new theory of real inner product spaces
authorhuffman
Thu, 19 Feb 2009 09:42:23 -0800
changeset 29993 84b2c432b94a
parent 29992 5deee36e33c4
child 29994 6ca6b6bd6e15
new theory of real inner product spaces
src/HOL/IsaMakefile
src/HOL/Library/Inner_Product.thy
src/HOL/Library/Library.thy
--- a/src/HOL/IsaMakefile	Thu Feb 19 09:39:49 2009 -0800
+++ b/src/HOL/IsaMakefile	Thu Feb 19 09:42:23 2009 -0800
@@ -315,6 +315,7 @@
   Library/Finite_Cartesian_Product.thy \
   Library/FrechetDeriv.thy \
   Library/Fundamental_Theorem_Algebra.thy \
+  Library/Inner_Product.thy \
   Library/Library.thy Library/List_Prefix.thy Library/State_Monad.thy	\
   Library/Nat_Int_Bij.thy Library/Multiset.thy Library/Permutation.thy	\
   Library/Primes.thy Library/Pocklington.thy Library/Quotient.thy	\
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/Inner_Product.thy	Thu Feb 19 09:42:23 2009 -0800
@@ -0,0 +1,305 @@
+(* Title:      Inner_Product.thy
+   Author:     Brian Huffman
+*)
+
+header {* Inner Product Spaces and the Gradient Derivative *}
+
+theory Inner_Product
+imports Complex FrechetDeriv
+begin
+
+subsection {* Real inner product spaces *}
+
+class real_inner = real_vector + sgn_div_norm +
+  fixes inner :: "'a \<Rightarrow> 'a \<Rightarrow> real"
+  assumes inner_commute: "inner x y = inner y x"
+  and inner_left_distrib: "inner (x + y) z = inner x z + inner y z"
+  and inner_scaleR_left: "inner (scaleR r x) y = r * (inner x y)"
+  and inner_ge_zero [simp]: "0 \<le> inner x x"
+  and inner_eq_zero_iff [simp]: "inner x x = 0 \<longleftrightarrow> x = 0"
+  and norm_eq_sqrt_inner: "norm x = sqrt (inner x x)"
+begin
+
+lemma inner_zero_left [simp]: "inner 0 x = 0"
+proof -
+  have "inner 0 x = inner (0 + 0) x" by simp
+  also have "\<dots> = inner 0 x + inner 0 x" by (rule inner_left_distrib)
+  finally show "inner 0 x = 0" by simp
+qed
+
+lemma inner_minus_left [simp]: "inner (- x) y = - inner x y"
+proof -
+  have "inner (- x) y + inner x y = inner (- x + x) y"
+    by (rule inner_left_distrib [symmetric])
+  also have "\<dots> = - inner x y + inner x y" by simp
+  finally show "inner (- x) y = - inner x y" by simp
+qed
+
+lemma inner_diff_left: "inner (x - y) z = inner x z - inner y z"
+  by (simp add: diff_minus inner_left_distrib)
+
+text {* Transfer distributivity rules to right argument. *}
+
+lemma inner_right_distrib: "inner x (y + z) = inner x y + inner x z"
+  using inner_left_distrib [of y z x] by (simp only: inner_commute)
+
+lemma inner_scaleR_right: "inner x (scaleR r y) = r * (inner x y)"
+  using inner_scaleR_left [of r y x] by (simp only: inner_commute)
+
+lemma inner_zero_right [simp]: "inner x 0 = 0"
+  using inner_zero_left [of x] by (simp only: inner_commute)
+
+lemma inner_minus_right [simp]: "inner x (- y) = - inner x y"
+  using inner_minus_left [of y x] by (simp only: inner_commute)
+
+lemma inner_diff_right: "inner x (y - z) = inner x y - inner x z"
+  using inner_diff_left [of y z x] by (simp only: inner_commute)
+
+lemmas inner_distrib = inner_left_distrib inner_right_distrib
+lemmas inner_diff = inner_diff_left inner_diff_right
+lemmas inner_scaleR = inner_scaleR_left inner_scaleR_right
+
+lemma inner_gt_zero_iff [simp]: "0 < inner x x \<longleftrightarrow> x \<noteq> 0"
+  by (simp add: order_less_le)
+
+lemma power2_norm_eq_inner: "(norm x)\<twosuperior> = inner x x"
+  by (simp add: norm_eq_sqrt_inner)
+
+lemma Cauchy_Schwartz_ineq:
+  "(inner x y)\<twosuperior> \<le> inner x x * inner y y"
+proof (cases)
+  assume "y = 0"
+  thus ?thesis by simp
+next
+  assume y: "y \<noteq> 0"
+  let ?r = "inner x y / inner y y"
+  have "0 \<le> inner (x - scaleR ?r y) (x - scaleR ?r y)"
+    by (rule inner_ge_zero)
+  also have "\<dots> = inner x x - inner y x * ?r"
+    by (simp add: inner_diff inner_scaleR)
+  also have "\<dots> = inner x x - (inner x y)\<twosuperior> / inner y y"
+    by (simp add: power2_eq_square inner_commute)
+  finally have "0 \<le> inner x x - (inner x y)\<twosuperior> / inner y y" .
+  hence "(inner x y)\<twosuperior> / inner y y \<le> inner x x"
+    by (simp add: le_diff_eq)
+  thus "(inner x y)\<twosuperior> \<le> inner x x * inner y y"
+    by (simp add: pos_divide_le_eq y)
+qed
+
+lemma Cauchy_Schwartz_ineq2:
+  "\<bar>inner x y\<bar> \<le> norm x * norm y"
+proof (rule power2_le_imp_le)
+  have "(inner x y)\<twosuperior> \<le> inner x x * inner y y"
+    using Cauchy_Schwartz_ineq .
+  thus "\<bar>inner x y\<bar>\<twosuperior> \<le> (norm x * norm y)\<twosuperior>"
+    by (simp add: power_mult_distrib power2_norm_eq_inner)
+  show "0 \<le> norm x * norm y"
+    unfolding norm_eq_sqrt_inner
+    by (intro mult_nonneg_nonneg real_sqrt_ge_zero inner_ge_zero)
+qed
+
+subclass real_normed_vector
+proof
+  fix a :: real and x y :: 'a
+  show "0 \<le> norm x"
+    unfolding norm_eq_sqrt_inner by simp
+  show "norm x = 0 \<longleftrightarrow> x = 0"
+    unfolding norm_eq_sqrt_inner by simp
+  show "norm (x + y) \<le> norm x + norm y"
+    proof (rule power2_le_imp_le)
+      have "inner x y \<le> norm x * norm y"
+        by (rule order_trans [OF abs_ge_self Cauchy_Schwartz_ineq2])
+      thus "(norm (x + y))\<twosuperior> \<le> (norm x + norm y)\<twosuperior>"
+        unfolding power2_sum power2_norm_eq_inner
+        by (simp add: inner_distrib inner_commute)
+      show "0 \<le> norm x + norm y"
+        unfolding norm_eq_sqrt_inner
+        by (simp add: add_nonneg_nonneg)
+    qed
+  have "sqrt (a\<twosuperior> * inner x x) = \<bar>a\<bar> * sqrt (inner x x)"
+    by (simp add: real_sqrt_mult_distrib)
+  then show "norm (a *\<^sub>R x) = \<bar>a\<bar> * norm x"
+    unfolding norm_eq_sqrt_inner
+    by (simp add: inner_scaleR power2_eq_square mult_assoc)
+qed
+
+end
+
+interpretation inner!:
+  bounded_bilinear "inner::'a::real_inner \<Rightarrow> 'a \<Rightarrow> real"
+proof
+  fix x y z :: 'a and r :: real
+  show "inner (x + y) z = inner x z + inner y z"
+    by (rule inner_left_distrib)
+  show "inner x (y + z) = inner x y + inner x z"
+    by (rule inner_right_distrib)
+  show "inner (scaleR r x) y = scaleR r (inner x y)"
+    unfolding real_scaleR_def by (rule inner_scaleR_left)
+  show "inner x (scaleR r y) = scaleR r (inner x y)"
+    unfolding real_scaleR_def by (rule inner_scaleR_right)
+  show "\<exists>K. \<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * K"
+  proof
+    show "\<forall>x y::'a. norm (inner x y) \<le> norm x * norm y * 1"
+      by (simp add: Cauchy_Schwartz_ineq2)
+  qed
+qed
+
+interpretation inner_left!:
+  bounded_linear "\<lambda>x::'a::real_inner. inner x y"
+  by (rule inner.bounded_linear_left)
+
+interpretation inner_right!:
+  bounded_linear "\<lambda>y::'a::real_inner. inner x y"
+  by (rule inner.bounded_linear_right)
+
+
+subsection {* Class instances *}
+
+instantiation real :: real_inner
+begin
+
+definition inner_real_def [simp]: "inner = op *"
+
+instance proof
+  fix x y z r :: real
+  show "inner x y = inner y x"
+    unfolding inner_real_def by (rule mult_commute)
+  show "inner (x + y) z = inner x z + inner y z"
+    unfolding inner_real_def by (rule left_distrib)
+  show "inner (scaleR r x) y = r * inner x y"
+    unfolding inner_real_def real_scaleR_def by (rule mult_assoc)
+  show "0 \<le> inner x x"
+    unfolding inner_real_def by simp
+  show "inner x x = 0 \<longleftrightarrow> x = 0"
+    unfolding inner_real_def by simp
+  show "norm x = sqrt (inner x x)"
+    unfolding inner_real_def by simp
+qed
+
+end
+
+instantiation complex :: real_inner
+begin
+
+definition inner_complex_def:
+  "inner x y = Re x * Re y + Im x * Im y"
+
+instance proof
+  fix x y z :: complex and r :: real
+  show "inner x y = inner y x"
+    unfolding inner_complex_def by (simp add: mult_commute)
+  show "inner (x + y) z = inner x z + inner y z"
+    unfolding inner_complex_def by (simp add: left_distrib)
+  show "inner (scaleR r x) y = r * inner x y"
+    unfolding inner_complex_def by (simp add: right_distrib)
+  show "0 \<le> inner x x"
+    unfolding inner_complex_def by (simp add: add_nonneg_nonneg)
+  show "inner x x = 0 \<longleftrightarrow> x = 0"
+    unfolding inner_complex_def
+    by (simp add: add_nonneg_eq_0_iff complex_Re_Im_cancel_iff)
+  show "norm x = sqrt (inner x x)"
+    unfolding inner_complex_def complex_norm_def
+    by (simp add: power2_eq_square)
+qed
+
+end
+
+
+subsection {* Gradient derivative *}
+
+definition
+  gderiv ::
+    "['a::real_inner \<Rightarrow> real, 'a, 'a] \<Rightarrow> bool"
+          ("(GDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
+where
+  "GDERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. inner h D)"
+
+lemma deriv_fderiv: "DERIV f x :> D \<longleftrightarrow> FDERIV f x :> (\<lambda>h. h * D)"
+  by (simp only: deriv_def field_fderiv_def)
+
+lemma gderiv_deriv [simp]: "GDERIV f x :> D \<longleftrightarrow> DERIV f x :> D"
+  by (simp only: gderiv_def deriv_fderiv inner_real_def)
+
+lemma GDERIV_DERIV_compose:
+    "\<lbrakk>GDERIV f x :> df; DERIV g (f x) :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. g (f x)) x :> scaleR dg df"
+  unfolding gderiv_def deriv_fderiv
+  apply (drule (1) FDERIV_compose)
+  apply (simp add: inner_scaleR_right mult_ac)
+  done
+
+lemma FDERIV_subst: "\<lbrakk>FDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> FDERIV f x :> d"
+  by simp
+
+lemma GDERIV_subst: "\<lbrakk>GDERIV f x :> df; df = d\<rbrakk> \<Longrightarrow> GDERIV f x :> d"
+  by simp
+
+lemma GDERIV_const: "GDERIV (\<lambda>x. k) x :> 0"
+  unfolding gderiv_def inner_right.zero by (rule FDERIV_const)
+
+lemma GDERIV_add:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x + g x) x :> df + dg"
+  unfolding gderiv_def inner_right.add by (rule FDERIV_add)
+
+lemma GDERIV_minus:
+    "GDERIV f x :> df \<Longrightarrow> GDERIV (\<lambda>x. - f x) x :> - df"
+  unfolding gderiv_def inner_right.minus by (rule FDERIV_minus)
+
+lemma GDERIV_diff:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x - g x) x :> df - dg"
+  unfolding gderiv_def inner_right.diff by (rule FDERIV_diff)
+
+lemma GDERIV_scaleR:
+    "\<lbrakk>DERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. scaleR (f x) (g x)) x
+      :> (scaleR (f x) dg + scaleR df (g x))"
+  unfolding gderiv_def deriv_fderiv inner_right.add inner_right.scaleR
+  apply (rule FDERIV_subst)
+  apply (erule (1) scaleR.FDERIV)
+  apply (simp add: mult_ac)
+  done
+
+lemma GDERIV_mult:
+    "\<lbrakk>GDERIV f x :> df; GDERIV g x :> dg\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. f x * g x) x :> scaleR (f x) dg + scaleR (g x) df"
+  unfolding gderiv_def
+  apply (rule FDERIV_subst)
+  apply (erule (1) FDERIV_mult)
+  apply (simp add: inner_distrib inner_scaleR mult_ac)
+  done
+
+lemma GDERIV_inverse:
+    "\<lbrakk>GDERIV f x :> df; f x \<noteq> 0\<rbrakk>
+     \<Longrightarrow> GDERIV (\<lambda>x. inverse (f x)) x :> - (inverse (f x))\<twosuperior> *\<^sub>R df"
+  apply (erule GDERIV_DERIV_compose)
+  apply (erule DERIV_inverse [folded numeral_2_eq_2])
+  done
+
+lemma GDERIV_norm:
+  assumes "x \<noteq> 0" shows "GDERIV (\<lambda>x. norm x) x :> sgn x"
+proof -
+  have 1: "FDERIV (\<lambda>x. inner x x) x :> (\<lambda>h. inner x h + inner h x)"
+    by (intro inner.FDERIV FDERIV_ident)
+  have 2: "(\<lambda>h. inner x h + inner h x) = (\<lambda>h. inner h (scaleR 2 x))"
+    by (simp add: expand_fun_eq inner_scaleR inner_commute)
+  have "0 < inner x x" using `x \<noteq> 0` by simp
+  then have 3: "DERIV sqrt (inner x x) :> (inverse (sqrt (inner x x)) / 2)"
+    by (rule DERIV_real_sqrt)
+  have 4: "(inverse (sqrt (inner x x)) / 2) *\<^sub>R 2 *\<^sub>R x = sgn x"
+    by (simp add: sgn_div_norm norm_eq_sqrt_inner)
+  show ?thesis
+    unfolding norm_eq_sqrt_inner
+    apply (rule GDERIV_subst [OF _ 4])
+    apply (rule GDERIV_DERIV_compose [where g=sqrt and df="scaleR 2 x"])
+    apply (subst gderiv_def)
+    apply (rule FDERIV_subst [OF _ 2])
+    apply (rule 1)
+    apply (rule 3)
+    done
+qed
+
+lemmas FDERIV_norm = GDERIV_norm [unfolded gderiv_def]
+
+end
--- a/src/HOL/Library/Library.thy	Thu Feb 19 09:39:49 2009 -0800
+++ b/src/HOL/Library/Library.thy	Thu Feb 19 09:42:23 2009 -0800
@@ -26,6 +26,7 @@
   FuncSet
   Fundamental_Theorem_Algebra
   Infinite_Set
+  Inner_Product
   ListVector
   Mapping
   Multiset