strengthened and renamed lemma antisym_converse and added lemma antisymp_on_conversep
--- a/NEWS Mon Dec 19 08:34:32 2022 +0100
+++ b/NEWS Mon Dec 19 08:37:03 2022 +0100
@@ -50,6 +50,7 @@
reflp_equality[simp] ~> reflp_on_equality[simp]
total_on_singleton
sym_converse[simp] ~> sym_on_converse[simp]
+ antisym_converse[simp] ~> antisym_on_converse[simp]
- Added lemmas.
antisym_onD
antisym_onI
@@ -58,6 +59,7 @@
antisymp_onD
antisymp_onI
antisymp_on_antisym_on_eq[pred_set_conv]
+ antisymp_on_conversep[simp]
antisymp_on_if_asymp_on
antisymp_on_subset
asym_if_irrefl_and_trans
--- a/src/HOL/Relation.thy Mon Dec 19 08:34:32 2022 +0100
+++ b/src/HOL/Relation.thy Mon Dec 19 08:37:03 2022 +0100
@@ -1122,8 +1122,11 @@
lemma asymp_on_conversep [simp]: "asymp_on A R\<inverse>\<inverse> = asymp_on A R"
by (rule asym_on_converse[to_pred])
-lemma antisym_converse [simp]: "antisym (converse r) = antisym r"
- unfolding antisym_def by blast
+lemma antisym_on_converse [simp]: "antisym_on A (r\<inverse>) = antisym_on A r"
+ by (auto intro: antisym_onI dest: antisym_onD)
+
+lemma antisymp_on_conversep [simp]: "antisymp_on A R\<inverse>\<inverse> = antisymp_on A R"
+ by (rule antisym_on_converse[to_pred])
lemma trans_converse [simp]: "trans (converse r) = trans r"
unfolding trans_def by blast