "\<And>x. x \<in> S \<Longrightarrow> h(frag_of x) = f x"
+    proof (rule free_Abelian_group_universal)
+      show "f ` S \<subseteq> carrier G"
+        using f by blast
+    qed auto
+    let ?h = "restrict h (carrier (free_Abelian_group S))"
+    show ?thesis
+    proof
+      show "f = restrict (?h \<circ> frag_of) S"
+        using f by (force simp: h)
+      show "?h \<in> {f \<in> extensional (carrier (free_Abelian_group S)). f \<in> hom (free_Abelian_group S) G}"
+        using h by (auto simp: hom_def dest!: subsetD [OF keys_add])
+    qed
+  qed
+  then show "?f ` ?lhs = S \<rightarrow>\<^sub>E carrier G"
+    by (auto simp: hom_def Ball_def Pi_def)
+qed
+
+lemma hom_frag_minus:
+  assumes "h \<in> hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys a \<subseteq> S"
+  shows "h (-a) = - (h a)"
+proof -
+  have "Poly_Mapping.keys (h a) \<subseteq> T"
+    by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
+  then show ?thesis
+    by (metis (no_types) assms carrier_free_Abelian_group_iff group_free_Abelian_group group_hom.hom_inv group_hom_axioms_def group_hom_def inv_free_Abelian_group)
+qed
+
+lemma hom_frag_add:
+  assumes "h \<in> hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys a \<subseteq> S" "Poly_Mapping.keys b \<subseteq> S"
+  shows "h (a+b) = h a + h b"
+proof -
+  have "Poly_Mapping.keys (h a) \<subseteq> T"
+    by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
+  moreover
+  have "Poly_Mapping.keys (h b) \<subseteq> T"
+    by (meson assms carrier_free_Abelian_group_iff hom_in_carrier)
+  ultimately show ?thesis
+    using assms hom_mult by fastforce
+qed
+
+lemma hom_frag_diff:
+  assumes "h \<in> hom (free_Abelian_group S) (free_Abelian_group T)" "Poly_Mapping.keys a \<subseteq> S" "Poly_Mapping.keys b \<subseteq> S"
+  shows "h (a-b) = h a - h b"
+  by (metis (no_types, lifting) assms diff_conv_add_uminus hom_frag_add hom_frag_minus keys_minus)
+
+
+proposition isomorphic_free_Abelian_groups:
+   "free_Abelian_group S \<cong> free_Abelian_group T \<longleftrightarrow> S \<approx> T"  (is "(?FS \<cong> ?FT) = ?rhs")
+proof
+  interpret S: group "?FS"
+    by simp
+  interpret T: group "?FT"
+    by simp
+  interpret G2: comm_group "integer_mod_group 2"
+    by (rule abelian_integer_mod_group)
+  let ?Two = "{0..<2::int}"
+  have [simp]: "\<not> ?Two \<subseteq> {a}" for a
+    by (simp add: subset_iff) presburger
+  assume L: "?FS \<cong> ?FT"
+  let ?HS = "{h \<in> extensional (carrier ?FS). h \<in> hom ?FS (integer_mod_group 2)}"
+  let ?HT = "{h \<in> extensional (carrier ?FT). h \<in> hom ?FT (integer_mod_group 2)}"
+  have "S \<rightarrow>\<^sub>E ?Two \<approx> ?HS"
+    apply (rule eqpoll_sym)
+    using G2.eqpoll_homomorphisms_from_free_Abelian_group by (simp add: carrier_integer_mod_group)
+  also have "\<dots> \<approx> ?HT"
+  proof -
+    obtain f g where "group_isomorphisms ?FS ?FT f g"
+      using L S.iso_iff_group_isomorphisms by (force simp: is_iso_def)
+    then have f: "f \<in> hom ?FS ?FT"
+      and g: "g \<in> hom ?FT ?FS"
+      and gf: "\<forall>x \<in> carrier ?FS. g(f x) = x"
+      and fg: "\<forall>y \<in> carrier ?FT. f(g y) = y"
+      by (auto simp: group_isomorphisms_def)
+    let ?f = "\<lambda>h. restrict (h \<circ> g) (carrier ?FT)"
+    let ?g = "\<lambda>h. restrict (h \<circ> f) (carrier ?FS)"
+    show ?thesis
+    proof (rule lepoll_antisym)
+      show "?HS \<lesssim> ?HT"
+        unfolding lepoll_def
+      proof (intro exI conjI)
+        show "inj_on ?f ?HS"
+          apply (rule inj_on_inverseI [where g = ?g])
+          using hom_in_carrier [OF f]
+          by (auto simp: gf fun_eq_iff carrier_integer_mod_group Ball_def Pi_def extensional_def)
+        show "?f ` ?HS \<subseteq> ?HT"
+        proof clarsimp
+          fix h
+          assume h: "h \<in> hom ?FS (integer_mod_group 2)"
+          have "h \<circ> g \<in> hom ?FT (integer_mod_group 2)"
+            by (rule hom_compose [OF g h])
+          moreover have "restrict (h \<circ> g) (carrier ?FT) x = (h \<circ> g) x" if "x \<in> carrier ?FT" for x
+            using g that by (simp add: hom_def)
+          ultimately show "restrict (h \<circ> g) (carrier ?FT) \<in> hom ?FT (integer_mod_group 2)"
+            using T.hom_restrict by fastforce
+        qed
+      qed
+    next
+      show "?HT \<lesssim> ?HS"
+        unfolding lepoll_def
+      proof (intro exI conjI)
+        show "inj_on ?g ?HT"
+          apply (rule inj_on_inverseI [where g = ?f])
+          using hom_in_carrier [OF g]
+          by (auto simp: fg fun_eq_iff carrier_integer_mod_group Ball_def Pi_def extensional_def)
+        show "?g ` ?HT \<subseteq> ?HS"
+        proof clarsimp
+          fix k
+          assume k: "k \<in> hom ?FT (integer_mod_group 2)"
+          have "k \<circ> f \<in> hom ?FS (integer_mod_group 2)"
+            by (rule hom_compose [OF f k])
+          moreover have "restrict (k \<circ> f) (carrier ?FS) x = (k \<circ> f) x" if "x \<in> carrier ?FS" for x
+            using f that by (simp add: hom_def)
+          ultimately show "restrict (k \<circ> f) (carrier ?FS) \<in> hom ?FS (integer_mod_group 2)"
+            using S.hom_restrict by fastforce
+        qed
+      qed
+    qed
+  qed
+  also have "\<dots> \<approx> T \<rightarrow>\<^sub>E ?Two"
+    using G2.eqpoll_homomorphisms_from_free_Abelian_group by (simp add: carrier_integer_mod_group)
+  finally have *: "S \<rightarrow>\<^sub>E ?Two \<approx> T \<rightarrow>\<^sub>E ?Two" .
+  then have "finite (S \<rightarrow>\<^sub>E ?Two) \<longleftrightarrow> finite (T \<rightarrow>\<^sub>E ?Two)"
+    by (rule eqpoll_finite_iff)
+  then have "finite S \<longleftrightarrow> finite T"
+    by (auto simp: finite_funcset_iff)
+  then consider "finite S" "finite T" | "~ finite S" "~ finite T"
+    by blast
+  then show ?rhs
+  proof cases
+    case 1
+    with * have "2 ^ card S = (2::nat) ^ card T"
+      by (simp add: card_PiE finite_PiE eqpoll_iff_card)
+    then have "card S = card T"
+      by auto
+    then show ?thesis
+      using eqpoll_iff_card 1 by blast
+  next
+    case 2
+    have "carrier (free_Abelian_group S) \<approx> carrier (free_Abelian_group T)"
+      using L by (simp add: iso_imp_eqpoll_carrier)
+    then show ?thesis
+      using 2 eqpoll_free_Abelian_group_infinite eqpoll_sym eqpoll_trans by metis
+  qed
+next
+  assume ?rhs
+  then obtain f g where f: "\<And>x. x \<in> S \<Longrightarrow> f x \<in> T \<and> g(f x) = x"
+                    and g: "\<And>y. y \<in> T \<Longrightarrow> g y \<in> S \<and> f(g y) = y"
+    using eqpoll_iff_bijections by metis
+  interpret S: comm_group "?FS"
+    by (simp add: abelian_free_Abelian_group)
+  interpret T: comm_group "?FT"
+    by (simp add: abelian_free_Abelian_group)
+  have "(frag_of \<circ> f) ` S \<subseteq> carrier (free_Abelian_group T)"
+    using f by auto
+  then obtain h where h: "h \<in> hom (free_Abelian_group S) (free_Abelian_group T)"
+    and h_frag: "\<And>x. x \<in> S \<Longrightarrow> h (frag_of x) = (frag_of \<circ> f) x"
+    using T.free_Abelian_group_universal [of "frag_of \<circ> f" S] by blast
+  interpret hhom: group_hom "free_Abelian_group S" "free_Abelian_group T" h
+    by (simp add: h group_hom_axioms_def group_hom_def)
+  have "(frag_of \<circ> g) ` T \<subseteq> carrier (free_Abelian_group S)"
+    using g by auto
+  then obtain k where k: "k \<in> hom (free_Abelian_group T) (free_Abelian_group S)"
+    and k_frag: "\<And>x. x \<in> T \<Longrightarrow> k (frag_of x) = (frag_of \<circ> g) x"
+    using S.free_Abelian_group_universal [of "frag_of \<circ> g" T] by blast
+  interpret khom: group_hom "free_Abelian_group T" "free_Abelian_group S" k
+    by (simp add: k group_hom_axioms_def group_hom_def)
+  have kh: "Poly_Mapping.keys x \<subseteq> S \<Longrightarrow> Poly_Mapping.keys x \<subseteq> S \<and> k (h x) = x" for x
+  proof (induction rule: frag_induction)
+    case zero
+    then show ?case
+      apply auto
+      by (metis group_free_Abelian_group h hom_one k one_free_Abelian_group)
+  next
+    case (one x)
+    then show ?case
+      by (auto simp: h_frag k_frag f)
+  next
+    case (diff a b)
+    with keys_diff have "Poly_Mapping.keys (a - b) \<subseteq> S"
+      by (metis Un_least order_trans)
+    with diff hhom.hom_closed show ?case
+      by (simp add: hom_frag_diff [OF h] hom_frag_diff [OF k])
+  qed
+  have hk: "Poly_Mapping.keys y \<subseteq> T \<Longrightarrow> Poly_Mapping.keys y \<subseteq> T \<and> h (k y) = y" for y
+  proof (induction rule: frag_induction)
+    case zero
+    then show ?case
+      apply auto
+      by (metis group_free_Abelian_group h hom_one k one_free_Abelian_group)
+  next
+    case (one y)
+    then show ?case
+      by (auto simp: h_frag k_frag g)
+  next
+    case (diff a b)
+    with keys_diff have "Poly_Mapping.keys (a - b) \<subseteq> T"
+      by (metis Un_least order_trans)
+    with diff khom.hom_closed show ?case
+      by (simp add: hom_frag_diff [OF h] hom_frag_diff [OF k])
+  qed
+  have "h \<in> iso ?FS ?FT"
+    unfolding iso_def bij_betw_iff_bijections mem_Collect_eq
+  proof (intro conjI exI ballI h)
+    fix x
+    assume x: "x \<in> carrier (free_Abelian_group S)"
+    show "h x \<in> carrier (free_Abelian_group T)"
+      by (meson x h hom_in_carrier)
+    show "k (h x) = x"
+      using x by (simp add: kh)
+  next
+    fix y
+    assume y: "y \<in> carrier (free_Abelian_group T)"
+    show "k y \<in> carrier (free_Abelian_group S)"
+      by (meson y k hom_in_carrier)
+    show "h (k y) = y"
+      using y by (simp add: hk)
+  qed
+  then show "?FS \<cong> ?FT"
+    by (auto simp: is_iso_def)
+qed
+
+lemma isomorphic_group_integer_free_Abelian_group_singleton:
+  "integer_group \<cong> free_Abelian_group {x}"
+proof -
+  have "(\<lambda>n. frag_cmul n (frag_of x)) \<in> iso integer_group (free_Abelian_group {x})"
+  proof (rule isoI [OF homI])
+    show "bij_betw (\<lambda>n. frag_cmul n (frag_of x)) (carrier integer_group) (carrier (free_Abelian_group {x}))"
+      apply (rule bij_betwI [where g = "\<lambda>y. Poly_Mapping.lookup y x"])
+      by (auto simp: integer_group_def in_keys_iff intro!: poly_mapping_eqI)
+  qed (auto simp: frag_cmul_distrib)
+  then show ?thesis
+    unfolding is_iso_def
+    by blast
+qed
+
+lemma group_hom_free_Abelian_groups_id:
+  "id \<in> hom (free_Abelian_group S) (free_Abelian_group T) \<longleftrightarrow> S \<subseteq> T"
+proof -
+  have "x \<in> T" if ST: "\<And>c:: 'a \<Rightarrow>\<^sub>0 int. Poly_Mapping.keys c \<subseteq> S \<longrightarrow> Poly_Mapping.keys c \<subseteq> T" and "x \<in> S" for x
+    using ST [of "frag_of x"] \<open>x \<in> S\<close> by simp
+  then show ?thesis
+    by (auto simp: hom_def free_Abelian_group_def Pi_def)
+qed
+
+
+proposition iso_free_Abelian_group_sum:
+  assumes "pairwise (\<lambda>i j. disjnt (S i) (S j)) I"
+  shows "(\<lambda>f. sum' f I) \<in> iso (sum_group I (\<lambda>i. free_Abelian_group(S i))) (free_Abelian_group (\<Union>(S ` I)))"
+    (is "?h \<in> iso ?G ?H")
+proof (rule isoI)
+  show hom: "?h \<in> hom ?G ?H"
+  proof (rule homI)
+    show "?h c \<in> carrier ?H" if "c \<in> carrier ?G" for c
+      using that
+      apply (simp add: sum.G_def carrier_sum_group)
+      apply (rule order_trans [OF keys_sum])
+      apply (auto simp: free_Abelian_group_def)
+      done
+    show "?h (x \<otimes>\<^bsub>?G\<^esub> y) = ?h x \<otimes>\<^bsub>?H\<^esub> ?h y"
+      if "x \<in> carrier ?G" "y \<in> carrier ?G"  for x y
+      using that apply (simp add: sum.finite_Collect_op carrier_sum_group sum.distrib')
+      sorry
+  qed
+  interpret GH: group_hom "?G" "?H" "?h"
+    using hom by (simp add: group_hom_def group_hom_axioms_def)
+  show "bij_betw ?h (carrier ?G) (carrier ?H)"
+    unfolding bij_betw_def
+  proof (intro conjI subset_antisym)
+    show "?h ` carrier ?G \<subseteq> carrier ?H"
+      apply (clarsimp simp: sum.G_def carrier_sum_group simp del: carrier_free_Abelian_group_iff)
+      by (force simp: PiE_def Pi_iff intro!: sum_closed_free_Abelian_group)
+    have *: "poly_mapping.lookup (Abs_poly_mapping (\<lambda>j. if j \<in> S i then poly_mapping.lookup x j else 0)) k
+           = (if k \<in> S i then poly_mapping.lookup x k else 0)" if "i \<in> I" for i k and x :: "'b \<Rightarrow>\<^sub>0 int"
+      using that by (auto simp: conj_commute cong: conj_cong)
+    have eq: "Abs_poly_mapping (\<lambda>j. if j \<in> S i then poly_mapping.lookup x j else 0) = 0
+     \<longleftrightarrow> (\<forall>c \<in> S i. poly_mapping.lookup x c = 0)" if "i \<in> I" for i and x :: "'b \<Rightarrow>\<^sub>0 int"
+      apply (auto simp: poly_mapping_eq_iff fun_eq_iff)
+      apply (simp add: * Abs_poly_mapping_inverse conj_commute cong: conj_cong)
+      apply (force dest!: spec split: if_split_asm)
+      done
+    have "x \<in> ?h ` {x \<in> \<Pi>\<^sub>E i\<in>I. {c. Poly_Mapping.keys c \<subseteq> S i}. finite {i \<in> I. x i \<noteq> 0}}"
+      if x: "Poly_Mapping.keys x \<subseteq> \<Union> (S ` I)" for x :: "'b \<Rightarrow>\<^sub>0 int"
+    proof -
+      let ?f = "(\<lambda>i c. if c \<in> S i then Poly_Mapping.lookup x c else 0)"
+      define J where "J \<equiv> {i \<in> I. \<exists>c\<in>S i. c \<in> Poly_Mapping.keys x}"
+      have "J \<subseteq> (\<lambda>c. THE i. i \<in> I \<and> c \<in> S i) ` Poly_Mapping.keys x"
+      proof (clarsimp simp: J_def)
+        show "i \<in> (\<lambda>c. THE i. i \<in> I \<and> c \<in> S i) ` Poly_Mapping.keys x"
+          if "i \<in> I" "c \<in> S i" "c \<in> Poly_Mapping.keys x" for i c
+        proof
+          show "i = (THE i. i \<in> I \<and> c \<in> S i)"
+            using assms that by (auto simp: pairwise_def disjnt_def intro: the_equality [symmetric])
+        qed (simp add: that)
+      qed
+      then have fin: "finite J"
+        using finite_subset finite_keys by blast
+      have [simp]: "Poly_Mapping.keys (Abs_poly_mapping (?f i)) = {k. ?f i k \<noteq> 0}" if "i \<in> I" for i
+        by (simp add: eq_onp_def keys.abs_eq conj_commute cong: conj_cong)
+      have [simp]: "Poly_Mapping.lookup (Abs_poly_mapping (?f i)) c = ?f i c" if "i \<in> I" for i c
+        by (auto simp: Abs_poly_mapping_inverse conj_commute cong: conj_cong)
+      show ?thesis
+      proof
+        have "poly_mapping.lookup x c = poly_mapping.lookup (?h (\<lambda>i\<in>I. Abs_poly_mapping (?f i))) c"
+          for c
+        proof (cases "c \<in> Poly_Mapping.keys x")
+          case True
+          then obtain i where "i \<in> I" "c \<in> S i" "?f i c \<noteq> 0"
+            using x by (auto simp: in_keys_iff)
+          then have 1: "poly_mapping.lookup (sum' (\<lambda>j. Abs_poly_mapping (?f j)) (I - {i})) c = 0"
+            using assms
+            apply (simp add: sum.G_def Poly_Mapping.lookup_sum pairwise_def disjnt_def)
+            apply (force simp: eq split: if_split_asm intro!: comm_monoid_add_class.sum.neutral)
+            done
+          have 2: "poly_mapping.lookup x c = poly_mapping.lookup (Abs_poly_mapping (?f i)) c"
+            by (auto simp: \<open>c \<in> S i\<close> Abs_poly_mapping_inverse conj_commute cong: conj_cong)
+          have "finite {i \<in> I. Abs_poly_mapping (?f i) \<noteq> 0}"
+            by (rule finite_subset [OF _ fin]) (use \<open>i \<in> I\<close> J_def eq in \<open>auto simp: in_keys_iff\<close>)
+          with \<open>i \<in> I\<close> have "?h (\<lambda>j\<in>I. Abs_poly_mapping (?f j)) = Abs_poly_mapping (?f i) + sum' (\<lambda>j. Abs_poly_mapping (?f j)) (I - {i})"
+            apply (simp add: sum_diff1')
+            sorry
+          then show ?thesis
+            by (simp add: 1 2 Poly_Mapping.lookup_add)
+        next
+          case False
+          then have "poly_mapping.lookup x c = 0"
+            using keys.rep_eq by force
+          then show ?thesis
+            unfolding sum.G_def by (simp add: lookup_sum * comm_monoid_add_class.sum.neutral)
+        qed
+        then show "x = ?h (\<lambda>i\<in>I. Abs_poly_mapping (?f i))"
+          by (rule poly_mapping_eqI)
+        have "(\<lambda>i. Abs_poly_mapping (?f i)) \<in> (\<Pi> i\<in>I. {c. Poly_Mapping.keys c \<subseteq> S i})"
+          by (auto simp: PiE_def Pi_def in_keys_iff)
+        then show "(\<lambda>i\<in>I. Abs_poly_mapping (?f i))
+                 \<in> {x \<in> \<Pi>\<^sub>E i\<in>I. {c. Poly_Mapping.keys c \<subseteq> S i}. finite {i \<in> I. x i \<noteq> 0}}"
+          using fin unfolding J_def by (simp add: eq in_keys_iff cong: conj_cong)
+      qed
+    qed
+    then show "carrier ?H \<subseteq> ?h ` carrier ?G"
+      by (simp add: carrier_sum_group) (auto simp: free_Abelian_group_def)
+    show "inj_on ?h (carrier (sum_group I (\<lambda>i. free_Abelian_group (S i))))"
+      unfolding GH.inj_on_one_iff
+    proof clarify
+      fix x
+      assume "x \<in> carrier ?G" "?h x = \<one>\<^bsub>?H\<^esub>"
+      then have eq0: "sum' x I = 0"
+        and xs: "\<And>i. i \<in> I \<Longrightarrow> Poly_Mapping.keys (x i) \<subseteq> S i" and xext: "x \<in> extensional I"
+        and fin: "finite {i \<in> I. x i \<noteq> 0}"
+        by (simp_all add: carrier_sum_group PiE_def Pi_def)
+      have "x i = 0" if "i \<in> I" for i
+      proof -
+        have "sum' x (insert i (I - {i})) = 0"
+          using eq0 that by (simp add: insert_absorb)
+        moreover have "Poly_Mapping.keys (sum' x (I - {i})) = {}"
+        proof -
+          have "x i = - sum' x (I - {i})"
+            by (metis (mono_tags, lifting) diff_zero eq0 fin sum_diff1' minus_diff_eq that)
+          then have "Poly_Mapping.keys (x i) = Poly_Mapping.keys (sum' x (I - {i}))"
+            by simp
+          then have "Poly_Mapping.keys (sum' x (I - {i})) \<subseteq> S i"
+            using that xs by metis
+          moreover
+          have "Poly_Mapping.keys (sum' x (I - {i})) \<subseteq> (\<Union>j \<in> I - {i}. S j)"
+          proof -
+            have "Poly_Mapping.keys (sum' x (I - {i})) \<subseteq> (\<Union>i\<in>{j \<in> I. j \<noteq> i \<and> x j \<noteq> 0}. Poly_Mapping.keys (x i))"
+              using keys_sum [of x "{j \<in> I. j \<noteq> i \<and> x j \<noteq> 0}"] by (simp add: sum.G_def)
+            also have "\<dots> \<subseteq> \<Union> (S ` (I - {i}))"
+              using xs by force
+            finally show ?thesis .
+          qed
+          moreover have "A = {}" if "A \<subseteq> S i" "A \<subseteq> \<Union> (S ` (I - {i}))" for A
+            using assms that \<open>i \<in> I\<close>
+            by (force simp: pairwise_def disjnt_def image_def subset_iff)
+          ultimately show ?thesis
+            by metis
+        qed
+        then have [simp]: "sum' x (I - {i}) = 0"
+          by (auto simp: sum.G_def)
+        have "sum' x (insert i (I - {i})) = x i"
+          by (subst sum.insert' [OF finite_subset [OF _ fin]]) auto
+        ultimately show ?thesis
+          by metis
+      qed
+      with xext [unfolded extensional_def]
+      show "x = \<one>\<^bsub>sum_group I (\<lambda>i. free_Abelian_group (S i))\<^esub>"
+        by (force simp: free_Abelian_group_def)
+    qed
+  qed
+qed
+
+lemma isomorphic_free_Abelian_group_Union:
+  "pairwise disjnt I \<Longrightarrow> free_Abelian_group(\<Union> I) \<cong> sum_group I free_Abelian_group"
+  using iso_free_Abelian_group_sum [of "\<lambda>X. X" I]
+  by (metis SUP_identity_eq empty_iff group.iso_sym group_free_Abelian_group is_iso_def sum_group)
+
+lemma isomorphic_sum_integer_group:
+   "sum_group I (\<lambda>i. integer_group) \<cong> free_Abelian_group I"
+proof -
+  have "sum_group I (\<lambda>i. integer_group) \<cong> sum_group I (\<lambda>i. free_Abelian_group {i})"
+    by (rule iso_sum_groupI) (auto simp: isomorphic_group_integer_free_Abelian_group_singleton)
+  also have "\<dots> \<cong> free_Abelian_group I"
+    using iso_free_Abelian_group_sum [of "\<lambda>x. {x}" I] by (auto simp: is_iso_def)
+  finally show ?thesis .
+qed
+
+end
--- a/src/HOL/Groups_Big.thy	Thu Apr 04 14:19:33 2019 +0100
+++ b/src/HOL/Groups_Big.thy	Thu Apr 04 16:38:45 2019 +0100
@@ -703,6 +703,31 @@
   qed
 qed
 
+lemma sum_diff1'_aux:
+  fixes f :: "'a \<Rightarrow> 'b::ab_group_add"
+  assumes "finite F" "{i \<in> I. f i \<noteq> 0} \<subseteq> F"
+  shows "sum' f (I - {i}) = (if i \<in> I then sum' f I - f i else sum' f I)"
+  using assms
+proof induct
+  case (insert x F)
+  have 1: "finite {x \<in> I. f x \<noteq> 0} \<Longrightarrow> finite {x \<in> I. x \<noteq> i \<and> f x \<noteq> 0}"
+    by (erule rev_finite_subset) auto
+  have 2: "finite {x \<in> I. x \<noteq> i \<and> f x \<noteq> 0} \<Longrightarrow> finite {x \<in> I. f x \<noteq> 0}"
+    apply (drule finite_insert [THEN iffD2])
+    by (erule rev_finite_subset) auto
+  have 3: "finite {i \<in> I. f i \<noteq> 0}"
+    using finite_subset insert by blast
+  show ?case
+    using insert sum_diff1 [of "{i \<in> I. f i \<noteq> 0}" f i]
+    by (auto simp: sum.G_def 1 2 3 set_diff_eq conj_ac)
+qed (simp add: sum.G_def)
+
+lemma sum_diff1':
+  fixes f :: "'a \<Rightarrow> 'b::ab_group_add"
+  assumes "finite {i \<in> I. f i \<noteq> 0}"
+  shows "sum' f (I - {i}) = (if i \<in> I then sum' f I - f i else sum' f I)"
+  by (rule sum_diff1'_aux [OF assms order_refl])
+
 lemma (in ordered_comm_monoid_add) sum_mono:
   "(\<And>i. i\<in>K \<Longrightarrow> f i \<le> g i) \<Longrightarrow> (\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)"
   by (induct K rule: infinite_finite_induct) (use add_mono in auto)
--- a/src/HOL/Library/Poly_Mapping.thy	Thu Apr 04 14:19:33 2019 +0100
+++ b/src/HOL/Library/Poly_Mapping.thy	Thu Apr 04 16:38:45 2019 +0100
@@ -9,10 +9,10 @@
 imports Groups_Big_Fun Fun_Lexorder More_List
 begin
 
-subsection \<open>Preliminary: auxiliary operations for \qt{almost everywhere zero}\<close>
+subsection \<open>Preliminary: auxiliary operations for \emph{almost everywhere zero}\<close>
 
 text \<open>
-  A central notion for polynomials are functions being \qt{almost everywhere zero}.
+  A central notion for polynomials are functions being \emph{almost everywhere zero}.
   For these we provide some auxiliary definitions and lemmas.
 \<close>
 
@@ -258,7 +258,7 @@
   by auto
 
 text \<open>
-  We model the universe of functions being \qt{almost everywhere zero}
+  We model the universe of functions being \emph{almost everywhere zero}
   by means of a separate type @{typ "('a, 'b) poly_mapping"}.
   For convenience we provide a suggestive infix syntax which
   is a variant of the usual function space syntax.  Conversion between both types
@@ -289,7 +289,7 @@
   \begin{enumerate}
     \item A clever nesting as @{typ "(nat \<Rightarrow>\<^sub>0 nat) \<Rightarrow>\<^sub>0 'a"}
       later in theory \<open>MPoly\<close> gives a suitable
-      representation type for polynomials \qt{almost for free}:
+      representation type for polynomials \emph{almost for free}:
       Interpreting @{typ "nat \<Rightarrow>\<^sub>0 nat"} as a mapping from variable identifiers
       to exponents yields monomials, and the whole type maps monomials
       to coefficients.  Lets call this the \emph{ultimate interpretation}.
@@ -297,10 +297,10 @@
       is apt to direct implementation using code generation
       \cite{Haftmann-Nipkow:2010:code}.
   \end{enumerate}
-  Note that despite the names \qt{mapping} and \qt{lookup} suggest something
+  Note that despite the names \emph{mapping} and \emph{lookup} suggest something
   implementation-near, it is best to keep @{typ "'a \<Rightarrow>\<^sub>0 'b"} as an abstract
   \emph{algebraic} type
-  providing operations like \qt{addition}, \qt{multiplication} without any notion
+  providing operations like \emph{addition}, \emph{multiplication} without any notion
   of key-order, data structures etc.  This implementations-specific notions are
   easily introduced later for particular implementations but do not provide any
   gain for specifying logical properties of polynomials.
@@ -319,7 +319,7 @@
   number of type classes.
 
   The operations themselves are specified using \<open>lift_definition\<close>, where
-  the proofs of the \qt{almost everywhere zero} property can be significantly involved.
+  the proofs of the \emph{almost everywhere zero} property can be significantly involved.
 
   The @{const lookup} operation is supposed to be usable explicitly (unless in
   other situations where the morphisms between types are somehow internal