merge
authorblanchet
Fri, 28 Sep 2012 09:21:27 +0200
changeset 49637 996267ad6fa7
parent 49636 b7256a88a84b (diff)
parent 49630 9f6ca87ab405 (current diff)
child 49638 e592e9822ae4
merge
--- a/etc/isar-keywords.el	Fri Sep 28 09:17:30 2012 +0200
+++ b/etc/isar-keywords.el	Fri Sep 28 09:21:27 2012 +0200
@@ -48,7 +48,6 @@
     "classes"
     "classrel"
     "codata"
-    "codata_raw"
     "code_abort"
     "code_class"
     "code_const"
@@ -71,7 +70,6 @@
     "corollary"
     "cpodef"
     "data"
-    "data_raw"
     "datatype"
     "declaration"
     "declare"
@@ -342,6 +340,7 @@
     "overloaded"
     "permissive"
     "pervasive"
+    "rep_compat"
     "shows"
     "structure"
     "unchecked"
@@ -482,7 +481,6 @@
     "classes"
     "classrel"
     "codata"
-    "codata_raw"
     "code_abort"
     "code_class"
     "code_const"
@@ -499,7 +497,6 @@
     "consts"
     "context"
     "data"
-    "data_raw"
     "datatype"
     "declaration"
     "declare"
--- a/src/HOL/BNF/BNF_FP.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/BNF_FP.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -121,7 +121,7 @@
 unfolding sum_set_defs by simp+
 
 ML_file "Tools/bnf_fp.ML"
-ML_file "Tools/bnf_fp_sugar_tactics.ML"
-ML_file "Tools/bnf_fp_sugar.ML"
+ML_file "Tools/bnf_fp_def_sugar_tactics.ML"
+ML_file "Tools/bnf_fp_def_sugar.ML"
 
 end
--- a/src/HOL/BNF/BNF_GFP.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/BNF_GFP.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -10,7 +10,6 @@
 theory BNF_GFP
 imports BNF_FP Equiv_Relations_More "~~/src/HOL/Library/Prefix_Order"
 keywords
-  "codata_raw" :: thy_decl and
   "codata" :: thy_decl
 begin
 
--- a/src/HOL/BNF/BNF_LFP.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/BNF_LFP.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -10,7 +10,6 @@
 theory BNF_LFP
 imports BNF_FP
 keywords
-  "data_raw" :: thy_decl and
   "data" :: thy_decl
 begin
 
--- a/src/HOL/BNF/BNF_Wrap.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/BNF_Wrap.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -11,7 +11,8 @@
 imports BNF_Util
 keywords
   "wrap_data" :: thy_goal and
-  "no_dests"
+  "no_dests" and
+  "rep_compat"
 begin
 
 lemma iffI_np: "\<lbrakk>x \<Longrightarrow> \<not> y; \<not> x \<Longrightarrow> y\<rbrakk> \<Longrightarrow> \<not> x \<longleftrightarrow> y"
--- a/src/HOL/BNF/Examples/Infinite_Derivation_Trees/Tree.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Examples/Infinite_Derivation_Trees/Tree.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -13,27 +13,14 @@
 
 hide_fact (open) Quotient_Product.prod_rel_def
 
-typedecl N  typedecl T
+typedecl N
+typedecl T
 
-codata_raw Tree: 'Tree = "N \<times> (T + 'Tree) fset"
+codata Tree = NNode (root: N) (ccont: "(T + Tree) fset")
 
 
 section {* Sugar notations for Tree *}
 
-subsection{* Setup for map, set, rel *}
-
-(* These should be eventually inferred from compositionality *)
-
-lemma pre_Tree_map:
-"pre_Tree_map f (n, as) = (n, map_fset (id \<oplus> f) as)"
-unfolding pre_Tree_map_def id_apply
-sum_map_def by simp
-
-lemma pre_Tree_map':
-"pre_Tree_map f n_as = (fst n_as, map_fset (id \<oplus> f) (snd n_as))"
-using pre_Tree_map by(cases n_as, simp)
-
-
 definition
 "llift2 \<phi> as1 as2 \<longleftrightarrow>
  (\<forall> n. Inl n \<in> fset as1 \<longleftrightarrow> Inl n \<in> fset as2) \<and>
@@ -52,79 +39,9 @@
 done
 
 
-subsection{* Constructors *}
-
-definition NNode :: "N \<Rightarrow> (T + Tree)fset \<Rightarrow> Tree"
-where "NNode n as \<equiv> Tree_ctor (n,as)"
-
-lemmas ctor_defs = NNode_def
-
-
-subsection {* Pre-selectors *}
-
-(* These are mere auxiliaries *)
-
-definition "asNNode tr \<equiv> SOME n_as. NNode (fst n_as) (snd n_as) = tr"
-lemmas pre_sel_defs = asNNode_def
-
-
-subsection {* Selectors *}
-
-(* One for each pair (constructor, constructor argument) *)
-
-(* For NNode: *)
-definition root :: "Tree \<Rightarrow> N" where "root tr = fst (asNNode tr)"
-definition ccont :: "Tree \<Rightarrow> (T + Tree)fset" where "ccont tr = snd (asNNode tr)"
-
-lemmas sel_defs = root_def ccont_def
-
-
-subsection {* Basic properties *}
-
-(* Constructors versus selectors *)
-lemma NNode_surj: "\<exists> n as. NNode n as = tr"
-unfolding NNode_def
-by (metis Tree.ctor_dtor pair_collapse)
-
-lemma NNode_asNNode:
-"NNode (fst (asNNode tr)) (snd (asNNode tr)) = tr"
-proof-
-  obtain n as where "NNode n as = tr" using NNode_surj[of tr] by blast
-  hence "NNode (fst (n,as)) (snd (n,as)) = tr" by simp
-  thus ?thesis unfolding asNNode_def by(rule someI)
-qed
-
-theorem NNode_root_ccont[simp]:
-"NNode (root tr) (ccont tr) = tr"
-using NNode_asNNode unfolding root_def ccont_def .
-
-(* Constructors *)
-theorem TTree_simps[simp]:
-"NNode n as = NNode n' as' \<longleftrightarrow> n = n' \<and> as = as'"
-unfolding ctor_defs Tree.ctor_inject by auto
-
-theorem TTree_cases[elim, case_names NNode Choice]:
-assumes NNode: "\<And> n as. tr = NNode n as \<Longrightarrow> phi"
-shows phi
-proof(cases rule: Tree.ctor_exhaust[of tr])
-  fix x assume "tr = Tree_ctor x"
-  thus ?thesis
-  apply(cases x)
-    using NNode unfolding ctor_defs apply blast
-  done
-qed
-
-(* Constructors versus selectors *)
-theorem TTree_sel_ctor[simp]:
-"root (NNode n as) = n"
-"ccont (NNode n as) = as"
-unfolding root_def ccont_def
-by (metis (no_types) NNode_asNNode TTree_simps)+
-
-
 subsection{* Coinduction *}
 
-theorem TTree_coind_Node[elim, consumes 1, case_names NNode, induct pred: "HOL.eq"]:
+theorem Tree_coind_NNode[elim, consumes 1, case_names NNode, induct pred: "HOL.eq"]:
 assumes phi: "\<phi> tr1 tr2" and
 NNode: "\<And> n1 n2 as1 as2.
           \<lbrakk>\<phi> (NNode n1 as1) (NNode n2 as2)\<rbrakk> \<Longrightarrow>
@@ -141,70 +58,18 @@
 
 theorem TTree_coind[elim, consumes 1, case_names LLift]:
 assumes phi: "\<phi> tr1 tr2" and
-LLift: "\<And> tr1 tr2. \<phi> tr1 tr2 \<Longrightarrow>
-                   root tr1 = root tr2 \<and> llift2 \<phi> (ccont tr1) (ccont tr2)"
+LLift: "\<And> tr1 tr2. \<phi> tr1 tr2 \<Longrightarrow> root tr1 = root tr2 \<and> llift2 \<phi> (ccont tr1) (ccont tr2)"
 shows "tr1 = tr2"
-using phi apply(induct rule: TTree_coind_Node)
-using LLift by (metis TTree_sel_ctor)
-
-
-
-subsection {* Coiteration *}
-
-(* Preliminaries: *)
-declare Tree.dtor_ctor[simp]
-declare Tree.ctor_dtor[simp]
-
-lemma Tree_dtor_NNode[simp]:
-"Tree_dtor (NNode n as) = (n,as)"
-unfolding NNode_def Tree.dtor_ctor ..
-
-lemma Tree_dtor_root_ccont:
-"Tree_dtor tr = (root tr, ccont tr)"
-unfolding root_def ccont_def
-by (metis (lifting) NNode_asNNode Tree_dtor_NNode)
-
-(* Coiteration *)
-definition TTree_unfold ::
-"('b \<Rightarrow> N) \<Rightarrow> ('b \<Rightarrow> (T + 'b) fset) \<Rightarrow> 'b \<Rightarrow> Tree"
-where "TTree_unfold rt ct \<equiv> Tree_dtor_unfold <rt,ct>"
-
-lemma Tree_unfold_unfold:
-"Tree_dtor_unfold s = TTree_unfold (fst o s) (snd o s)"
-apply(rule ext)
-unfolding TTree_unfold_def by simp
-
-theorem TTree_unfold:
-"root (TTree_unfold rt ct b) = rt b"
-"ccont (TTree_unfold rt ct b) = map_fset (id \<oplus> TTree_unfold rt ct) (ct b)"
-using Tree.dtor_unfold[of "<rt,ct>" b] unfolding Tree_unfold_unfold fst_convol snd_convol
-unfolding pre_Tree_map' fst_convol' snd_convol'
-unfolding Tree_dtor_root_ccont by simp_all
-
-(* Corecursion, stronger than coiteration (unfold) *)
-definition TTree_corec ::
-"('b \<Rightarrow> N) \<Rightarrow> ('b \<Rightarrow> (T + (Tree + 'b)) fset) \<Rightarrow> 'b \<Rightarrow> Tree"
-where "TTree_corec rt ct \<equiv> Tree_dtor_corec <rt,ct>"
-
-lemma Tree_dtor_corec_corec:
-"Tree_dtor_corec s = TTree_corec (fst o s) (snd o s)"
-apply(rule ext)
-unfolding TTree_corec_def by simp
-
-theorem TTree_corec:
-"root (TTree_corec rt ct b) = rt b"
-"ccont (TTree_corec rt ct b) = map_fset (id \<oplus> ([[id, TTree_corec rt ct]]) ) (ct b)"
-using Tree.dtor_corec[of "<rt,ct>" b] unfolding Tree_dtor_corec_corec fst_convol snd_convol
-unfolding pre_Tree_map' fst_convol' snd_convol'
-unfolding Tree_dtor_root_ccont by simp_all
+using phi apply(induct rule: Tree_coind_NNode)
+using LLift by (metis Tree.sels)
 
 
 subsection{* The characteristic theorems transported from fset to set *}
 
 definition "Node n as \<equiv> NNode n (the_inv fset as)"
 definition "cont \<equiv> fset o ccont"
-definition "unfold rt ct \<equiv> TTree_unfold rt (the_inv fset o ct)"
-definition "corec rt ct \<equiv> TTree_corec rt (the_inv fset o ct)"
+definition "unfold rt ct \<equiv> Tree_unfold rt (the_inv fset o ct)"
+definition "corec rt ct \<equiv> Tree_corec rt (the_inv fset o ct)"
 
 definition lift ("_ ^#" 200) where
 "lift \<phi> as \<longleftrightarrow> (\<forall> tr. Inr tr \<in> as \<longrightarrow> \<phi> tr)"
@@ -259,19 +124,19 @@
 
 theorem Node_root_cont[simp]:
 "Node (root tr) (cont tr) = tr"
-using NNode_root_ccont unfolding Node_def cont_def
+using Tree.collapse unfolding Node_def cont_def
 by (metis cont_def finite_cont fset_cong fset_to_fset o_def)
 
 theorem Tree_simps[simp]:
 assumes "finite as" and "finite as'"
 shows "Node n as = Node n' as' \<longleftrightarrow> n = n' \<and> as = as'"
-using assms TTree_simps unfolding Node_def
+using assms Tree.inject unfolding Node_def
 by (metis fset_to_fset)
 
 theorem Tree_cases[elim, case_names Node Choice]:
 assumes Node: "\<And> n as. \<lbrakk>finite as; tr = Node n as\<rbrakk> \<Longrightarrow> phi"
 shows phi
-apply(cases rule: TTree_cases[of tr])
+apply(cases rule: Tree.exhaust[of tr])
 using Node unfolding Node_def
 by (metis Node Node_root_cont finite_cont)
 
@@ -290,7 +155,7 @@
    \<lbrakk>finite as1; finite as2; \<phi> (Node n1 as1) (Node n2 as2)\<rbrakk>
    \<Longrightarrow> n1 = n2 \<and> (\<phi>^#2) as1 as2"
 shows "tr1 = tr2"
-using phi apply(induct rule: TTree_coind_Node)
+using phi apply(induct rule: Tree_coind_NNode)
 unfolding llift2_lift2 apply(rule Node)
 unfolding Node_def
 apply (metis finite_fset)
@@ -308,19 +173,18 @@
 theorem unfold:
 "root (unfold rt ct b) = rt b"
 "finite (ct b) \<Longrightarrow> cont (unfold rt ct b) = image (id \<oplus> unfold rt ct) (ct b)"
-using TTree_unfold[of rt "the_inv fset \<circ> ct" b] unfolding unfold_def
+using Tree.sel_unfold[of rt "the_inv fset \<circ> ct" b] unfolding unfold_def
 apply - apply metis
 unfolding cont_def comp_def
 by (metis (no_types) fset_to_fset map_fset_image)
 
-
 theorem corec:
 "root (corec rt ct b) = rt b"
 "finite (ct b) \<Longrightarrow> cont (corec rt ct b) = image (id \<oplus> ([[id, corec rt ct]])) (ct b)"
-using TTree_corec[of rt "the_inv fset \<circ> ct" b] unfolding corec_def
-apply - apply metis
-unfolding cont_def comp_def
+using Tree.sel_corec[of rt "the_inv fset \<circ> ct" b] unfolding corec_def
+apply -
+apply simp
+unfolding cont_def comp_def id_def
 by (metis (no_types) fset_to_fset map_fset_image)
 
-
 end
--- a/src/HOL/BNF/Examples/ListF.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Examples/ListF.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -12,30 +12,11 @@
 imports "../BNF"
 begin
 
-data_raw listF: 'list = "unit + 'a \<times> 'list"
-
-definition "NilF = listF_ctor (Inl ())"
-definition "Conss a as \<equiv> listF_ctor (Inr (a, as))"
-
-lemma listF_map_NilF[simp]: "listF_map f NilF = NilF"
-unfolding listF_map_def pre_listF_map_def NilF_def listF.ctor_fold by simp
-
-lemma listF_map_Conss[simp]:
-  "listF_map f (Conss x xs) = Conss (f x) (listF_map f xs)"
-unfolding listF_map_def pre_listF_map_def Conss_def listF.ctor_fold by simp
-
-lemma listF_set_NilF[simp]: "listF_set NilF = {}"
-unfolding listF_set_def NilF_def listF.ctor_fold pre_listF_set1_def pre_listF_set2_def
-  sum_set_defs pre_listF_map_def collect_def[abs_def] by simp
-
-lemma listF_set_Conss[simp]: "listF_set (Conss x xs) = {x} \<union> listF_set xs"
-unfolding listF_set_def Conss_def listF.ctor_fold pre_listF_set1_def pre_listF_set2_def
-  sum_set_defs prod_set_defs pre_listF_map_def collect_def[abs_def] by simp
+data (rep_compat) 'a listF = NilF | Conss 'a "'a listF"
 
 lemma fold_sum_case_NilF: "listF_ctor_fold (sum_case f g) NilF = f ()"
 unfolding NilF_def listF.ctor_fold pre_listF_map_def by simp
 
-
 lemma fold_sum_case_Conss:
   "listF_ctor_fold (sum_case f g) (Conss y ys) = g (y, listF_ctor_fold (sum_case f g) ys)"
 unfolding Conss_def listF.ctor_fold pre_listF_map_def by simp
--- a/src/HOL/BNF/Examples/TreeFsetI.thy	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Examples/TreeFsetI.thy	Fri Sep 28 09:21:27 2012 +0200
@@ -15,45 +15,24 @@
 hide_const (open) Sublist.sub
 hide_fact (open) Quotient_Product.prod_rel_def
 
+codata 'a treeFsetI = Tree (lab: 'a) (sub: "'a treeFsetI fset")
+
 definition pair_fun (infixr "\<odot>" 50) where
   "f \<odot> g \<equiv> \<lambda>x. (f x, g x)"
 
-codata_raw treeFsetI: 't = "'a \<times> 't fset"
-
-(* selectors for trees *)
-definition "lab t \<equiv> fst (treeFsetI_dtor t)"
-definition "sub t \<equiv> snd (treeFsetI_dtor t)"
-
-lemma dtor[simp]: "treeFsetI_dtor t = (lab t, sub t)"
-unfolding lab_def sub_def by simp
-
-lemma unfold_pair_fun_lab: "lab (treeFsetI_dtor_unfold (f \<odot> g) t) = f t"
-unfolding lab_def pair_fun_def treeFsetI.dtor_unfold pre_treeFsetI_map_def by simp
-
-lemma unfold_pair_fun_sub: "sub (treeFsetI_dtor_unfold (f \<odot> g) t) = map_fset (treeFsetI_dtor_unfold (f \<odot> g)) (g t)"
-unfolding sub_def pair_fun_def treeFsetI.dtor_unfold pre_treeFsetI_map_def by simp
+(* tree map (contrived example): *)
+definition tmap where
+"tmap f = treeFsetI_unfold (f o lab) sub"
 
-(* tree map (contrived example): *)
-definition "tmap f \<equiv> treeFsetI_dtor_unfold (f o lab \<odot> sub)"
-
-lemma tmap_simps1[simp]: "lab (tmap f t) = f (lab t)"
-unfolding tmap_def by (simp add: unfold_pair_fun_lab)
-
-lemma trev_simps2[simp]: "sub (tmap f t) = map_fset (tmap f) (sub t)"
-unfolding tmap_def by (simp add: unfold_pair_fun_sub)
-
-lemma pre_treeFsetI_rel[simp]: "pre_treeFsetI_rel R1 R2 a b = (R1 (fst a) (fst b) \<and>
-  (\<forall>t \<in> fset (snd a). (\<exists>u \<in> fset (snd b). R2 t u)) \<and>
-  (\<forall>t \<in> fset (snd b). (\<exists>u \<in> fset (snd a). R2 u t)))"
-apply (cases a)
-apply (cases b)
-apply (simp add: pre_treeFsetI_rel_def prod_rel_def fset_rel_def)
-done
-
-lemmas treeFsetI_coind = mp[OF treeFsetI.dtor_coinduct]
+lemma tmap_simps[simp]:
+"lab (tmap f t) = f (lab t)"
+"sub (tmap f t) = map_fset (tmap f) (sub t)"
+unfolding tmap_def treeFsetI.sel_unfold by simp+
 
 lemma "tmap (f o g) x = tmap f (tmap g x)"
-by (intro treeFsetI_coind[where P="%x1 x2. \<exists>x. x1 = tmap (f o g) x \<and> x2 = tmap f (tmap g x)"])
-   force+
+apply (rule treeFsetI.coinduct[of "%x1 x2. \<exists>x. x1 = tmap (f o g) x \<and> x2 = tmap f (tmap g x)"])
+apply auto
+apply (unfold fset_rel_def)
+by auto
 
 end
--- a/src/HOL/BNF/Tools/bnf_def.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Tools/bnf_def.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -1125,7 +1125,8 @@
 
         fun mk_rel_eq () =
           unfold_thms lthy (bnf_srel_def :: mem_Collect_etc')
-            (Lazy.force srel_Id RS @{thm arg_cong[of _ _ "%A x y. (x, y) : A"]});
+            (Lazy.force srel_Id RS @{thm arg_cong[of _ _ "%A x y. (x, y) : A"]})
+          |> Drule.eta_contraction_rule;
 
         val rel_eq = Lazy.lazy mk_rel_eq;
 
--- a/src/HOL/BNF/Tools/bnf_fp.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Tools/bnf_fp.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -144,9 +144,6 @@
     typ list * typ list list -> BNF_Def.BNF list -> local_theory -> 'a) ->
     binding list -> mixfix list -> (string * sort) list -> ((string * sort) * typ) list ->
     local_theory -> BNF_Def.BNF list * 'a
-  val fp_bnf_cmd: (mixfix list -> (string * sort) list option -> binding list ->
-    typ list * typ list list -> BNF_Def.BNF list -> local_theory -> 'a) ->
-    binding list * (string list * string list) -> local_theory -> 'a
 end;
 
 structure BNF_FP : BNF_FP =
@@ -437,19 +434,4 @@
     mk_fp_bnf timer (construct_fp mixfixes) (SOME resBs) bs sort lhss bnfs Dss Ass unfold_set lthy'
   end;
 
-fun fp_bnf_cmd construct_fp (bs, (raw_lhss, raw_bnfs)) lthy =
-  let
-    val timer = time (Timer.startRealTimer ());
-    val lhss = map (dest_TFree o Syntax.read_typ lthy) raw_lhss;
-    val sort = fp_sort lhss NONE;
-    fun qualify b = Binding.qualify true (Binding.name_of (Binding.prefix_name rawN b));
-    val ((bnfs, (Dss, Ass)), (unfold_set, lthy')) = apfst (apsnd split_list o split_list)
-      (fold_map2 (fn b => fn rawT =>
-        (bnf_of_typ Smart_Inline (qualify b) sort (Syntax.read_typ lthy rawT)))
-      bs raw_bnfs (empty_unfolds, lthy));
-  in
-    snd (mk_fp_bnf timer
-      (construct_fp (map (K NoSyn) bs)) NONE bs sort lhss bnfs Dss Ass unfold_set lthy')
-  end;
-
 end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/BNF/Tools/bnf_fp_def_sugar.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -0,0 +1,1145 @@
+(*  Title:      HOL/BNF/Tools/bnf_fp_def_sugar.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Sugared datatype and codatatype constructions.
+*)
+
+signature BNF_FP_DEF_SUGAR =
+sig
+  val datatypes: bool ->
+    (mixfix list -> (string * sort) list option -> binding list -> typ list * typ list list ->
+      BNF_Def.BNF list -> local_theory -> BNF_FP.fp_result * local_theory) ->
+    (bool * bool) * ((((typ * sort) list * binding) * mixfix) * ((((binding * binding) *
+      (binding * typ) list) * (binding * term) list) * mixfix) list) list ->
+    local_theory -> local_theory
+  val parse_datatype_cmd: bool ->
+    (mixfix list -> (string * sort) list option -> binding list -> typ list * typ list list ->
+      BNF_Def.BNF list -> local_theory -> BNF_FP.fp_result * local_theory) ->
+    (local_theory -> local_theory) parser
+end;
+
+structure BNF_FP_Def_Sugar : BNF_FP_DEF_SUGAR =
+struct
+
+open BNF_Util
+open BNF_Wrap
+open BNF_Def
+open BNF_FP
+open BNF_FP_Def_Sugar_Tactics
+
+(* This function could produce clashes in contrived examples (e.g., "x.A", "x.x_A", "y.A") *)
+fun quasi_unambiguous_case_names names =
+  let
+    val ps = map (`Long_Name.base_name) names;
+    val dups = Library.duplicates (op =) (map fst ps);
+    fun underscore s =
+      let val ss = space_explode Long_Name.separator s in
+        space_implode "_" (drop (length ss - 2) ss)
+      end;
+  in
+    map (fn (base, full) => if member (op =) dups base then underscore full else base) ps
+  end;
+
+val mp_conj = @{thm mp_conj};
+
+val simp_attrs = @{attributes [simp]};
+val code_simp_attrs = Code.add_default_eqn_attrib :: simp_attrs;
+
+fun split_list4 xs = (map #1 xs, map #2 xs, map #3 xs, map #4 xs);
+
+fun resort_tfree S (TFree (s, _)) = TFree (s, S);
+
+fun typ_subst inst (T as Type (s, Ts)) =
+    (case AList.lookup (op =) inst T of
+      NONE => Type (s, map (typ_subst inst) Ts)
+    | SOME T' => T')
+  | typ_subst inst T = the_default T (AList.lookup (op =) inst T);
+
+fun variant_types ss Ss ctxt =
+  let
+    val (tfrees, _) =
+      fold_map2 (fn s => fn S => Name.variant s #> apfst (rpair S)) ss Ss (Variable.names_of ctxt);
+    val ctxt' = fold (Variable.declare_constraints o Logic.mk_type o TFree) tfrees ctxt;
+  in (tfrees, ctxt') end;
+
+val lists_bmoc = fold (fn xs => fn t => Term.list_comb (t, xs));
+
+fun mk_tupled_fun x f xs = HOLogic.tupled_lambda x (Term.list_comb (f, xs));
+fun mk_uncurried_fun f xs = mk_tupled_fun (HOLogic.mk_tuple xs) f xs;
+fun mk_uncurried2_fun f xss =
+  mk_tupled_fun (HOLogic.mk_tuple (map HOLogic.mk_tuple xss)) f (flat xss);
+
+fun mk_flip (x, Type (_, [T1, Type (_, [T2, T3])])) =
+  Abs ("x", T1, Abs ("y", T2, Var (x, T2 --> T1 --> T3) $ Bound 0 $ Bound 1));
+
+fun flip_rels lthy n thm =
+  let
+    val Rs = Term.add_vars (prop_of thm) [];
+    val Rs' = rev (drop (length Rs - n) Rs);
+    val cRs = map (fn f => (certify lthy (Var f), certify lthy (mk_flip f))) Rs';
+  in
+    Drule.cterm_instantiate cRs thm
+  end;
+
+fun mk_ctor_or_dtor get_T Ts t =
+  let val Type (_, Ts0) = get_T (fastype_of t) in
+    Term.subst_atomic_types (Ts0 ~~ Ts) t
+  end;
+
+val mk_ctor = mk_ctor_or_dtor range_type;
+val mk_dtor = mk_ctor_or_dtor domain_type;
+
+fun mk_rec_like lfp Ts Us t =
+  let
+    val (bindings, body) = strip_type (fastype_of t);
+    val (f_Us, prebody) = split_last bindings;
+    val Type (_, Ts0) = if lfp then prebody else body;
+    val Us0 = distinct (op =) (map (if lfp then body_type else domain_type) f_Us);
+  in
+    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
+  end;
+
+fun mk_map live Ts Us t =
+  let val (Type (_, Ts0), Type (_, Us0)) = strip_typeN (live + 1) (fastype_of t) |>> List.last in
+    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
+  end;
+
+fun mk_rel live Ts Us t =
+  let val [Type (_, Ts0), Type (_, Us0)] = binder_types (snd (strip_typeN live (fastype_of t))) in
+    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
+  end;
+
+fun liveness_of_fp_bnf n bnf =
+  (case T_of_bnf bnf of
+    Type (_, Ts) => map (not o member (op =) (deads_of_bnf bnf)) Ts
+  | _ => replicate n false);
+
+fun tick u f = Term.lambda u (HOLogic.mk_prod (u, f $ u));
+
+fun tack z_name (c, u) f =
+  let val z = Free (z_name, mk_sumT (fastype_of u, fastype_of c)) in
+    Term.lambda z (mk_sum_case (Term.lambda u u, Term.lambda c (f $ c)) $ z)
+  end;
+
+fun cannot_merge_types () = error "Mutually recursive types must have the same type parameters";
+
+fun merge_type_arg T T' = if T = T' then T else cannot_merge_types ();
+
+fun merge_type_args (As, As') =
+  if length As = length As' then map2 merge_type_arg As As' else cannot_merge_types ();
+
+fun reassoc_conjs thm =
+  reassoc_conjs (thm RS @{thm conj_assoc[THEN iffD1]})
+  handle THM _ => thm;
+
+fun type_args_constrained_of (((cAs, _), _), _) = cAs;
+fun type_binding_of (((_, b), _), _) = b;
+fun mixfix_of ((_, mx), _) = mx;
+fun ctr_specs_of (_, ctr_specs) = ctr_specs;
+
+fun disc_of ((((disc, _), _), _), _) = disc;
+fun ctr_of ((((_, ctr), _), _), _) = ctr;
+fun args_of (((_, args), _), _) = args;
+fun defaults_of ((_, ds), _) = ds;
+fun ctr_mixfix_of (_, mx) = mx;
+
+fun define_datatypes prepare_constraint prepare_typ prepare_term lfp construct_fp
+    (wrap_opts as (no_dests, rep_compat), specs) no_defs_lthy0 =
+  let
+    (* TODO: sanity checks on arguments *)
+    (* TODO: integration with function package ("size") *)
+
+    val _ = if not lfp andalso no_dests then error "Cannot define destructor-less codatatypes"
+      else ();
+
+    fun qualify mandatory fp_b_name =
+      Binding.qualify mandatory fp_b_name o (rep_compat ? Binding.qualify false rep_compat_prefix);
+
+    val nn = length specs;
+    val fp_bs = map type_binding_of specs;
+    val fp_b_names = map Binding.name_of fp_bs;
+    val fp_common_name = mk_common_name fp_b_names;
+
+    fun prepare_type_arg (ty, c) =
+      let val TFree (s, _) = prepare_typ no_defs_lthy0 ty in
+        TFree (s, prepare_constraint no_defs_lthy0 c)
+      end;
+
+    val Ass0 = map (map prepare_type_arg o type_args_constrained_of) specs;
+    val unsorted_Ass0 = map (map (resort_tfree HOLogic.typeS)) Ass0;
+    val unsorted_As = Library.foldr1 merge_type_args unsorted_Ass0;
+
+    val (((Bs0, Cs), Xs), no_defs_lthy) =
+      no_defs_lthy0
+      |> fold (Variable.declare_typ o resort_tfree dummyS) unsorted_As
+      |> mk_TFrees (length unsorted_As)
+      ||>> mk_TFrees nn
+      ||>> apfst (map TFree) o
+        variant_types (map (prefix "'") fp_b_names) (replicate nn HOLogic.typeS);
+
+    (* TODO: cleaner handling of fake contexts, without "background_theory" *)
+    (*the "perhaps o try" below helps gracefully handles the case where the new type is defined in a
+      locale and shadows an existing global type*)
+    val fake_thy =
+      Theory.copy #> fold (fn spec => perhaps (try (Sign.add_type no_defs_lthy
+        (type_binding_of spec, length (type_args_constrained_of spec), mixfix_of spec)))) specs;
+    val fake_lthy = Proof_Context.background_theory fake_thy no_defs_lthy;
+
+    fun mk_fake_T b =
+      Type (fst (Term.dest_Type (Proof_Context.read_type_name fake_lthy true (Binding.name_of b))),
+        unsorted_As);
+
+    val fake_Ts = map mk_fake_T fp_bs;
+
+    val mixfixes = map mixfix_of specs;
+
+    val _ = (case duplicates Binding.eq_name fp_bs of [] => ()
+      | b :: _ => error ("Duplicate type name declaration " ^ quote (Binding.name_of b)));
+
+    val ctr_specss = map ctr_specs_of specs;
+
+    val disc_bindingss = map (map disc_of) ctr_specss;
+    val ctr_bindingss =
+      map2 (fn fp_b_name => map (qualify false fp_b_name o ctr_of)) fp_b_names ctr_specss;
+    val ctr_argsss = map (map args_of) ctr_specss;
+    val ctr_mixfixess = map (map ctr_mixfix_of) ctr_specss;
+
+    val sel_bindingsss = map (map (map fst)) ctr_argsss;
+    val fake_ctr_Tsss0 = map (map (map (prepare_typ fake_lthy o snd))) ctr_argsss;
+    val raw_sel_defaultsss = map (map defaults_of) ctr_specss;
+
+    val (As :: _) :: fake_ctr_Tsss =
+      burrow (burrow (Syntax.check_typs fake_lthy)) (Ass0 :: fake_ctr_Tsss0);
+
+    val _ = (case duplicates (op =) unsorted_As of [] => ()
+      | A :: _ => error ("Duplicate type parameter " ^
+          quote (Syntax.string_of_typ no_defs_lthy A)));
+
+    val rhs_As' = fold (fold (fold Term.add_tfreesT)) fake_ctr_Tsss [];
+    val _ = (case subtract (op =) (map dest_TFree As) rhs_As' of
+        [] => ()
+      | A' :: _ => error ("Extra type variable on right-hand side: " ^
+          quote (Syntax.string_of_typ no_defs_lthy (TFree A'))));
+
+    fun eq_fpT_check (T as Type (s, Us)) (Type (s', Us')) =
+        s = s' andalso (Us = Us' orelse error ("Illegal occurrence of recursive type " ^
+          quote (Syntax.string_of_typ fake_lthy T)))
+      | eq_fpT_check _ _ = false;
+
+    fun freeze_fp (T as Type (s, Us)) =
+        (case find_index (eq_fpT_check T) fake_Ts of
+          ~1 => Type (s, map freeze_fp Us)
+        | kk => nth Xs kk)
+      | freeze_fp T = T;
+
+    val ctr_TsssXs = map (map (map freeze_fp)) fake_ctr_Tsss;
+    val ctr_sum_prod_TsXs = map (mk_sumTN_balanced o map HOLogic.mk_tupleT) ctr_TsssXs;
+
+    val fp_eqs =
+      map dest_TFree Xs ~~ map (Term.typ_subst_atomic (As ~~ unsorted_As)) ctr_sum_prod_TsXs;
+
+    (* TODO: clean up list *)
+    val (pre_bnfs, ((fp_bnfs as any_fp_bnf :: _, dtors0, ctors0, fp_folds0, fp_recs0, fp_induct,
+           fp_strong_induct, dtor_ctors, ctor_dtors, ctor_injects, fp_map_thms, fp_set_thmss,
+           fp_rel_thms, fp_fold_thms, fp_rec_thms), lthy)) =
+      fp_bnf construct_fp fp_bs mixfixes (map dest_TFree unsorted_As) fp_eqs no_defs_lthy0;
+
+    val timer = time (Timer.startRealTimer ());
+
+    fun add_nesty_bnf_names Us =
+      let
+        fun add (Type (s, Ts)) ss =
+            let val (needs, ss') = fold_map add Ts ss in
+              if exists I needs then (true, insert (op =) s ss') else (false, ss')
+            end
+          | add T ss = (member (op =) Us T, ss);
+      in snd oo add end;
+
+    fun nesty_bnfs Us =
+      map_filter (bnf_of lthy) (fold (fold (fold (add_nesty_bnf_names Us))) ctr_TsssXs []);
+
+    val nesting_bnfs = nesty_bnfs As;
+    val nested_bnfs = nesty_bnfs Xs;
+
+    val pre_map_defs = map map_def_of_bnf pre_bnfs;
+    val pre_set_defss = map set_defs_of_bnf pre_bnfs;
+    val pre_rel_defs = map rel_def_of_bnf pre_bnfs;
+    val nested_set_natural's = maps set_natural'_of_bnf nested_bnfs;
+    val nesting_map_ids = map map_id_of_bnf nesting_bnfs;
+    val nesting_set_natural's = maps set_natural'_of_bnf nesting_bnfs;
+
+    val live = live_of_bnf any_fp_bnf;
+
+    val Bs =
+      map3 (fn alive => fn A as TFree (_, S) => fn B => if alive then resort_tfree S B else A)
+        (liveness_of_fp_bnf (length As) any_fp_bnf) As Bs0;
+
+    val B_ify = Term.typ_subst_atomic (As ~~ Bs);
+
+    val ctors = map (mk_ctor As) ctors0;
+    val dtors = map (mk_dtor As) dtors0;
+
+    val fpTs = map (domain_type o fastype_of) dtors;
+
+    val exists_fp_subtype = exists_subtype (member (op =) fpTs);
+
+    val ctr_Tsss = map (map (map (Term.typ_subst_atomic (Xs ~~ fpTs)))) ctr_TsssXs;
+    val ns = map length ctr_Tsss;
+    val kss = map (fn n => 1 upto n) ns;
+    val mss = map (map length) ctr_Tsss;
+    val Css = map2 replicate ns Cs;
+
+    val fp_folds as any_fp_fold :: _ = map (mk_rec_like lfp As Cs) fp_folds0;
+    val fp_recs as any_fp_rec :: _ = map (mk_rec_like lfp As Cs) fp_recs0;
+
+    val fp_fold_fun_Ts = fst (split_last (binder_types (fastype_of any_fp_fold)));
+    val fp_rec_fun_Ts = fst (split_last (binder_types (fastype_of any_fp_rec)));
+
+    val (((fold_only as (gss, _, _), rec_only as (hss, _, _)),
+          (zs, cs, cpss, unfold_only as ((pgss, crgsss), _), corec_only as ((phss, cshsss), _))),
+         names_lthy0) =
+      if lfp then
+        let
+          val y_Tsss =
+            map3 (fn n => fn ms => map2 dest_tupleT ms o dest_sumTN_balanced n o domain_type)
+              ns mss fp_fold_fun_Ts;
+          val g_Tss = map2 (map2 (curry (op --->))) y_Tsss Css;
+
+          val ((gss, ysss), lthy) =
+            lthy
+            |> mk_Freess "f" g_Tss
+            ||>> mk_Freesss "x" y_Tsss;
+          val yssss = map (map (map single)) ysss;
+
+          fun dest_rec_prodT (T as Type (@{type_name prod}, Us as [_, U])) =
+              if member (op =) Cs U then Us else [T]
+            | dest_rec_prodT T = [T];
+
+          val z_Tssss =
+            map3 (fn n => fn ms => map2 (map dest_rec_prodT oo dest_tupleT) ms o
+              dest_sumTN_balanced n o domain_type) ns mss fp_rec_fun_Ts;
+          val h_Tss = map2 (map2 (fold_rev (curry (op --->)))) z_Tssss Css;
+
+          val hss = map2 (map2 retype_free) h_Tss gss;
+          val zssss_hd = map2 (map2 (map2 (retype_free o hd))) z_Tssss ysss;
+          val (zssss_tl, lthy) =
+            lthy
+            |> mk_Freessss "y" (map (map (map tl)) z_Tssss);
+          val zssss = map2 (map2 (map2 cons)) zssss_hd zssss_tl;
+        in
+          ((((gss, g_Tss, yssss), (hss, h_Tss, zssss)),
+            ([], [], [], (([], []), ([], [])), (([], []), ([], [])))), lthy)
+        end
+      else
+        let
+          (*avoid "'a itself" arguments in coiterators and corecursors*)
+          val mss' =  map (fn [0] => [1] | ms => ms) mss;
+
+          val p_Tss = map2 (fn n => replicate (Int.max (0, n - 1)) o mk_pred1T) ns Cs;
+
+          fun flat_predss_getterss qss fss = maps (op @) (qss ~~ fss);
+
+          fun flat_preds_predsss_gettersss [] [qss] [fss] = flat_predss_getterss qss fss
+            | flat_preds_predsss_gettersss (p :: ps) (qss :: qsss) (fss :: fsss) =
+              p :: flat_predss_getterss qss fss @ flat_preds_predsss_gettersss ps qsss fsss;
+
+          fun mk_types maybe_dest_sumT fun_Ts =
+            let
+              val f_sum_prod_Ts = map range_type fun_Ts;
+              val f_prod_Tss = map2 dest_sumTN_balanced ns f_sum_prod_Ts;
+              val f_Tssss =
+                map3 (fn C => map2 (map (map (curry (op -->) C) o maybe_dest_sumT) oo dest_tupleT))
+                  Cs mss' f_prod_Tss;
+              val q_Tssss =
+                map (map (map (fn [_] => [] | [_, C] => [mk_pred1T (domain_type C)]))) f_Tssss;
+              val pf_Tss = map3 flat_preds_predsss_gettersss p_Tss q_Tssss f_Tssss;
+            in (q_Tssss, f_sum_prod_Ts, f_Tssss, pf_Tss) end;
+
+          val (r_Tssss, g_sum_prod_Ts, g_Tssss, pg_Tss) = mk_types single fp_fold_fun_Ts;
+
+          val ((((Free (z, _), cs), pss), gssss), lthy) =
+            lthy
+            |> yield_singleton (mk_Frees "z") dummyT
+            ||>> mk_Frees "a" Cs
+            ||>> mk_Freess "p" p_Tss
+            ||>> mk_Freessss "g" g_Tssss;
+          val rssss = map (map (map (fn [] => []))) r_Tssss;
+
+          fun dest_corec_sumT (T as Type (@{type_name sum}, Us as [_, U])) =
+              if member (op =) Cs U then Us else [T]
+            | dest_corec_sumT T = [T];
+
+          val (s_Tssss, h_sum_prod_Ts, h_Tssss, ph_Tss) = mk_types dest_corec_sumT fp_rec_fun_Ts;
+
+          val hssss_hd = map2 (map2 (map2 (fn T :: _ => fn [g] => retype_free T g))) h_Tssss gssss;
+          val ((sssss, hssss_tl), lthy) =
+            lthy
+            |> mk_Freessss "q" s_Tssss
+            ||>> mk_Freessss "h" (map (map (map tl)) h_Tssss);
+          val hssss = map2 (map2 (map2 cons)) hssss_hd hssss_tl;
+
+          val cpss = map2 (fn c => map (fn p => p $ c)) cs pss;
+
+          fun mk_preds_getters_join [] [cf] = cf
+            | mk_preds_getters_join [cq] [cf, cf'] =
+              mk_If cq (mk_Inl (fastype_of cf') cf) (mk_Inr (fastype_of cf) cf');
+
+          fun mk_terms qssss fssss =
+            let
+              val pfss = map3 flat_preds_predsss_gettersss pss qssss fssss;
+              val cqssss = map2 (fn c => map (map (map (fn f => f $ c)))) cs qssss;
+              val cfssss = map2 (fn c => map (map (map (fn f => f $ c)))) cs fssss;
+              val cqfsss = map2 (map2 (map2 mk_preds_getters_join)) cqssss cfssss;
+            in (pfss, cqfsss) end;
+        in
+          (((([], [], []), ([], [], [])),
+            ([z], cs, cpss, (mk_terms rssss gssss, (g_sum_prod_Ts, pg_Tss)),
+             (mk_terms sssss hssss, (h_sum_prod_Ts, ph_Tss)))), lthy)
+        end;
+
+    fun define_ctrs_case_for_type (((((((((((((((((((((((((fp_bnf, fp_b), fpT), C), ctor), dtor),
+            fp_fold), fp_rec), ctor_dtor), dtor_ctor), ctor_inject), pre_map_def), pre_set_defs),
+          pre_rel_def), fp_map_thm), fp_set_thms), fp_rel_thm), n), ks), ms), ctr_bindings),
+        ctr_mixfixes), ctr_Tss), disc_bindings), sel_bindingss), raw_sel_defaultss) no_defs_lthy =
+      let
+        val fp_b_name = Binding.name_of fp_b;
+
+        val dtorT = domain_type (fastype_of ctor);
+        val ctr_prod_Ts = map HOLogic.mk_tupleT ctr_Tss;
+        val ctr_sum_prod_T = mk_sumTN_balanced ctr_prod_Ts;
+        val case_Ts = map (fn Ts => Ts ---> C) ctr_Tss;
+
+        val (((((w, fs), xss), yss), u'), names_lthy) =
+          no_defs_lthy
+          |> yield_singleton (mk_Frees "w") dtorT
+          ||>> mk_Frees "f" case_Ts
+          ||>> mk_Freess "x" ctr_Tss
+          ||>> mk_Freess "y" (map (map B_ify) ctr_Tss)
+          ||>> yield_singleton Variable.variant_fixes fp_b_name;
+
+        val u = Free (u', fpT);
+
+        val tuple_xs = map HOLogic.mk_tuple xss;
+        val tuple_ys = map HOLogic.mk_tuple yss;
+
+        val ctr_rhss =
+          map3 (fn k => fn xs => fn tuple_x => fold_rev Term.lambda xs (ctor $
+            mk_InN_balanced ctr_sum_prod_T n tuple_x k)) ks xss tuple_xs;
+
+        val case_binding = qualify false fp_b_name (Binding.suffix_name ("_" ^ caseN) fp_b);
+
+        val case_rhs =
+          fold_rev Term.lambda (fs @ [u])
+            (mk_sum_caseN_balanced (map2 mk_uncurried_fun fs xss) $ (dtor $ u));
+
+        val ((raw_case :: raw_ctrs, raw_case_def :: raw_ctr_defs), (lthy', lthy)) = no_defs_lthy
+          |> apfst split_list o fold_map3 (fn b => fn mx => fn rhs =>
+              Local_Theory.define ((b, mx), ((Thm.def_binding b, []), rhs)) #>> apsnd snd)
+            (case_binding :: ctr_bindings) (NoSyn :: ctr_mixfixes) (case_rhs :: ctr_rhss)
+          ||> `Local_Theory.restore;
+
+        val phi = Proof_Context.export_morphism lthy lthy';
+
+        val ctr_defs = map (Morphism.thm phi) raw_ctr_defs;
+        val ctr_defs' =
+          map2 (fn m => fn def => mk_unabs_def m (def RS meta_eq_to_obj_eq)) ms ctr_defs;
+        val case_def = Morphism.thm phi raw_case_def;
+
+        val ctrs0 = map (Morphism.term phi) raw_ctrs;
+        val casex0 = Morphism.term phi raw_case;
+
+        val ctrs = map (mk_ctr As) ctrs0;
+
+        fun wrap lthy =
+          let
+            fun exhaust_tac {context = ctxt, ...} =
+              let
+                val ctor_iff_dtor_thm =
+                  let
+                    val goal =
+                      fold_rev Logic.all [w, u]
+                        (mk_Trueprop_eq (HOLogic.mk_eq (u, ctor $ w), HOLogic.mk_eq (dtor $ u, w)));
+                  in
+                    Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
+                      mk_ctor_iff_dtor_tac ctxt (map (SOME o certifyT lthy) [dtorT, fpT])
+                        (certify lthy ctor) (certify lthy dtor) ctor_dtor dtor_ctor)
+                    |> Thm.close_derivation
+                    |> Morphism.thm phi
+                  end;
+
+                val sumEN_thm' =
+                  unfold_thms lthy @{thms all_unit_eq}
+                    (Drule.instantiate' (map (SOME o certifyT lthy) ctr_prod_Ts) []
+                       (mk_sumEN_balanced n))
+                  |> Morphism.thm phi;
+              in
+                mk_exhaust_tac ctxt n ctr_defs ctor_iff_dtor_thm sumEN_thm'
+              end;
+
+            val inject_tacss =
+              map2 (fn 0 => K [] | _ => fn ctr_def => [fn {context = ctxt, ...} =>
+                  mk_inject_tac ctxt ctr_def ctor_inject]) ms ctr_defs;
+
+            val half_distinct_tacss =
+              map (map (fn (def, def') => fn {context = ctxt, ...} =>
+                mk_half_distinct_tac ctxt ctor_inject [def, def'])) (mk_half_pairss (`I ctr_defs));
+
+            val case_tacs =
+              map3 (fn k => fn m => fn ctr_def => fn {context = ctxt, ...} =>
+                mk_case_tac ctxt n k m case_def ctr_def dtor_ctor) ks ms ctr_defs;
+
+            val tacss = [exhaust_tac] :: inject_tacss @ half_distinct_tacss @ [case_tacs];
+
+            val sel_defaultss = map (map (apsnd (prepare_term lthy))) raw_sel_defaultss
+          in
+            wrap_datatype tacss (((wrap_opts, ctrs0), casex0), (disc_bindings, (sel_bindingss,
+              sel_defaultss))) lthy
+          end;
+
+        fun derive_maps_sets_rels (wrap_res, lthy) =
+          let
+            val rel_flip = rel_flip_of_bnf fp_bnf;
+            val nones = replicate live NONE;
+
+            val ctor_cong =
+              if lfp then Drule.dummy_thm
+              else cterm_instantiate_pos [NONE, NONE, SOME (certify lthy ctor)] arg_cong;
+
+            fun mk_cIn ify =
+              certify lthy o (not lfp ? curry (op $) (map_types ify ctor)) oo
+              mk_InN_balanced (ify ctr_sum_prod_T) n;
+
+            val cxIns = map2 (mk_cIn I) tuple_xs ks;
+            val cyIns = map2 (mk_cIn B_ify) tuple_ys ks;
+
+            fun mk_map_thm ctr_def' xs cxIn =
+              fold_thms lthy [ctr_def']
+                (unfold_thms lthy (pre_map_def ::
+                     (if lfp then [] else [ctor_dtor, dtor_ctor]) @ sum_prod_thms_map)
+                   (cterm_instantiate_pos (nones @ [SOME cxIn])
+                      (if lfp then fp_map_thm else fp_map_thm RS ctor_cong)))
+              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
+
+            fun mk_set_thm fp_set_thm ctr_def' xs cxIn =
+              fold_thms lthy [ctr_def']
+                (unfold_thms lthy (pre_set_defs @ nested_set_natural's @ nesting_set_natural's @
+                     (if lfp then [] else [dtor_ctor]) @ sum_prod_thms_set)
+                   (cterm_instantiate_pos [SOME cxIn] fp_set_thm))
+              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
+
+            fun mk_set_thms fp_set_thm = map3 (mk_set_thm fp_set_thm) ctr_defs' xss cxIns;
+
+            val map_thms = map3 mk_map_thm ctr_defs' xss cxIns;
+            val set_thmss = map mk_set_thms fp_set_thms;
+
+            val rel_infos = (ctr_defs' ~~ xss ~~ cxIns, ctr_defs' ~~ yss ~~ cyIns);
+
+            fun mk_rel_thm postproc ctr_defs' xs cxIn ys cyIn =
+              fold_thms lthy ctr_defs'
+                 (unfold_thms lthy (pre_rel_def :: (if lfp then [] else [dtor_ctor]) @
+                      sum_prod_thms_rel)
+                    (cterm_instantiate_pos (nones @ [SOME cxIn, SOME cyIn]) fp_rel_thm))
+              |> postproc
+              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
+
+            fun mk_rel_inject_thm (((ctr_def', xs), cxIn), ((_, ys), cyIn)) =
+              mk_rel_thm (unfold_thms lthy @{thms eq_sym_Unity_conv}) [ctr_def'] xs cxIn ys cyIn;
+
+            val rel_inject_thms = map mk_rel_inject_thm (op ~~ rel_infos);
+
+            fun mk_half_rel_distinct_thm (((xctr_def', xs), cxIn), ((yctr_def', ys), cyIn)) =
+              mk_rel_thm (fn thm => thm RS @{thm eq_False[THEN iffD1]}) [xctr_def', yctr_def']
+                xs cxIn ys cyIn;
+
+            fun mk_other_half_rel_distinct_thm thm =
+              flip_rels lthy live thm RS (rel_flip RS sym RS @{thm arg_cong[of _ _ Not]} RS iffD2);
+
+            val half_rel_distinct_thmss =
+              map (map mk_half_rel_distinct_thm) (mk_half_pairss rel_infos);
+            val other_half_rel_distinct_thmss =
+              map (map mk_other_half_rel_distinct_thm) half_rel_distinct_thmss;
+            val (rel_distinct_thms, _) =
+              join_halves n half_rel_distinct_thmss other_half_rel_distinct_thmss;
+
+            val notes =
+              [(mapN, map_thms, code_simp_attrs),
+               (rel_distinctN, rel_distinct_thms, code_simp_attrs),
+               (rel_injectN, rel_inject_thms, code_simp_attrs),
+               (setsN, flat set_thmss, code_simp_attrs)]
+              |> filter_out (null o #2)
+              |> map (fn (thmN, thms, attrs) =>
+                ((qualify true fp_b_name (Binding.name thmN), attrs), [(thms, [])]));
+          in
+            (wrap_res, lthy |> Local_Theory.notes notes |> snd)
+          end;
+
+        fun define_fold_rec no_defs_lthy =
+          let
+            val fpT_to_C = fpT --> C;
+
+            fun generate_rec_like (suf, fp_rec_like, (fss, f_Tss, xssss)) =
+              let
+                val res_T = fold_rev (curry (op --->)) f_Tss fpT_to_C;
+                val binding = qualify false fp_b_name (Binding.suffix_name ("_" ^ suf) fp_b);
+                val spec =
+                  mk_Trueprop_eq (lists_bmoc fss (Free (Binding.name_of binding, res_T)),
+                    Term.list_comb (fp_rec_like,
+                      map2 (mk_sum_caseN_balanced oo map2 mk_uncurried2_fun) fss xssss));
+              in (binding, spec) end;
+
+            val rec_like_infos =
+              [(foldN, fp_fold, fold_only),
+               (recN, fp_rec, rec_only)];
+
+            val (bindings, specs) = map generate_rec_like rec_like_infos |> split_list;
+
+            val ((csts, defs), (lthy', lthy)) = no_defs_lthy
+              |> apfst split_list o fold_map2 (fn b => fn spec =>
+                Specification.definition (SOME (b, NONE, NoSyn), ((Thm.def_binding b, []), spec))
+                #>> apsnd snd) bindings specs
+              ||> `Local_Theory.restore;
+
+            val phi = Proof_Context.export_morphism lthy lthy';
+
+            val [fold_def, rec_def] = map (Morphism.thm phi) defs;
+
+            val [foldx, recx] = map (mk_rec_like lfp As Cs o Morphism.term phi) csts;
+          in
+            ((foldx, recx, fold_def, rec_def), lthy)
+          end;
+
+        fun define_unfold_corec no_defs_lthy =
+          let
+            val B_to_fpT = C --> fpT;
+
+            fun mk_preds_getterss_join c n cps sum_prod_T cqfss =
+              Term.lambda c (mk_IfN sum_prod_T cps
+                (map2 (mk_InN_balanced sum_prod_T n) (map HOLogic.mk_tuple cqfss) (1 upto n)));
+
+            fun generate_corec_like (suf, fp_rec_like, ((pfss, cqfsss), (f_sum_prod_Ts,
+                pf_Tss))) =
+              let
+                val res_T = fold_rev (curry (op --->)) pf_Tss B_to_fpT;
+                val binding = qualify false fp_b_name (Binding.suffix_name ("_" ^ suf) fp_b);
+                val spec =
+                  mk_Trueprop_eq (lists_bmoc pfss (Free (Binding.name_of binding, res_T)),
+                    Term.list_comb (fp_rec_like,
+                      map5 mk_preds_getterss_join cs ns cpss f_sum_prod_Ts cqfsss));
+              in (binding, spec) end;
+
+            val corec_like_infos =
+              [(unfoldN, fp_fold, unfold_only),
+               (corecN, fp_rec, corec_only)];
+
+            val (bindings, specs) = map generate_corec_like corec_like_infos |> split_list;
+
+            val ((csts, defs), (lthy', lthy)) = no_defs_lthy
+              |> apfst split_list o fold_map2 (fn b => fn spec =>
+                Specification.definition (SOME (b, NONE, NoSyn), ((Thm.def_binding b, []), spec))
+                #>> apsnd snd) bindings specs
+              ||> `Local_Theory.restore;
+
+            val phi = Proof_Context.export_morphism lthy lthy';
+
+            val [unfold_def, corec_def] = map (Morphism.thm phi) defs;
+
+            val [unfold, corec] = map (mk_rec_like lfp As Cs o Morphism.term phi) csts;
+          in
+            ((unfold, corec, unfold_def, corec_def), lthy)
+          end;
+
+        val define_rec_likes = if lfp then define_fold_rec else define_unfold_corec;
+
+        fun massage_res ((wrap_res, rec_like_res), lthy) =
+          (((ctrs, xss, ctr_defs, wrap_res), rec_like_res), lthy);
+      in
+        (wrap #> (live > 0 ? derive_maps_sets_rels) ##>> define_rec_likes #> massage_res, lthy')
+      end;
+
+    fun wrap_types_and_more (wrap_types_and_mores, lthy) =
+      fold_map I wrap_types_and_mores lthy
+      |>> apsnd split_list4 o apfst split_list4 o split_list;
+
+    fun build_map build_arg (Type (s, Ts)) (Type (_, Us)) =
+      let
+        val bnf = the (bnf_of lthy s);
+        val live = live_of_bnf bnf;
+        val mapx = mk_map live Ts Us (map_of_bnf bnf);
+        val TUs' = map dest_funT (fst (strip_typeN live (fastype_of mapx)));
+      in Term.list_comb (mapx, map build_arg TUs') end;
+
+    (* TODO: Add map, sets, rel simps *)
+    val mk_simp_thmss =
+      map3 (fn (_, _, _, injects, distincts, cases, _, _, _) => fn rec_likes => fn fold_likes =>
+        injects @ distincts @ cases @ rec_likes @ fold_likes);
+
+    fun derive_induct_fold_rec_thms_for_types (((ctrss, xsss, ctr_defss, wrap_ress), (folds, recs,
+        fold_defs, rec_defs)), lthy) =
+      let
+        val (((ps, ps'), us'), names_lthy) =
+          lthy
+          |> mk_Frees' "P" (map mk_pred1T fpTs)
+          ||>> Variable.variant_fixes fp_b_names;
+
+        val us = map2 (curry Free) us' fpTs;
+
+        fun mk_sets_nested bnf =
+          let
+            val Type (T_name, Us) = T_of_bnf bnf;
+            val lives = lives_of_bnf bnf;
+            val sets = sets_of_bnf bnf;
+            fun mk_set U =
+              (case find_index (curry (op =) U) lives of
+                ~1 => Term.dummy
+              | i => nth sets i);
+          in
+            (T_name, map mk_set Us)
+          end;
+
+        val setss_nested = map mk_sets_nested nested_bnfs;
+
+        val (induct_thms, induct_thm) =
+          let
+            fun mk_set Ts t =
+              let val Type (_, Ts0) = domain_type (fastype_of t) in
+                Term.subst_atomic_types (Ts0 ~~ Ts) t
+              end;
+
+            fun mk_raw_prem_prems names_lthy (x as Free (s, T as Type (T_name, Ts0))) =
+                (case find_index (curry (op =) T) fpTs of
+                  ~1 =>
+                  (case AList.lookup (op =) setss_nested T_name of
+                    NONE => []
+                  | SOME raw_sets0 =>
+                    let
+                      val (Ts, raw_sets) =
+                        split_list (filter (exists_fp_subtype o fst) (Ts0 ~~ raw_sets0));
+                      val sets = map (mk_set Ts0) raw_sets;
+                      val (ys, names_lthy') = names_lthy |> mk_Frees s Ts;
+                      val xysets = map (pair x) (ys ~~ sets);
+                      val ppremss = map (mk_raw_prem_prems names_lthy') ys;
+                    in
+                      flat (map2 (map o apfst o cons) xysets ppremss)
+                    end)
+                | kk => [([], (kk + 1, x))])
+              | mk_raw_prem_prems _ _ = [];
+
+            fun close_prem_prem xs t =
+              fold_rev Logic.all (map Free (drop (nn + length xs)
+                (rev (Term.add_frees t (map dest_Free xs @ ps'))))) t;
+
+            fun mk_prem_prem xs (xysets, (j, x)) =
+              close_prem_prem xs (Logic.list_implies (map (fn (x', (y, set)) =>
+                  HOLogic.mk_Trueprop (HOLogic.mk_mem (y, set $ x'))) xysets,
+                HOLogic.mk_Trueprop (nth ps (j - 1) $ x)));
+
+            fun mk_raw_prem phi ctr ctr_Ts =
+              let
+                val (xs, names_lthy') = names_lthy |> mk_Frees "x" ctr_Ts;
+                val pprems = maps (mk_raw_prem_prems names_lthy') xs;
+              in (xs, pprems, HOLogic.mk_Trueprop (phi $ Term.list_comb (ctr, xs))) end;
+
+            fun mk_prem (xs, raw_pprems, concl) =
+              fold_rev Logic.all xs (Logic.list_implies (map (mk_prem_prem xs) raw_pprems, concl));
+
+            val raw_premss = map3 (map2 o mk_raw_prem) ps ctrss ctr_Tsss;
+
+            val goal =
+              Library.foldr (Logic.list_implies o apfst (map mk_prem)) (raw_premss,
+                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 (curry (op $)) ps us)));
+
+            val kksss = map (map (map (fst o snd) o #2)) raw_premss;
+
+            val ctor_induct' = fp_induct OF (map mk_sumEN_tupled_balanced mss);
+
+            val thm =
+              Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
+                mk_induct_tac ctxt nn ns mss kksss (flat ctr_defss) ctor_induct'
+                  nested_set_natural's pre_set_defss)
+              |> singleton (Proof_Context.export names_lthy lthy)
+              |> Thm.close_derivation;
+          in
+            `(conj_dests nn) thm
+          end;
+
+        val induct_cases = quasi_unambiguous_case_names (maps (map name_of_ctr) ctrss);
+
+        val (fold_thmss, rec_thmss) =
+          let
+            val xctrss = map2 (map2 (curry Term.list_comb)) ctrss xsss;
+            val gfolds = map (lists_bmoc gss) folds;
+            val hrecs = map (lists_bmoc hss) recs;
+
+            fun mk_goal fss frec_like xctr f xs fxs =
+              fold_rev (fold_rev Logic.all) (xs :: fss)
+                (mk_Trueprop_eq (frec_like $ xctr, Term.list_comb (f, fxs)));
+
+            fun build_rec_like frec_likes maybe_tick (T, U) =
+              if T = U then
+                id_const T
+              else
+                (case find_index (curry (op =) T) fpTs of
+                  ~1 => build_map (build_rec_like frec_likes maybe_tick) T U
+                | kk => maybe_tick (nth us kk) (nth frec_likes kk));
+
+            fun mk_U maybe_mk_prodT =
+              typ_subst (map2 (fn fpT => fn C => (fpT, maybe_mk_prodT fpT C)) fpTs Cs);
+
+            fun intr_rec_likes frec_likes maybe_cons maybe_tick maybe_mk_prodT (x as Free (_, T)) =
+              if member (op =) fpTs T then
+                maybe_cons x [build_rec_like frec_likes (K I) (T, mk_U (K I) T) $ x]
+              else if exists_fp_subtype T then
+                [build_rec_like frec_likes maybe_tick (T, mk_U maybe_mk_prodT T) $ x]
+              else
+                [x];
+
+            val gxsss = map (map (maps (intr_rec_likes gfolds (K I) (K I) (K I)))) xsss;
+            val hxsss =
+              map (map (maps (intr_rec_likes hrecs cons tick (curry HOLogic.mk_prodT)))) xsss;
+
+            val fold_goalss = map5 (map4 o mk_goal gss) gfolds xctrss gss xsss gxsss;
+            val rec_goalss = map5 (map4 o mk_goal hss) hrecs xctrss hss xsss hxsss;
+
+            val fold_tacss =
+              map2 (map o mk_rec_like_tac pre_map_defs nesting_map_ids fold_defs) fp_fold_thms
+                ctr_defss;
+            val rec_tacss =
+              map2 (map o mk_rec_like_tac pre_map_defs nesting_map_ids rec_defs) fp_rec_thms
+                ctr_defss;
+
+            fun prove goal tac =
+              Skip_Proof.prove lthy [] [] goal (tac o #context)
+              |> Thm.close_derivation;
+          in
+            (map2 (map2 prove) fold_goalss fold_tacss, map2 (map2 prove) rec_goalss rec_tacss)
+          end;
+
+        val simp_thmss = mk_simp_thmss wrap_ress rec_thmss fold_thmss;
+
+        val induct_case_names_attr = Attrib.internal (K (Rule_Cases.case_names induct_cases));
+        fun induct_type_attr T_name = Attrib.internal (K (Induct.induct_type T_name));
+
+        val common_notes =
+          (if nn > 1 then [(inductN, [induct_thm], [induct_case_names_attr])] else [])
+          |> map (fn (thmN, thms, attrs) =>
+            ((qualify true fp_common_name (Binding.name thmN), attrs), [(thms, [])]));
+
+        val notes =
+          [(foldN, fold_thmss, K code_simp_attrs),
+           (inductN, map single induct_thms,
+            fn T_name => [induct_case_names_attr, induct_type_attr T_name]),
+           (recN, rec_thmss, K code_simp_attrs),
+           (simpsN, simp_thmss, K [])]
+          |> maps (fn (thmN, thmss, attrs) =>
+            map3 (fn fp_b_name => fn Type (T_name, _) => fn thms =>
+              ((qualify true fp_b_name (Binding.name thmN), attrs T_name),
+               [(thms, [])])) fp_b_names fpTs thmss);
+      in
+        lthy |> Local_Theory.notes (common_notes @ notes) |> snd
+      end;
+
+    fun derive_coinduct_unfold_corec_thms_for_types (((ctrss, _, ctr_defss, wrap_ress), (unfolds,
+        corecs, unfold_defs, corec_defs)), lthy) =
+      let
+        val nesting_rel_eqs = map rel_eq_of_bnf nesting_bnfs;
+
+        val discss = map (map (mk_disc_or_sel As) o #1) wrap_ress;
+        val selsss = map (map (map (mk_disc_or_sel As)) o #2) wrap_ress;
+        val exhaust_thms = map #3 wrap_ress;
+        val disc_thmsss = map #7 wrap_ress;
+        val discIss = map #8 wrap_ress;
+        val sel_thmsss = map #9 wrap_ress;
+
+        val (((rs, us'), vs'), names_lthy) =
+          lthy
+          |> mk_Frees "R" (map (fn T => mk_pred2T T T) fpTs)
+          ||>> Variable.variant_fixes fp_b_names
+          ||>> Variable.variant_fixes (map (suffix "'") fp_b_names);
+
+        val us = map2 (curry Free) us' fpTs;
+        val udiscss = map2 (map o rapp) us discss;
+        val uselsss = map2 (map o map o rapp) us selsss;
+
+        val vs = map2 (curry Free) vs' fpTs;
+        val vdiscss = map2 (map o rapp) vs discss;
+        val vselsss = map2 (map o map o rapp) vs selsss;
+
+        val ((coinduct_thms, coinduct_thm), (strong_coinduct_thms, strong_coinduct_thm)) =
+          let
+            val uvrs = map3 (fn r => fn u => fn v => r $ u $ v) rs us vs;
+            val uv_eqs = map2 (curry HOLogic.mk_eq) us vs;
+            val strong_rs =
+              map4 (fn u => fn v => fn uvr => fn uv_eq =>
+                fold_rev Term.lambda [u, v] (HOLogic.mk_disj (uvr, uv_eq))) us vs uvrs uv_eqs;
+
+            fun build_rel_step build_arg (Type (s, Ts)) =
+              let
+                val bnf = the (bnf_of lthy s);
+                val live = live_of_bnf bnf;
+                val rel = mk_rel live Ts Ts (rel_of_bnf bnf);
+                val Ts' = map domain_type (fst (strip_typeN live (fastype_of rel)));
+              in Term.list_comb (rel, map build_arg Ts') end;
+
+            fun build_rel rs' T =
+              (case find_index (curry (op =) T) fpTs of
+                ~1 =>
+                if exists_fp_subtype T then build_rel_step (build_rel rs') T
+                else HOLogic.eq_const T
+              | kk => nth rs' kk);
+
+            fun build_rel_app rs' usel vsel =
+              fold rapp [usel, vsel] (build_rel rs' (fastype_of usel));
+
+            fun mk_prem_ctr_concls rs' n k udisc usels vdisc vsels =
+              (if k = n then [] else [HOLogic.mk_eq (udisc, vdisc)]) @
+              (if null usels then
+                 []
+               else
+                 [Library.foldr HOLogic.mk_imp (if n = 1 then [] else [udisc, vdisc],
+                    Library.foldr1 HOLogic.mk_conj (map2 (build_rel_app rs') usels vsels))]);
+
+            fun mk_prem_concl rs' n udiscs uselss vdiscs vselss =
+              Library.foldr1 HOLogic.mk_conj
+                (flat (map5 (mk_prem_ctr_concls rs' n) (1 upto n) udiscs uselss vdiscs vselss))
+              handle List.Empty => @{term True};
+
+            fun mk_prem rs' uvr u v n udiscs uselss vdiscs vselss =
+              fold_rev Logic.all [u, v] (Logic.mk_implies (HOLogic.mk_Trueprop uvr,
+                HOLogic.mk_Trueprop (mk_prem_concl rs' n udiscs uselss vdiscs vselss)));
+
+            val concl =
+              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
+                (map3 (fn uvr => fn u => fn v => HOLogic.mk_imp (uvr, HOLogic.mk_eq (u, v)))
+                   uvrs us vs));
+
+            fun mk_goal rs' =
+              Logic.list_implies (map8 (mk_prem rs') uvrs us vs ns udiscss uselsss vdiscss vselsss,
+                concl);
+
+            val goal = mk_goal rs;
+            val strong_goal = mk_goal strong_rs;
+
+            fun prove dtor_coinduct' goal =
+              Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
+                mk_coinduct_tac ctxt nesting_rel_eqs nn ns dtor_coinduct' pre_rel_defs dtor_ctors
+                  exhaust_thms ctr_defss disc_thmsss sel_thmsss)
+              |> singleton (Proof_Context.export names_lthy lthy)
+              |> Thm.close_derivation;
+
+            fun postproc nn thm =
+              Thm.permute_prems 0 nn
+                (if nn = 1 then thm RS mp
+                 else funpow nn (fn thm => reassoc_conjs (thm RS mp_conj)) thm)
+              |> Drule.zero_var_indexes
+              |> `(conj_dests nn);
+          in
+            (postproc nn (prove fp_induct goal), postproc nn (prove fp_strong_induct strong_goal))
+          end;
+
+        fun mk_maybe_not pos = not pos ? HOLogic.mk_not;
+
+        val z = the_single zs;
+        val gunfolds = map (lists_bmoc pgss) unfolds;
+        val hcorecs = map (lists_bmoc phss) corecs;
+
+        val (unfold_thmss, corec_thmss, safe_unfold_thmss, safe_corec_thmss) =
+          let
+            fun mk_goal pfss c cps fcorec_like n k ctr m cfs' =
+              fold_rev (fold_rev Logic.all) ([c] :: pfss)
+                (Logic.list_implies (seq_conds (HOLogic.mk_Trueprop oo mk_maybe_not) n k cps,
+                   mk_Trueprop_eq (fcorec_like $ c, Term.list_comb (ctr, take m cfs'))));
+
+            fun build_corec_like fcorec_likes maybe_tack (T, U) =
+              if T = U then
+                id_const T
+              else
+                (case find_index (curry (op =) U) fpTs of
+                  ~1 => build_map (build_corec_like fcorec_likes maybe_tack) T U
+                | kk => maybe_tack (nth cs kk, nth us kk) (nth fcorec_likes kk));
+
+            fun mk_U maybe_mk_sumT =
+              typ_subst (map2 (fn C => fn fpT => (maybe_mk_sumT fpT C, fpT)) Cs fpTs);
+
+            fun intr_corec_likes fcorec_likes maybe_mk_sumT maybe_tack cqf =
+              let val T = fastype_of cqf in
+                if exists_subtype (member (op =) Cs) T then
+                  build_corec_like fcorec_likes maybe_tack (T, mk_U maybe_mk_sumT T) $ cqf
+                else
+                  cqf
+              end;
+
+            val crgsss' = map (map (map (intr_corec_likes gunfolds (K I) (K I)))) crgsss;
+            val cshsss' =
+              map (map (map (intr_corec_likes hcorecs (curry mk_sumT) (tack z)))) cshsss;
+
+            val unfold_goalss =
+              map8 (map4 oooo mk_goal pgss) cs cpss gunfolds ns kss ctrss mss crgsss';
+            val corec_goalss =
+              map8 (map4 oooo mk_goal phss) cs cpss hcorecs ns kss ctrss mss cshsss';
+
+            val unfold_tacss =
+              map3 (map oo mk_corec_like_tac unfold_defs nesting_map_ids) fp_fold_thms pre_map_defs
+                ctr_defss;
+            val corec_tacss =
+              map3 (map oo mk_corec_like_tac corec_defs nesting_map_ids) fp_rec_thms pre_map_defs
+                ctr_defss;
+
+            fun prove goal tac =
+              Skip_Proof.prove lthy [] [] goal (tac o #context) |> Thm.close_derivation;
+
+            val unfold_thmss = map2 (map2 prove) unfold_goalss unfold_tacss;
+            val corec_thmss =
+              map2 (map2 prove) corec_goalss corec_tacss
+              |> map (map (unfold_thms lthy @{thms sum_case_if}));
+
+            val unfold_safesss = map2 (map2 (map2 (curry (op =)))) crgsss' crgsss;
+            val corec_safesss = map2 (map2 (map2 (curry (op =)))) cshsss' cshsss;
+
+            val filter_safesss =
+              map2 (map_filter (fn (safes, thm) => if forall I safes then SOME thm else NONE) oo
+                curry (op ~~));
+
+            val safe_unfold_thmss = filter_safesss unfold_safesss unfold_thmss;
+            val safe_corec_thmss = filter_safesss corec_safesss corec_thmss;
+          in
+            (unfold_thmss, corec_thmss, safe_unfold_thmss, safe_corec_thmss)
+          end;
+
+        val (disc_unfold_iff_thmss, disc_corec_iff_thmss) =
+          let
+            fun mk_goal c cps fcorec_like n k disc =
+              mk_Trueprop_eq (disc $ (fcorec_like $ c),
+                if n = 1 then @{const True}
+                else Library.foldr1 HOLogic.mk_conj (seq_conds mk_maybe_not n k cps));
+
+            val unfold_goalss = map6 (map2 oooo mk_goal) cs cpss gunfolds ns kss discss;
+            val corec_goalss = map6 (map2 oooo mk_goal) cs cpss hcorecs ns kss discss;
+
+            fun mk_case_split' cp =
+              Drule.instantiate' [] [SOME (certify lthy cp)] @{thm case_split};
+
+            val case_splitss' = map (map mk_case_split') cpss;
+
+            val unfold_tacss =
+              map3 (map oo mk_disc_corec_like_iff_tac) case_splitss' unfold_thmss disc_thmsss;
+            val corec_tacss =
+              map3 (map oo mk_disc_corec_like_iff_tac) case_splitss' corec_thmss disc_thmsss;
+
+            fun prove goal tac =
+              Skip_Proof.prove lthy [] [] goal (tac o #context)
+              |> singleton (Proof_Context.export names_lthy0 no_defs_lthy)
+              |> Thm.close_derivation;
+
+            fun proves [_] [_] = []
+              | proves goals tacs = map2 prove goals tacs;
+          in
+            (map2 proves unfold_goalss unfold_tacss,
+             map2 proves corec_goalss corec_tacss)
+          end;
+
+        val is_triv_discI = is_triv_implies orf is_concl_refl;
+
+        fun mk_disc_corec_like_thms corec_likes discIs =
+          map (op RS) (filter_out (is_triv_discI o snd) (corec_likes ~~ discIs));
+
+        val disc_unfold_thmss = map2 mk_disc_corec_like_thms unfold_thmss discIss;
+        val disc_corec_thmss = map2 mk_disc_corec_like_thms corec_thmss discIss;
+
+        fun mk_sel_corec_like_thm corec_like_thm sel sel_thm =
+          let
+            val (domT, ranT) = dest_funT (fastype_of sel);
+            val arg_cong' =
+              Drule.instantiate' (map (SOME o certifyT lthy) [domT, ranT])
+                [NONE, NONE, SOME (certify lthy sel)] arg_cong
+              |> Thm.varifyT_global;
+            val sel_thm' = sel_thm RSN (2, trans);
+          in
+            corec_like_thm RS arg_cong' RS sel_thm'
+          end;
+
+        fun mk_sel_corec_like_thms corec_likess =
+          map3 (map3 (map2 o mk_sel_corec_like_thm)) corec_likess selsss sel_thmsss |> map flat;
+
+        val sel_unfold_thmss = mk_sel_corec_like_thms unfold_thmss;
+        val sel_corec_thmss = mk_sel_corec_like_thms corec_thmss;
+
+        fun flat_corec_like_thms corec_likes disc_corec_likes sel_corec_likes =
+          corec_likes @ disc_corec_likes @ sel_corec_likes;
+
+        val simp_thmss =
+          mk_simp_thmss wrap_ress
+            (map3 flat_corec_like_thms safe_corec_thmss disc_corec_thmss sel_corec_thmss)
+            (map3 flat_corec_like_thms safe_unfold_thmss disc_unfold_thmss sel_unfold_thmss);
+
+        val anonymous_notes =
+          [(flat safe_unfold_thmss @ flat safe_corec_thmss, simp_attrs)]
+          |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])]));
+
+        val common_notes =
+          (if nn > 1 then
+             (* FIXME: attribs *)
+             [(coinductN, [coinduct_thm], []),
+              (strong_coinductN, [strong_coinduct_thm], [])]
+           else
+             [])
+          |> map (fn (thmN, thms, attrs) =>
+            ((qualify true fp_common_name (Binding.name thmN), attrs), [(thms, [])]));
+
+        val notes =
+          [(coinductN, map single coinduct_thms, []), (* FIXME: attribs *)
+           (corecN, corec_thmss, []),
+           (disc_corecN, disc_corec_thmss, simp_attrs),
+           (disc_corec_iffN, disc_corec_iff_thmss, simp_attrs),
+           (disc_unfoldN, disc_unfold_thmss, simp_attrs),
+           (disc_unfold_iffN, disc_unfold_iff_thmss, simp_attrs),
+           (sel_corecN, sel_corec_thmss, simp_attrs),
+           (sel_unfoldN, sel_unfold_thmss, simp_attrs),
+           (simpsN, simp_thmss, []),
+           (strong_coinductN, map single strong_coinduct_thms, []), (* FIXME: attribs *)
+           (unfoldN, unfold_thmss, [])]
+          |> maps (fn (thmN, thmss, attrs) =>
+            map_filter (fn (_, []) => NONE | (fp_b_name, thms) =>
+              SOME ((qualify true fp_b_name (Binding.name thmN), attrs),
+                [(thms, [])])) (fp_b_names ~~ thmss));
+      in
+        lthy |> Local_Theory.notes (anonymous_notes @ common_notes @ notes) |> snd
+      end;
+
+    val lthy' = lthy
+      |> fold_map define_ctrs_case_for_type (fp_bnfs ~~ fp_bs ~~ fpTs ~~ Cs ~~ ctors ~~ dtors ~~
+        fp_folds ~~ fp_recs ~~ ctor_dtors ~~ dtor_ctors ~~ ctor_injects ~~ pre_map_defs ~~
+        pre_set_defss ~~ pre_rel_defs ~~ fp_map_thms ~~ fp_set_thmss ~~ fp_rel_thms ~~ ns ~~ kss ~~
+        mss ~~ ctr_bindingss ~~ ctr_mixfixess ~~ ctr_Tsss ~~ disc_bindingss ~~ sel_bindingsss ~~
+        raw_sel_defaultsss)
+      |> wrap_types_and_more
+      |> (if lfp then derive_induct_fold_rec_thms_for_types
+          else derive_coinduct_unfold_corec_thms_for_types);
+
+    val timer = time (timer ("Constructors, discriminators, selectors, etc., for the new " ^
+      (if lfp then "" else "co") ^ "datatype"));
+  in
+    timer; lthy'
+  end;
+
+val datatypes = define_datatypes (K I) (K I) (K I);
+
+val datatype_cmd = define_datatypes Typedecl.read_constraint Syntax.parse_typ Syntax.read_term;
+
+val parse_ctr_arg =
+  @{keyword "("} |-- parse_binding_colon -- Parse.typ --| @{keyword ")"} ||
+  (Parse.typ >> pair Binding.empty);
+
+val parse_defaults =
+  @{keyword "("} |-- @{keyword "defaults"} |-- Scan.repeat parse_bound_term --| @{keyword ")"};
+
+val parse_single_spec =
+  Parse.type_args_constrained -- Parse.binding -- Parse.opt_mixfix --
+  (@{keyword "="} |-- Parse.enum1 "|" (parse_opt_binding_colon -- Parse.binding --
+    Scan.repeat parse_ctr_arg -- Scan.optional parse_defaults [] -- Parse.opt_mixfix));
+
+val parse_datatype = parse_wrap_options -- Parse.and_list1 parse_single_spec;
+
+fun parse_datatype_cmd lfp construct_fp = parse_datatype >> datatype_cmd lfp construct_fp;
+
+end;
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/BNF/Tools/bnf_fp_def_sugar_tactics.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -0,0 +1,179 @@
+(*  Title:      HOL/BNF/Tools/bnf_fp_def_sugar_tactics.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2012
+
+Tactics for datatype and codatatype sugar.
+*)
+
+signature BNF_FP_DEF_SUGAR_TACTICS =
+sig
+  val sum_prod_thms_map: thm list
+  val sum_prod_thms_set: thm list
+  val sum_prod_thms_rel: thm list
+
+  val mk_case_tac: Proof.context -> int -> int -> int -> thm -> thm -> thm -> tactic
+  val mk_coinduct_tac: Proof.context -> thm list -> int -> int list -> thm -> thm list ->
+    thm list -> thm list -> thm list list -> thm list list list -> thm list list list -> tactic
+  val mk_corec_like_tac: thm list -> thm list -> thm -> thm -> thm -> Proof.context -> tactic
+  val mk_ctor_iff_dtor_tac: Proof.context -> ctyp option list -> cterm -> cterm -> thm -> thm ->
+    tactic
+  val mk_disc_corec_like_iff_tac: thm list -> thm list -> thm list -> Proof.context -> tactic
+  val mk_exhaust_tac: Proof.context -> int -> thm list -> thm -> thm -> tactic
+  val mk_half_distinct_tac: Proof.context -> thm -> thm list -> tactic
+  val mk_induct_tac: Proof.context -> int -> int list -> int list list -> int list list list ->
+    thm list -> thm -> thm list -> thm list list -> tactic
+  val mk_inject_tac: Proof.context -> thm -> thm -> tactic
+  val mk_rec_like_tac: thm list -> thm list -> thm list -> thm -> thm -> Proof.context -> tactic
+end;
+
+structure BNF_FP_Def_Sugar_Tactics : BNF_FP_DEF_SUGAR_TACTICS =
+struct
+
+open BNF_Tactics
+open BNF_Util
+open BNF_FP
+
+val basic_simp_thms = @{thms simp_thms(7,8,12,14,22,24)};
+val more_simp_thms = basic_simp_thms @ @{thms simp_thms(11,15,16,21)};
+
+val sum_prod_thms_map = @{thms id_apply map_pair_simp sum_map.simps prod.cases};
+val sum_prod_thms_set0 =
+  @{thms SUP_empty Sup_empty Sup_insert UN_insert Un_empty_left Un_empty_right Un_iff
+      Union_Un_distrib collect_def[abs_def] image_def o_apply map_pair_simp
+      mem_Collect_eq mem_UN_compreh_eq prod_set_simps sum_map.simps sum_set_simps};
+val sum_prod_thms_set = @{thms UN_compreh_eq_eq} @ sum_prod_thms_set0;
+val sum_prod_thms_rel =
+  @{thms prod.cases prod_rel_def sum.cases sum_rel_def
+      sum.inject sum.distinct[THEN eq_False[THEN iffD2]]};
+
+val ss_if_True_False = ss_only @{thms if_True if_False};
+
+fun mk_proj T k =
+  let val binders = binder_types T in
+    fold_rev (fn T => fn t => Abs (Name.uu, T, t)) binders (Bound (length binders - k))
+  end;
+
+fun inst_as_projs ctxt k thm =
+  let
+    val fs =
+      Term.add_vars (prop_of thm) []
+      |> filter (fn (_, Type (@{type_name fun}, [_, T'])) => T' <> HOLogic.boolT | _ => false);
+    val cfs =
+      map (fn f as (_, T) => (certify ctxt (Var f), certify ctxt (mk_proj T k))) fs;
+  in
+    Drule.cterm_instantiate cfs thm
+  end;
+
+val inst_as_projs_tac = PRIMITIVE oo inst_as_projs;
+
+fun mk_case_tac ctxt n k m case_def ctr_def dtor_ctor =
+  unfold_thms_tac ctxt [case_def, ctr_def, dtor_ctor] THEN
+  (rtac (mk_sum_casesN_balanced n k RS ssubst) THEN'
+   REPEAT_DETERM_N (Int.max (0, m - 1)) o rtac (@{thm split} RS ssubst) THEN'
+   rtac refl) 1;
+
+fun mk_exhaust_tac ctxt n ctr_defs ctor_iff_dtor sumEN' =
+  unfold_thms_tac ctxt (ctor_iff_dtor :: ctr_defs) THEN rtac sumEN' 1 THEN
+  unfold_thms_tac ctxt @{thms all_prod_eq} THEN
+  EVERY' (maps (fn k => [select_prem_tac n (rotate_tac 1) k, REPEAT_DETERM o dtac meta_spec,
+    etac meta_mp, atac]) (1 upto n)) 1;
+
+fun mk_ctor_iff_dtor_tac ctxt cTs cctor cdtor ctor_dtor dtor_ctor =
+  (rtac iffI THEN'
+   EVERY' (map3 (fn cTs => fn cx => fn th =>
+     dtac (Drule.instantiate' cTs [NONE, NONE, SOME cx] arg_cong) THEN'
+     SELECT_GOAL (unfold_thms_tac ctxt [th]) THEN'
+     atac) [rev cTs, cTs] [cdtor, cctor] [dtor_ctor, ctor_dtor])) 1;
+
+fun mk_half_distinct_tac ctxt ctor_inject ctr_defs =
+  unfold_thms_tac ctxt (ctor_inject :: @{thms sum.inject} @ ctr_defs) THEN
+  rtac @{thm sum.distinct(1)} 1;
+
+fun mk_inject_tac ctxt ctr_def ctor_inject =
+  unfold_thms_tac ctxt [ctr_def] THEN rtac (ctor_inject RS ssubst) 1 THEN
+  unfold_thms_tac ctxt @{thms sum.inject Pair_eq conj_assoc} THEN rtac refl 1;
+
+(*TODO: Try "sum_prod_thms_map" here, enriched with a few theorems*)
+val rec_like_unfold_thms =
+  @{thms comp_def convol_def id_apply map_pair_def prod_case_Pair_iden sum.simps(5,6) sum_map.simps
+      split_conv unit_case_Unity};
+
+fun mk_rec_like_tac pre_map_defs map_ids rec_like_defs ctor_rec_like ctr_def ctxt =
+  unfold_thms_tac ctxt (ctr_def :: ctor_rec_like :: rec_like_defs @ pre_map_defs @ map_ids @
+    rec_like_unfold_thms) THEN unfold_thms_tac ctxt @{thms id_def} THEN rtac refl 1;
+
+fun mk_corec_like_tac corec_like_defs map_ids ctor_dtor_corec_like pre_map_def ctr_def ctxt =
+  unfold_thms_tac ctxt (ctr_def :: corec_like_defs) THEN
+  subst_tac ctxt NONE [ctor_dtor_corec_like] 1 THEN asm_simp_tac ss_if_True_False 1 THEN
+  unfold_thms_tac ctxt (pre_map_def :: sum_prod_thms_map @ map_ids) THEN
+  unfold_thms_tac ctxt @{thms id_def} THEN
+  TRY ((rtac refl ORELSE' subst_tac ctxt NONE @{thms unit_eq} THEN' rtac refl) 1);
+
+fun mk_disc_corec_like_iff_tac case_splits' corec_likes discs ctxt =
+  EVERY (map3 (fn case_split_tac => fn corec_like_thm => fn disc =>
+      case_split_tac 1 THEN unfold_thms_tac ctxt [corec_like_thm] THEN
+      asm_simp_tac (ss_only basic_simp_thms) 1 THEN
+      (if is_refl disc then all_tac else rtac disc 1))
+    (map rtac case_splits' @ [K all_tac]) corec_likes discs);
+
+val solve_prem_prem_tac =
+  REPEAT o (eresolve_tac @{thms bexE rev_bexI} ORELSE' rtac @{thm rev_bexI[OF UNIV_I]} ORELSE'
+    hyp_subst_tac ORELSE' resolve_tac @{thms disjI1 disjI2}) THEN'
+  (rtac refl ORELSE' atac ORELSE' rtac @{thm singletonI});
+
+fun mk_induct_leverage_prem_prems_tac ctxt nn kks set_natural's pre_set_defs =
+  EVERY' (maps (fn kk => [select_prem_tac nn (dtac meta_spec) kk, etac meta_mp,
+     SELECT_GOAL (unfold_thms_tac ctxt (pre_set_defs @ set_natural's @ sum_prod_thms_set0)),
+     solve_prem_prem_tac]) (rev kks)) 1;
+
+fun mk_induct_discharge_prem_tac ctxt nn n set_natural's pre_set_defs m k kks =
+  let val r = length kks in
+    EVERY' [select_prem_tac n (rotate_tac 1) k, rotate_tac ~1, hyp_subst_tac,
+      REPEAT_DETERM_N m o (dtac meta_spec THEN' rotate_tac ~1)] 1 THEN
+    EVERY [REPEAT_DETERM_N r
+        (rotate_tac ~1 1 THEN dtac meta_mp 1 THEN rotate_tac 1 1 THEN prefer_tac 2),
+      if r > 0 then PRIMITIVE Raw_Simplifier.norm_hhf else all_tac, atac 1,
+      mk_induct_leverage_prem_prems_tac ctxt nn kks set_natural's pre_set_defs]
+  end;
+
+fun mk_induct_tac ctxt nn ns mss kkss ctr_defs ctor_induct' set_natural's pre_set_defss =
+  let val n = Integer.sum ns in
+    unfold_thms_tac ctxt ctr_defs THEN rtac ctor_induct' 1 THEN inst_as_projs_tac ctxt 1 THEN
+    EVERY (map4 (EVERY oooo map3 o mk_induct_discharge_prem_tac ctxt nn n set_natural's)
+      pre_set_defss mss (unflat mss (1 upto n)) kkss)
+  end;
+
+fun mk_coinduct_same_ctr ctxt rel_eqs pre_rel_def dtor_ctor ctr_def discs sels =
+  hyp_subst_tac THEN'
+  subst_tac ctxt (SOME [1, 2]) [ctr_def] THEN'
+  SELECT_GOAL (unfold_thms_tac ctxt (pre_rel_def :: dtor_ctor :: sels @ sum_prod_thms_rel)) THEN'
+  (atac ORELSE' REPEAT o etac conjE THEN'
+     full_simp_tac
+       (ss_only (@{thm prod.inject} :: no_refl discs @ rel_eqs @ more_simp_thms)) THEN_MAYBE'
+     REPEAT o hyp_subst_tac THEN' REPEAT o rtac conjI THEN' REPEAT o rtac refl);
+
+fun mk_coinduct_distinct_ctrs discs discs' =
+  hyp_subst_tac THEN' REPEAT o etac conjE THEN'
+  full_simp_tac (ss_only (refl :: no_refl (discs @ discs') @ basic_simp_thms));
+
+fun mk_coinduct_discharge_prem_tac ctxt rel_eqs' nn kk n pre_rel_def dtor_ctor exhaust ctr_defs
+    discss selss =
+  let val ks = 1 upto n in
+    EVERY' ([rtac allI, rtac allI, rtac impI, select_prem_tac nn (dtac meta_spec) kk, dtac
+        meta_spec, dtac meta_mp, atac, rtac exhaust, K (inst_as_projs_tac ctxt 1), hyp_subst_tac] @
+      map4 (fn k => fn ctr_def => fn discs => fn sels =>
+        EVERY' ([rtac exhaust, K (inst_as_projs_tac ctxt 2)] @
+          map2 (fn k' => fn discs' =>
+            if k' = k then
+              mk_coinduct_same_ctr ctxt rel_eqs' pre_rel_def dtor_ctor ctr_def discs sels
+            else
+              mk_coinduct_distinct_ctrs discs discs') ks discss)) ks ctr_defs discss selss)
+  end;
+
+fun mk_coinduct_tac ctxt rel_eqs' nn ns dtor_coinduct' pre_rel_defs dtor_ctors exhausts ctr_defss
+    discsss selsss =
+  (rtac dtor_coinduct' THEN'
+   EVERY' (map8 (mk_coinduct_discharge_prem_tac ctxt rel_eqs' nn)
+     (1 upto nn) ns pre_rel_defs dtor_ctors exhausts ctr_defss discsss selsss)) 1;
+
+end;
--- a/src/HOL/BNF/Tools/bnf_fp_sugar.ML	Fri Sep 28 09:17:30 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1142 +0,0 @@
-(*  Title:      HOL/BNF/Tools/bnf_fp_sugar.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Sugared datatype and codatatype constructions.
-*)
-
-signature BNF_FP_SUGAR =
-sig
-  val datatypes: bool ->
-    (mixfix list -> (string * sort) list option -> binding list -> typ list * typ list list ->
-      BNF_Def.BNF list -> local_theory -> BNF_FP.fp_result * local_theory) ->
-    bool * ((((typ * sort) list * binding) * mixfix) * ((((binding * binding) *
-      (binding * typ) list) * (binding * term) list) * mixfix) list) list ->
-    local_theory -> local_theory
-  val parse_datatype_cmd: bool ->
-    (mixfix list -> (string * sort) list option -> binding list -> typ list * typ list list ->
-      BNF_Def.BNF list -> local_theory -> BNF_FP.fp_result * local_theory) ->
-    (local_theory -> local_theory) parser
-end;
-
-structure BNF_FP_Sugar : BNF_FP_SUGAR =
-struct
-
-open BNF_Util
-open BNF_Wrap
-open BNF_Def
-open BNF_FP
-open BNF_FP_Sugar_Tactics
-
-(* This function could produce clashes in contrived examples (e.g., "x.A", "x.x_A", "y.A") *)
-fun quasi_unambiguous_case_names names =
-  let
-    val ps = map (`Long_Name.base_name) names;
-    val dups = Library.duplicates (op =) (map fst ps);
-    fun underscore s =
-      let val ss = space_explode Long_Name.separator s in
-        space_implode "_" (drop (length ss - 2) ss)
-      end;
-  in
-    map (fn (base, full) => if member (op =) dups base then underscore full else base) ps
-  end;
-
-val mp_conj = @{thm mp_conj};
-
-val simp_attrs = @{attributes [simp]};
-val code_simp_attrs = Code.add_default_eqn_attrib :: simp_attrs;
-
-fun split_list4 xs = (map #1 xs, map #2 xs, map #3 xs, map #4 xs);
-
-fun resort_tfree S (TFree (s, _)) = TFree (s, S);
-
-fun typ_subst inst (T as Type (s, Ts)) =
-    (case AList.lookup (op =) inst T of
-      NONE => Type (s, map (typ_subst inst) Ts)
-    | SOME T' => T')
-  | typ_subst inst T = the_default T (AList.lookup (op =) inst T);
-
-fun variant_types ss Ss ctxt =
-  let
-    val (tfrees, _) =
-      fold_map2 (fn s => fn S => Name.variant s #> apfst (rpair S)) ss Ss (Variable.names_of ctxt);
-    val ctxt' = fold (Variable.declare_constraints o Logic.mk_type o TFree) tfrees ctxt;
-  in (tfrees, ctxt') end;
-
-val lists_bmoc = fold (fn xs => fn t => Term.list_comb (t, xs));
-
-fun mk_tupled_fun x f xs = HOLogic.tupled_lambda x (Term.list_comb (f, xs));
-fun mk_uncurried_fun f xs = mk_tupled_fun (HOLogic.mk_tuple xs) f xs;
-fun mk_uncurried2_fun f xss =
-  mk_tupled_fun (HOLogic.mk_tuple (map HOLogic.mk_tuple xss)) f (flat xss);
-
-fun mk_flip (x, Type (_, [T1, Type (_, [T2, T3])])) =
-  Abs ("x", T1, Abs ("y", T2, Var (x, T2 --> T1 --> T3) $ Bound 0 $ Bound 1));
-
-fun flip_rels lthy n thm =
-  let
-    val Rs = Term.add_vars (prop_of thm) [];
-    val Rs' = rev (drop (length Rs - n) Rs);
-    val cRs = map (fn f => (certify lthy (Var f), certify lthy (mk_flip f))) Rs';
-  in
-    Drule.cterm_instantiate cRs thm
-  end;
-
-fun mk_ctor_or_dtor get_T Ts t =
-  let val Type (_, Ts0) = get_T (fastype_of t) in
-    Term.subst_atomic_types (Ts0 ~~ Ts) t
-  end;
-
-val mk_ctor = mk_ctor_or_dtor range_type;
-val mk_dtor = mk_ctor_or_dtor domain_type;
-
-fun mk_rec_like lfp Ts Us t =
-  let
-    val (bindings, body) = strip_type (fastype_of t);
-    val (f_Us, prebody) = split_last bindings;
-    val Type (_, Ts0) = if lfp then prebody else body;
-    val Us0 = distinct (op =) (map (if lfp then body_type else domain_type) f_Us);
-  in
-    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
-  end;
-
-fun mk_map live Ts Us t =
-  let val (Type (_, Ts0), Type (_, Us0)) = strip_typeN (live + 1) (fastype_of t) |>> List.last in
-    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
-  end;
-
-fun mk_rel live Ts Us t =
-  let val [Type (_, Ts0), Type (_, Us0)] = binder_types (snd (strip_typeN live (fastype_of t))) in
-    Term.subst_atomic_types (Ts0 @ Us0 ~~ Ts @ Us) t
-  end;
-
-fun liveness_of_fp_bnf n bnf =
-  (case T_of_bnf bnf of
-    Type (_, Ts) => map (not o member (op =) (deads_of_bnf bnf)) Ts
-  | _ => replicate n false);
-
-fun tick u f = Term.lambda u (HOLogic.mk_prod (u, f $ u));
-
-fun tack z_name (c, u) f =
-  let val z = Free (z_name, mk_sumT (fastype_of u, fastype_of c)) in
-    Term.lambda z (mk_sum_case (Term.lambda u u, Term.lambda c (f $ c)) $ z)
-  end;
-
-fun cannot_merge_types () = error "Mutually recursive types must have the same type parameters";
-
-fun merge_type_arg T T' = if T = T' then T else cannot_merge_types ();
-
-fun merge_type_args (As, As') =
-  if length As = length As' then map2 merge_type_arg As As' else cannot_merge_types ();
-
-fun reassoc_conjs thm =
-  reassoc_conjs (thm RS @{thm conj_assoc[THEN iffD1]})
-  handle THM _ => thm;
-
-fun type_args_constrained_of (((cAs, _), _), _) = cAs;
-fun type_binding_of (((_, b), _), _) = b;
-fun mixfix_of ((_, mx), _) = mx;
-fun ctr_specs_of (_, ctr_specs) = ctr_specs;
-
-fun disc_of ((((disc, _), _), _), _) = disc;
-fun ctr_of ((((_, ctr), _), _), _) = ctr;
-fun args_of (((_, args), _), _) = args;
-fun defaults_of ((_, ds), _) = ds;
-fun ctr_mixfix_of (_, mx) = mx;
-
-fun define_datatypes prepare_constraint prepare_typ prepare_term lfp construct_fp (no_dests, specs)
-    no_defs_lthy0 =
-  let
-    (* TODO: sanity checks on arguments *)
-    (* TODO: integration with function package ("size") *)
-
-    val _ = if not lfp andalso no_dests then error "Cannot define destructor-less codatatypes"
-      else ();
-
-    val nn = length specs;
-    val fp_bs = map type_binding_of specs;
-    val fp_b_names = map Binding.name_of fp_bs;
-    val fp_common_name = mk_common_name fp_b_names;
-
-    fun prepare_type_arg (ty, c) =
-      let val TFree (s, _) = prepare_typ no_defs_lthy0 ty in
-        TFree (s, prepare_constraint no_defs_lthy0 c)
-      end;
-
-    val Ass0 = map (map prepare_type_arg o type_args_constrained_of) specs;
-    val unsorted_Ass0 = map (map (resort_tfree HOLogic.typeS)) Ass0;
-    val unsorted_As = Library.foldr1 merge_type_args unsorted_Ass0;
-
-    val (((Bs0, Cs), Xs), no_defs_lthy) =
-      no_defs_lthy0
-      |> fold (Variable.declare_typ o resort_tfree dummyS) unsorted_As
-      |> mk_TFrees (length unsorted_As)
-      ||>> mk_TFrees nn
-      ||>> apfst (map TFree) o
-        variant_types (map (prefix "'") fp_b_names) (replicate nn HOLogic.typeS);
-
-    (* TODO: cleaner handling of fake contexts, without "background_theory" *)
-    (*the "perhaps o try" below helps gracefully handles the case where the new type is defined in a
-      locale and shadows an existing global type*)
-    val fake_thy =
-      Theory.copy #> fold (fn spec => perhaps (try (Sign.add_type no_defs_lthy
-        (type_binding_of spec, length (type_args_constrained_of spec), mixfix_of spec)))) specs;
-    val fake_lthy = Proof_Context.background_theory fake_thy no_defs_lthy;
-
-    fun mk_fake_T b =
-      Type (fst (Term.dest_Type (Proof_Context.read_type_name fake_lthy true (Binding.name_of b))),
-        unsorted_As);
-
-    val fake_Ts = map mk_fake_T fp_bs;
-
-    val mixfixes = map mixfix_of specs;
-
-    val _ = (case duplicates Binding.eq_name fp_bs of [] => ()
-      | b :: _ => error ("Duplicate type name declaration " ^ quote (Binding.name_of b)));
-
-    val ctr_specss = map ctr_specs_of specs;
-
-    val disc_bindingss = map (map disc_of) ctr_specss;
-    val ctr_bindingss =
-      map2 (fn fp_b_name => map (Binding.qualify false fp_b_name o ctr_of)) fp_b_names ctr_specss;
-    val ctr_argsss = map (map args_of) ctr_specss;
-    val ctr_mixfixess = map (map ctr_mixfix_of) ctr_specss;
-
-    val sel_bindingsss = map (map (map fst)) ctr_argsss;
-    val fake_ctr_Tsss0 = map (map (map (prepare_typ fake_lthy o snd))) ctr_argsss;
-    val raw_sel_defaultsss = map (map defaults_of) ctr_specss;
-
-    val (As :: _) :: fake_ctr_Tsss =
-      burrow (burrow (Syntax.check_typs fake_lthy)) (Ass0 :: fake_ctr_Tsss0);
-
-    val _ = (case duplicates (op =) unsorted_As of [] => ()
-      | A :: _ => error ("Duplicate type parameter " ^
-          quote (Syntax.string_of_typ no_defs_lthy A)));
-
-    val rhs_As' = fold (fold (fold Term.add_tfreesT)) fake_ctr_Tsss [];
-    val _ = (case subtract (op =) (map dest_TFree As) rhs_As' of
-        [] => ()
-      | A' :: _ => error ("Extra type variable on right-hand side: " ^
-          quote (Syntax.string_of_typ no_defs_lthy (TFree A'))));
-
-    fun eq_fpT_check (T as Type (s, Us)) (Type (s', Us')) =
-        s = s' andalso (Us = Us' orelse error ("Illegal occurrence of recursive type " ^
-          quote (Syntax.string_of_typ fake_lthy T)))
-      | eq_fpT_check _ _ = false;
-
-    fun freeze_fp (T as Type (s, Us)) =
-        (case find_index (eq_fpT_check T) fake_Ts of
-          ~1 => Type (s, map freeze_fp Us)
-        | kk => nth Xs kk)
-      | freeze_fp T = T;
-
-    val ctr_TsssXs = map (map (map freeze_fp)) fake_ctr_Tsss;
-    val ctr_sum_prod_TsXs = map (mk_sumTN_balanced o map HOLogic.mk_tupleT) ctr_TsssXs;
-
-    val fp_eqs =
-      map dest_TFree Xs ~~ map (Term.typ_subst_atomic (As ~~ unsorted_As)) ctr_sum_prod_TsXs;
-
-    (* TODO: clean up list *)
-    val (pre_bnfs, ((fp_bnfs as any_fp_bnf :: _, dtors0, ctors0, fp_folds0, fp_recs0, fp_induct,
-           fp_strong_induct, dtor_ctors, ctor_dtors, ctor_injects, fp_map_thms, fp_set_thmss,
-           fp_rel_thms, fp_fold_thms, fp_rec_thms), lthy)) =
-      fp_bnf construct_fp fp_bs mixfixes (map dest_TFree unsorted_As) fp_eqs no_defs_lthy0;
-
-    val timer = time (Timer.startRealTimer ());
-
-    fun add_nesty_bnf_names Us =
-      let
-        fun add (Type (s, Ts)) ss =
-            let val (needs, ss') = fold_map add Ts ss in
-              if exists I needs then (true, insert (op =) s ss') else (false, ss')
-            end
-          | add T ss = (member (op =) Us T, ss);
-      in snd oo add end;
-
-    fun nesty_bnfs Us =
-      map_filter (bnf_of lthy) (fold (fold (fold (add_nesty_bnf_names Us))) ctr_TsssXs []);
-
-    val nesting_bnfs = nesty_bnfs As;
-    val nested_bnfs = nesty_bnfs Xs;
-
-    val pre_map_defs = map map_def_of_bnf pre_bnfs;
-    val pre_set_defss = map set_defs_of_bnf pre_bnfs;
-    val pre_rel_defs = map rel_def_of_bnf pre_bnfs;
-    val nested_set_natural's = maps set_natural'_of_bnf nested_bnfs;
-    val nesting_map_ids = map map_id_of_bnf nesting_bnfs;
-    val nesting_set_natural's = maps set_natural'_of_bnf nesting_bnfs;
-
-    val live = live_of_bnf any_fp_bnf;
-
-    val Bs =
-      map3 (fn alive => fn A as TFree (_, S) => fn B => if alive then resort_tfree S B else A)
-        (liveness_of_fp_bnf (length As) any_fp_bnf) As Bs0;
-
-    val B_ify = Term.typ_subst_atomic (As ~~ Bs);
-
-    val ctors = map (mk_ctor As) ctors0;
-    val dtors = map (mk_dtor As) dtors0;
-
-    val fpTs = map (domain_type o fastype_of) dtors;
-
-    val exists_fp_subtype = exists_subtype (member (op =) fpTs);
-
-    val ctr_Tsss = map (map (map (Term.typ_subst_atomic (Xs ~~ fpTs)))) ctr_TsssXs;
-    val ns = map length ctr_Tsss;
-    val kss = map (fn n => 1 upto n) ns;
-    val mss = map (map length) ctr_Tsss;
-    val Css = map2 replicate ns Cs;
-
-    val fp_folds as any_fp_fold :: _ = map (mk_rec_like lfp As Cs) fp_folds0;
-    val fp_recs as any_fp_rec :: _ = map (mk_rec_like lfp As Cs) fp_recs0;
-
-    val fp_fold_fun_Ts = fst (split_last (binder_types (fastype_of any_fp_fold)));
-    val fp_rec_fun_Ts = fst (split_last (binder_types (fastype_of any_fp_rec)));
-
-    val (((fold_only as (gss, _, _), rec_only as (hss, _, _)),
-          (zs, cs, cpss, unfold_only as ((pgss, crgsss), _), corec_only as ((phss, cshsss), _))),
-         names_lthy0) =
-      if lfp then
-        let
-          val y_Tsss =
-            map3 (fn n => fn ms => map2 dest_tupleT ms o dest_sumTN_balanced n o domain_type)
-              ns mss fp_fold_fun_Ts;
-          val g_Tss = map2 (map2 (curry (op --->))) y_Tsss Css;
-
-          val ((gss, ysss), lthy) =
-            lthy
-            |> mk_Freess "f" g_Tss
-            ||>> mk_Freesss "x" y_Tsss;
-          val yssss = map (map (map single)) ysss;
-
-          fun dest_rec_prodT (T as Type (@{type_name prod}, Us as [_, U])) =
-              if member (op =) Cs U then Us else [T]
-            | dest_rec_prodT T = [T];
-
-          val z_Tssss =
-            map3 (fn n => fn ms => map2 (map dest_rec_prodT oo dest_tupleT) ms o
-              dest_sumTN_balanced n o domain_type) ns mss fp_rec_fun_Ts;
-          val h_Tss = map2 (map2 (fold_rev (curry (op --->)))) z_Tssss Css;
-
-          val hss = map2 (map2 retype_free) h_Tss gss;
-          val zssss_hd = map2 (map2 (map2 (retype_free o hd))) z_Tssss ysss;
-          val (zssss_tl, lthy) =
-            lthy
-            |> mk_Freessss "y" (map (map (map tl)) z_Tssss);
-          val zssss = map2 (map2 (map2 cons)) zssss_hd zssss_tl;
-        in
-          ((((gss, g_Tss, yssss), (hss, h_Tss, zssss)),
-            ([], [], [], (([], []), ([], [])), (([], []), ([], [])))), lthy)
-        end
-      else
-        let
-          (*avoid "'a itself" arguments in coiterators and corecursors*)
-          val mss' =  map (fn [0] => [1] | ms => ms) mss;
-
-          val p_Tss = map2 (fn n => replicate (Int.max (0, n - 1)) o mk_pred1T) ns Cs;
-
-          fun flat_predss_getterss qss fss = maps (op @) (qss ~~ fss);
-
-          fun flat_preds_predsss_gettersss [] [qss] [fss] = flat_predss_getterss qss fss
-            | flat_preds_predsss_gettersss (p :: ps) (qss :: qsss) (fss :: fsss) =
-              p :: flat_predss_getterss qss fss @ flat_preds_predsss_gettersss ps qsss fsss;
-
-          fun mk_types maybe_dest_sumT fun_Ts =
-            let
-              val f_sum_prod_Ts = map range_type fun_Ts;
-              val f_prod_Tss = map2 dest_sumTN_balanced ns f_sum_prod_Ts;
-              val f_Tssss =
-                map3 (fn C => map2 (map (map (curry (op -->) C) o maybe_dest_sumT) oo dest_tupleT))
-                  Cs mss' f_prod_Tss;
-              val q_Tssss =
-                map (map (map (fn [_] => [] | [_, C] => [mk_pred1T (domain_type C)]))) f_Tssss;
-              val pf_Tss = map3 flat_preds_predsss_gettersss p_Tss q_Tssss f_Tssss;
-            in (q_Tssss, f_sum_prod_Ts, f_Tssss, pf_Tss) end;
-
-          val (r_Tssss, g_sum_prod_Ts, g_Tssss, pg_Tss) = mk_types single fp_fold_fun_Ts;
-
-          val ((((Free (z, _), cs), pss), gssss), lthy) =
-            lthy
-            |> yield_singleton (mk_Frees "z") dummyT
-            ||>> mk_Frees "a" Cs
-            ||>> mk_Freess "p" p_Tss
-            ||>> mk_Freessss "g" g_Tssss;
-          val rssss = map (map (map (fn [] => []))) r_Tssss;
-
-          fun dest_corec_sumT (T as Type (@{type_name sum}, Us as [_, U])) =
-              if member (op =) Cs U then Us else [T]
-            | dest_corec_sumT T = [T];
-
-          val (s_Tssss, h_sum_prod_Ts, h_Tssss, ph_Tss) = mk_types dest_corec_sumT fp_rec_fun_Ts;
-
-          val hssss_hd = map2 (map2 (map2 (fn T :: _ => fn [g] => retype_free T g))) h_Tssss gssss;
-          val ((sssss, hssss_tl), lthy) =
-            lthy
-            |> mk_Freessss "q" s_Tssss
-            ||>> mk_Freessss "h" (map (map (map tl)) h_Tssss);
-          val hssss = map2 (map2 (map2 cons)) hssss_hd hssss_tl;
-
-          val cpss = map2 (fn c => map (fn p => p $ c)) cs pss;
-
-          fun mk_preds_getters_join [] [cf] = cf
-            | mk_preds_getters_join [cq] [cf, cf'] =
-              mk_If cq (mk_Inl (fastype_of cf') cf) (mk_Inr (fastype_of cf) cf');
-
-          fun mk_terms qssss fssss =
-            let
-              val pfss = map3 flat_preds_predsss_gettersss pss qssss fssss;
-              val cqssss = map2 (fn c => map (map (map (fn f => f $ c)))) cs qssss;
-              val cfssss = map2 (fn c => map (map (map (fn f => f $ c)))) cs fssss;
-              val cqfsss = map2 (map2 (map2 mk_preds_getters_join)) cqssss cfssss;
-            in (pfss, cqfsss) end;
-        in
-          (((([], [], []), ([], [], [])),
-            ([z], cs, cpss, (mk_terms rssss gssss, (g_sum_prod_Ts, pg_Tss)),
-             (mk_terms sssss hssss, (h_sum_prod_Ts, ph_Tss)))), lthy)
-        end;
-
-    fun define_ctrs_case_for_type (((((((((((((((((((((((((fp_bnf, fp_b), fpT), C), ctor), dtor),
-            fp_fold), fp_rec), ctor_dtor), dtor_ctor), ctor_inject), pre_map_def), pre_set_defs),
-          pre_rel_def), fp_map_thm), fp_set_thms), fp_rel_thm), n), ks), ms), ctr_bindings),
-        ctr_mixfixes), ctr_Tss), disc_bindings), sel_bindingss), raw_sel_defaultss) no_defs_lthy =
-      let
-        val fp_b_name = Binding.name_of fp_b;
-
-        val dtorT = domain_type (fastype_of ctor);
-        val ctr_prod_Ts = map HOLogic.mk_tupleT ctr_Tss;
-        val ctr_sum_prod_T = mk_sumTN_balanced ctr_prod_Ts;
-        val case_Ts = map (fn Ts => Ts ---> C) ctr_Tss;
-
-        val (((((w, fs), xss), yss), u'), names_lthy) =
-          no_defs_lthy
-          |> yield_singleton (mk_Frees "w") dtorT
-          ||>> mk_Frees "f" case_Ts
-          ||>> mk_Freess "x" ctr_Tss
-          ||>> mk_Freess "y" (map (map B_ify) ctr_Tss)
-          ||>> yield_singleton Variable.variant_fixes fp_b_name;
-
-        val u = Free (u', fpT);
-
-        val tuple_xs = map HOLogic.mk_tuple xss;
-        val tuple_ys = map HOLogic.mk_tuple yss;
-
-        val ctr_rhss =
-          map3 (fn k => fn xs => fn tuple_x => fold_rev Term.lambda xs (ctor $
-            mk_InN_balanced ctr_sum_prod_T n tuple_x k)) ks xss tuple_xs;
-
-        val case_binding = Binding.suffix_name ("_" ^ caseN) fp_b;
-
-        val case_rhs =
-          fold_rev Term.lambda (fs @ [u])
-            (mk_sum_caseN_balanced (map2 mk_uncurried_fun fs xss) $ (dtor $ u));
-
-        val ((raw_case :: raw_ctrs, raw_case_def :: raw_ctr_defs), (lthy', lthy)) = no_defs_lthy
-          |> apfst split_list o fold_map3 (fn b => fn mx => fn rhs =>
-              Local_Theory.define ((b, mx), ((Thm.def_binding b, []), rhs)) #>> apsnd snd)
-            (case_binding :: ctr_bindings) (NoSyn :: ctr_mixfixes) (case_rhs :: ctr_rhss)
-          ||> `Local_Theory.restore;
-
-        val phi = Proof_Context.export_morphism lthy lthy';
-
-        val ctr_defs = map (Morphism.thm phi) raw_ctr_defs;
-        val ctr_defs' =
-          map2 (fn m => fn def => mk_unabs_def m (def RS meta_eq_to_obj_eq)) ms ctr_defs;
-        val case_def = Morphism.thm phi raw_case_def;
-
-        val ctrs0 = map (Morphism.term phi) raw_ctrs;
-        val casex0 = Morphism.term phi raw_case;
-
-        val ctrs = map (mk_ctr As) ctrs0;
-
-        fun wrap lthy =
-          let
-            fun exhaust_tac {context = ctxt, ...} =
-              let
-                val ctor_iff_dtor_thm =
-                  let
-                    val goal =
-                      fold_rev Logic.all [w, u]
-                        (mk_Trueprop_eq (HOLogic.mk_eq (u, ctor $ w), HOLogic.mk_eq (dtor $ u, w)));
-                  in
-                    Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
-                      mk_ctor_iff_dtor_tac ctxt (map (SOME o certifyT lthy) [dtorT, fpT])
-                        (certify lthy ctor) (certify lthy dtor) ctor_dtor dtor_ctor)
-                    |> Thm.close_derivation
-                    |> Morphism.thm phi
-                  end;
-
-                val sumEN_thm' =
-                  unfold_thms lthy @{thms all_unit_eq}
-                    (Drule.instantiate' (map (SOME o certifyT lthy) ctr_prod_Ts) []
-                       (mk_sumEN_balanced n))
-                  |> Morphism.thm phi;
-              in
-                mk_exhaust_tac ctxt n ctr_defs ctor_iff_dtor_thm sumEN_thm'
-              end;
-
-            val inject_tacss =
-              map2 (fn 0 => K [] | _ => fn ctr_def => [fn {context = ctxt, ...} =>
-                  mk_inject_tac ctxt ctr_def ctor_inject]) ms ctr_defs;
-
-            val half_distinct_tacss =
-              map (map (fn (def, def') => fn {context = ctxt, ...} =>
-                mk_half_distinct_tac ctxt ctor_inject [def, def'])) (mk_half_pairss (`I ctr_defs));
-
-            val case_tacs =
-              map3 (fn k => fn m => fn ctr_def => fn {context = ctxt, ...} =>
-                mk_case_tac ctxt n k m case_def ctr_def dtor_ctor) ks ms ctr_defs;
-
-            val tacss = [exhaust_tac] :: inject_tacss @ half_distinct_tacss @ [case_tacs];
-
-            val sel_defaultss = map (map (apsnd (prepare_term lthy))) raw_sel_defaultss
-          in
-            wrap_datatype tacss (((no_dests, ctrs0), casex0), (disc_bindings, (sel_bindingss,
-              sel_defaultss))) lthy
-          end;
-
-        fun derive_maps_sets_rels (wrap_res, lthy) =
-          let
-            val rel_flip = rel_flip_of_bnf fp_bnf;
-            val nones = replicate live NONE;
-
-            val ctor_cong =
-              if lfp then Drule.dummy_thm
-              else cterm_instantiate_pos [NONE, NONE, SOME (certify lthy ctor)] arg_cong;
-
-            fun mk_cIn ify =
-              certify lthy o (not lfp ? curry (op $) (map_types ify ctor)) oo
-              mk_InN_balanced (ify ctr_sum_prod_T) n;
-
-            val cxIns = map2 (mk_cIn I) tuple_xs ks;
-            val cyIns = map2 (mk_cIn B_ify) tuple_ys ks;
-
-            fun mk_map_thm ctr_def' xs cxIn =
-              fold_thms lthy [ctr_def']
-                (unfold_thms lthy (pre_map_def ::
-                     (if lfp then [] else [ctor_dtor, dtor_ctor]) @ sum_prod_thms_map)
-                   (cterm_instantiate_pos (nones @ [SOME cxIn])
-                      (if lfp then fp_map_thm else fp_map_thm RS ctor_cong)))
-              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
-
-            fun mk_set_thm fp_set_thm ctr_def' xs cxIn =
-              fold_thms lthy [ctr_def']
-                (unfold_thms lthy (pre_set_defs @ nested_set_natural's @ nesting_set_natural's @
-                     (if lfp then [] else [dtor_ctor]) @ sum_prod_thms_set)
-                   (cterm_instantiate_pos [SOME cxIn] fp_set_thm))
-              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
-
-            fun mk_set_thms fp_set_thm = map3 (mk_set_thm fp_set_thm) ctr_defs' xss cxIns;
-
-            val map_thms = map3 mk_map_thm ctr_defs' xss cxIns;
-            val set_thmss = map mk_set_thms fp_set_thms;
-
-            val rel_infos = (ctr_defs' ~~ xss ~~ cxIns, ctr_defs' ~~ yss ~~ cyIns);
-
-            fun mk_rel_thm postproc ctr_defs' xs cxIn ys cyIn =
-              fold_thms lthy ctr_defs'
-                 (unfold_thms lthy (pre_rel_def :: (if lfp then [] else [dtor_ctor]) @
-                      sum_prod_thms_rel)
-                    (cterm_instantiate_pos (nones @ [SOME cxIn, SOME cyIn]) fp_rel_thm))
-              |> postproc
-              |> singleton (Proof_Context.export names_lthy no_defs_lthy);
-
-            fun mk_rel_inject_thm (((ctr_def', xs), cxIn), ((_, ys), cyIn)) =
-              mk_rel_thm (unfold_thms lthy @{thms eq_sym_Unity_conv}) [ctr_def'] xs cxIn ys cyIn;
-
-            val rel_inject_thms = map mk_rel_inject_thm (op ~~ rel_infos);
-
-            fun mk_half_rel_distinct_thm (((xctr_def', xs), cxIn), ((yctr_def', ys), cyIn)) =
-              mk_rel_thm (fn thm => thm RS @{thm eq_False[THEN iffD1]}) [xctr_def', yctr_def']
-                xs cxIn ys cyIn;
-
-            fun mk_other_half_rel_distinct_thm thm =
-              flip_rels lthy live thm RS (rel_flip RS sym RS @{thm arg_cong[of _ _ Not]} RS iffD2);
-
-            val half_rel_distinct_thmss =
-              map (map mk_half_rel_distinct_thm) (mk_half_pairss rel_infos);
-            val other_half_rel_distinct_thmss =
-              map (map mk_other_half_rel_distinct_thm) half_rel_distinct_thmss;
-            val (rel_distinct_thms, _) =
-              join_halves n half_rel_distinct_thmss other_half_rel_distinct_thmss;
-
-            val notes =
-              [(mapN, map_thms, code_simp_attrs),
-               (rel_distinctN, rel_distinct_thms, code_simp_attrs),
-               (rel_injectN, rel_inject_thms, code_simp_attrs),
-               (setsN, flat set_thmss, code_simp_attrs)]
-              |> filter_out (null o #2)
-              |> map (fn (thmN, thms, attrs) =>
-                ((Binding.qualify true fp_b_name (Binding.name thmN), attrs), [(thms, [])]));
-          in
-            (wrap_res, lthy |> Local_Theory.notes notes |> snd)
-          end;
-
-        fun define_fold_rec no_defs_lthy =
-          let
-            val fpT_to_C = fpT --> C;
-
-            fun generate_rec_like (suf, fp_rec_like, (fss, f_Tss, xssss)) =
-              let
-                val res_T = fold_rev (curry (op --->)) f_Tss fpT_to_C;
-                val binding = Binding.suffix_name ("_" ^ suf) fp_b;
-                val spec =
-                  mk_Trueprop_eq (lists_bmoc fss (Free (Binding.name_of binding, res_T)),
-                    Term.list_comb (fp_rec_like,
-                      map2 (mk_sum_caseN_balanced oo map2 mk_uncurried2_fun) fss xssss));
-              in (binding, spec) end;
-
-            val rec_like_infos =
-              [(foldN, fp_fold, fold_only),
-               (recN, fp_rec, rec_only)];
-
-            val (bindings, specs) = map generate_rec_like rec_like_infos |> split_list;
-
-            val ((csts, defs), (lthy', lthy)) = no_defs_lthy
-              |> apfst split_list o fold_map2 (fn b => fn spec =>
-                Specification.definition (SOME (b, NONE, NoSyn), ((Thm.def_binding b, []), spec))
-                #>> apsnd snd) bindings specs
-              ||> `Local_Theory.restore;
-
-            val phi = Proof_Context.export_morphism lthy lthy';
-
-            val [fold_def, rec_def] = map (Morphism.thm phi) defs;
-
-            val [foldx, recx] = map (mk_rec_like lfp As Cs o Morphism.term phi) csts;
-          in
-            ((foldx, recx, fold_def, rec_def), lthy)
-          end;
-
-        fun define_unfold_corec no_defs_lthy =
-          let
-            val B_to_fpT = C --> fpT;
-
-            fun mk_preds_getterss_join c n cps sum_prod_T cqfss =
-              Term.lambda c (mk_IfN sum_prod_T cps
-                (map2 (mk_InN_balanced sum_prod_T n) (map HOLogic.mk_tuple cqfss) (1 upto n)));
-
-            fun generate_corec_like (suf, fp_rec_like, ((pfss, cqfsss), (f_sum_prod_Ts,
-                pf_Tss))) =
-              let
-                val res_T = fold_rev (curry (op --->)) pf_Tss B_to_fpT;
-                val binding = Binding.suffix_name ("_" ^ suf) fp_b;
-                val spec =
-                  mk_Trueprop_eq (lists_bmoc pfss (Free (Binding.name_of binding, res_T)),
-                    Term.list_comb (fp_rec_like,
-                      map5 mk_preds_getterss_join cs ns cpss f_sum_prod_Ts cqfsss));
-              in (binding, spec) end;
-
-            val corec_like_infos =
-              [(unfoldN, fp_fold, unfold_only),
-               (corecN, fp_rec, corec_only)];
-
-            val (bindings, specs) = map generate_corec_like corec_like_infos |> split_list;
-
-            val ((csts, defs), (lthy', lthy)) = no_defs_lthy
-              |> apfst split_list o fold_map2 (fn b => fn spec =>
-                Specification.definition (SOME (b, NONE, NoSyn), ((Thm.def_binding b, []), spec))
-                #>> apsnd snd) bindings specs
-              ||> `Local_Theory.restore;
-
-            val phi = Proof_Context.export_morphism lthy lthy';
-
-            val [unfold_def, corec_def] = map (Morphism.thm phi) defs;
-
-            val [unfold, corec] = map (mk_rec_like lfp As Cs o Morphism.term phi) csts;
-          in
-            ((unfold, corec, unfold_def, corec_def), lthy)
-          end;
-
-        val define_rec_likes = if lfp then define_fold_rec else define_unfold_corec;
-
-        fun massage_res ((wrap_res, rec_like_res), lthy) =
-          (((ctrs, xss, ctr_defs, wrap_res), rec_like_res), lthy);
-      in
-        (wrap #> (live > 0 ? derive_maps_sets_rels) ##>> define_rec_likes #> massage_res, lthy')
-      end;
-
-    fun wrap_types_and_more (wrap_types_and_mores, lthy) =
-      fold_map I wrap_types_and_mores lthy
-      |>> apsnd split_list4 o apfst split_list4 o split_list;
-
-    fun build_map build_arg (Type (s, Ts)) (Type (_, Us)) =
-      let
-        val bnf = the (bnf_of lthy s);
-        val live = live_of_bnf bnf;
-        val mapx = mk_map live Ts Us (map_of_bnf bnf);
-        val TUs' = map dest_funT (fst (strip_typeN live (fastype_of mapx)));
-      in Term.list_comb (mapx, map build_arg TUs') end;
-
-    (* TODO: Add map, sets, rel simps *)
-    val mk_simp_thmss =
-      map3 (fn (_, _, _, injects, distincts, cases, _, _, _) => fn rec_likes => fn fold_likes =>
-        injects @ distincts @ cases @ rec_likes @ fold_likes);
-
-    fun derive_induct_fold_rec_thms_for_types (((ctrss, xsss, ctr_defss, wrap_ress), (folds, recs,
-        fold_defs, rec_defs)), lthy) =
-      let
-        val (((ps, ps'), us'), names_lthy) =
-          lthy
-          |> mk_Frees' "P" (map mk_pred1T fpTs)
-          ||>> Variable.variant_fixes fp_b_names;
-
-        val us = map2 (curry Free) us' fpTs;
-
-        fun mk_sets_nested bnf =
-          let
-            val Type (T_name, Us) = T_of_bnf bnf;
-            val lives = lives_of_bnf bnf;
-            val sets = sets_of_bnf bnf;
-            fun mk_set U =
-              (case find_index (curry (op =) U) lives of
-                ~1 => Term.dummy
-              | i => nth sets i);
-          in
-            (T_name, map mk_set Us)
-          end;
-
-        val setss_nested = map mk_sets_nested nested_bnfs;
-
-        val (induct_thms, induct_thm) =
-          let
-            fun mk_set Ts t =
-              let val Type (_, Ts0) = domain_type (fastype_of t) in
-                Term.subst_atomic_types (Ts0 ~~ Ts) t
-              end;
-
-            fun mk_raw_prem_prems names_lthy (x as Free (s, T as Type (T_name, Ts0))) =
-                (case find_index (curry (op =) T) fpTs of
-                  ~1 =>
-                  (case AList.lookup (op =) setss_nested T_name of
-                    NONE => []
-                  | SOME raw_sets0 =>
-                    let
-                      val (Ts, raw_sets) =
-                        split_list (filter (exists_fp_subtype o fst) (Ts0 ~~ raw_sets0));
-                      val sets = map (mk_set Ts0) raw_sets;
-                      val (ys, names_lthy') = names_lthy |> mk_Frees s Ts;
-                      val xysets = map (pair x) (ys ~~ sets);
-                      val ppremss = map (mk_raw_prem_prems names_lthy') ys;
-                    in
-                      flat (map2 (map o apfst o cons) xysets ppremss)
-                    end)
-                | kk => [([], (kk + 1, x))])
-              | mk_raw_prem_prems _ _ = [];
-
-            fun close_prem_prem xs t =
-              fold_rev Logic.all (map Free (drop (nn + length xs)
-                (rev (Term.add_frees t (map dest_Free xs @ ps'))))) t;
-
-            fun mk_prem_prem xs (xysets, (j, x)) =
-              close_prem_prem xs (Logic.list_implies (map (fn (x', (y, set)) =>
-                  HOLogic.mk_Trueprop (HOLogic.mk_mem (y, set $ x'))) xysets,
-                HOLogic.mk_Trueprop (nth ps (j - 1) $ x)));
-
-            fun mk_raw_prem phi ctr ctr_Ts =
-              let
-                val (xs, names_lthy') = names_lthy |> mk_Frees "x" ctr_Ts;
-                val pprems = maps (mk_raw_prem_prems names_lthy') xs;
-              in (xs, pprems, HOLogic.mk_Trueprop (phi $ Term.list_comb (ctr, xs))) end;
-
-            fun mk_prem (xs, raw_pprems, concl) =
-              fold_rev Logic.all xs (Logic.list_implies (map (mk_prem_prem xs) raw_pprems, concl));
-
-            val raw_premss = map3 (map2 o mk_raw_prem) ps ctrss ctr_Tsss;
-
-            val goal =
-              Library.foldr (Logic.list_implies o apfst (map mk_prem)) (raw_premss,
-                HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj (map2 (curry (op $)) ps us)));
-
-            val kksss = map (map (map (fst o snd) o #2)) raw_premss;
-
-            val ctor_induct' = fp_induct OF (map mk_sumEN_tupled_balanced mss);
-
-            val thm =
-              Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
-                mk_induct_tac ctxt nn ns mss kksss (flat ctr_defss) ctor_induct'
-                  nested_set_natural's pre_set_defss)
-              |> singleton (Proof_Context.export names_lthy lthy)
-              |> Thm.close_derivation;
-          in
-            `(conj_dests nn) thm
-          end;
-
-        val induct_cases = quasi_unambiguous_case_names (maps (map name_of_ctr) ctrss);
-
-        val (fold_thmss, rec_thmss) =
-          let
-            val xctrss = map2 (map2 (curry Term.list_comb)) ctrss xsss;
-            val gfolds = map (lists_bmoc gss) folds;
-            val hrecs = map (lists_bmoc hss) recs;
-
-            fun mk_goal fss frec_like xctr f xs fxs =
-              fold_rev (fold_rev Logic.all) (xs :: fss)
-                (mk_Trueprop_eq (frec_like $ xctr, Term.list_comb (f, fxs)));
-
-            fun build_rec_like frec_likes maybe_tick (T, U) =
-              if T = U then
-                id_const T
-              else
-                (case find_index (curry (op =) T) fpTs of
-                  ~1 => build_map (build_rec_like frec_likes maybe_tick) T U
-                | kk => maybe_tick (nth us kk) (nth frec_likes kk));
-
-            fun mk_U maybe_mk_prodT =
-              typ_subst (map2 (fn fpT => fn C => (fpT, maybe_mk_prodT fpT C)) fpTs Cs);
-
-            fun intr_rec_likes frec_likes maybe_cons maybe_tick maybe_mk_prodT (x as Free (_, T)) =
-              if member (op =) fpTs T then
-                maybe_cons x [build_rec_like frec_likes (K I) (T, mk_U (K I) T) $ x]
-              else if exists_fp_subtype T then
-                [build_rec_like frec_likes maybe_tick (T, mk_U maybe_mk_prodT T) $ x]
-              else
-                [x];
-
-            val gxsss = map (map (maps (intr_rec_likes gfolds (K I) (K I) (K I)))) xsss;
-            val hxsss =
-              map (map (maps (intr_rec_likes hrecs cons tick (curry HOLogic.mk_prodT)))) xsss;
-
-            val fold_goalss = map5 (map4 o mk_goal gss) gfolds xctrss gss xsss gxsss;
-            val rec_goalss = map5 (map4 o mk_goal hss) hrecs xctrss hss xsss hxsss;
-
-            val fold_tacss =
-              map2 (map o mk_rec_like_tac pre_map_defs nesting_map_ids fold_defs) fp_fold_thms
-                ctr_defss;
-            val rec_tacss =
-              map2 (map o mk_rec_like_tac pre_map_defs nesting_map_ids rec_defs) fp_rec_thms
-                ctr_defss;
-
-            fun prove goal tac =
-              Skip_Proof.prove lthy [] [] goal (tac o #context)
-              |> Thm.close_derivation;
-          in
-            (map2 (map2 prove) fold_goalss fold_tacss, map2 (map2 prove) rec_goalss rec_tacss)
-          end;
-
-        val simp_thmss = mk_simp_thmss wrap_ress rec_thmss fold_thmss;
-
-        val induct_case_names_attr = Attrib.internal (K (Rule_Cases.case_names induct_cases));
-        fun induct_type_attr T_name = Attrib.internal (K (Induct.induct_type T_name));
-
-        val common_notes =
-          (if nn > 1 then [(inductN, [induct_thm], [induct_case_names_attr])] else [])
-          |> map (fn (thmN, thms, attrs) =>
-            ((Binding.qualify true fp_common_name (Binding.name thmN), attrs), [(thms, [])]));
-
-        val notes =
-          [(inductN, map single induct_thms,
-            fn T_name => [induct_case_names_attr, induct_type_attr T_name]),
-           (foldN, fold_thmss, K code_simp_attrs),
-           (recN, rec_thmss, K code_simp_attrs),
-           (simpsN, simp_thmss, K [])]
-          |> maps (fn (thmN, thmss, attrs) =>
-            map3 (fn b => fn Type (T_name, _) => fn thms =>
-              ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), attrs T_name),
-                [(thms, [])])) fp_bs fpTs thmss);
-      in
-        lthy |> Local_Theory.notes (common_notes @ notes) |> snd
-      end;
-
-    fun derive_coinduct_unfold_corec_thms_for_types (((ctrss, _, ctr_defss, wrap_ress), (unfolds,
-        corecs, unfold_defs, corec_defs)), lthy) =
-      let
-        val nesting_rel_eqs = map rel_eq_of_bnf nesting_bnfs;
-
-        val discss = map (map (mk_disc_or_sel As) o #1) wrap_ress;
-        val selsss = map (map (map (mk_disc_or_sel As)) o #2) wrap_ress;
-        val exhaust_thms = map #3 wrap_ress;
-        val disc_thmsss = map #7 wrap_ress;
-        val discIss = map #8 wrap_ress;
-        val sel_thmsss = map #9 wrap_ress;
-
-        val (((rs, us'), vs'), names_lthy) =
-          lthy
-          |> mk_Frees "R" (map (fn T => mk_pred2T T T) fpTs)
-          ||>> Variable.variant_fixes fp_b_names
-          ||>> Variable.variant_fixes (map (suffix "'") fp_b_names);
-
-        val us = map2 (curry Free) us' fpTs;
-        val udiscss = map2 (map o rapp) us discss;
-        val uselsss = map2 (map o map o rapp) us selsss;
-
-        val vs = map2 (curry Free) vs' fpTs;
-        val vdiscss = map2 (map o rapp) vs discss;
-        val vselsss = map2 (map o map o rapp) vs selsss;
-
-        val ((coinduct_thms, coinduct_thm), (strong_coinduct_thms, strong_coinduct_thm)) =
-          let
-            val uvrs = map3 (fn r => fn u => fn v => r $ u $ v) rs us vs;
-            val uv_eqs = map2 (curry HOLogic.mk_eq) us vs;
-            val strong_rs =
-              map4 (fn u => fn v => fn uvr => fn uv_eq =>
-                fold_rev Term.lambda [u, v] (HOLogic.mk_disj (uvr, uv_eq))) us vs uvrs uv_eqs;
-
-            fun build_rel_step build_arg (Type (s, Ts)) =
-              let
-                val bnf = the (bnf_of lthy s);
-                val live = live_of_bnf bnf;
-                val rel = mk_rel live Ts Ts (rel_of_bnf bnf);
-                val Ts' = map domain_type (fst (strip_typeN live (fastype_of rel)));
-              in Term.list_comb (rel, map build_arg Ts') end;
-
-            fun build_rel rs' T =
-              (case find_index (curry (op =) T) fpTs of
-                ~1 =>
-                if exists_fp_subtype T then build_rel_step (build_rel rs') T
-                else HOLogic.eq_const T
-              | kk => nth rs' kk);
-
-            fun build_rel_app rs' usel vsel =
-              fold rapp [usel, vsel] (build_rel rs' (fastype_of usel));
-
-            fun mk_prem_ctr_concls rs' n k udisc usels vdisc vsels =
-              (if k = n then [] else [HOLogic.mk_eq (udisc, vdisc)]) @
-              (if null usels then
-                 []
-               else
-                 [Library.foldr HOLogic.mk_imp (if n = 1 then [] else [udisc, vdisc],
-                    Library.foldr1 HOLogic.mk_conj (map2 (build_rel_app rs') usels vsels))]);
-
-            fun mk_prem_concl rs' n udiscs uselss vdiscs vselss =
-              Library.foldr1 HOLogic.mk_conj
-                (flat (map5 (mk_prem_ctr_concls rs' n) (1 upto n) udiscs uselss vdiscs vselss))
-              handle List.Empty => @{term True};
-
-            fun mk_prem rs' uvr u v n udiscs uselss vdiscs vselss =
-              fold_rev Logic.all [u, v] (Logic.mk_implies (HOLogic.mk_Trueprop uvr,
-                HOLogic.mk_Trueprop (mk_prem_concl rs' n udiscs uselss vdiscs vselss)));
-
-            val concl =
-              HOLogic.mk_Trueprop (Library.foldr1 HOLogic.mk_conj
-                (map3 (fn uvr => fn u => fn v => HOLogic.mk_imp (uvr, HOLogic.mk_eq (u, v)))
-                   uvrs us vs));
-
-            fun mk_goal rs' =
-              Logic.list_implies (map8 (mk_prem rs') uvrs us vs ns udiscss uselsss vdiscss vselsss,
-                concl);
-
-            val goal = mk_goal rs;
-            val strong_goal = mk_goal strong_rs;
-
-            fun prove dtor_coinduct' goal =
-              Skip_Proof.prove lthy [] [] goal (fn {context = ctxt, ...} =>
-                mk_coinduct_tac ctxt nesting_rel_eqs nn ns dtor_coinduct' pre_rel_defs dtor_ctors
-                  exhaust_thms ctr_defss disc_thmsss sel_thmsss)
-              |> singleton (Proof_Context.export names_lthy lthy)
-              |> Thm.close_derivation;
-
-            fun postproc nn thm =
-              Thm.permute_prems 0 nn
-                (if nn = 1 then thm RS mp
-                 else funpow nn (fn thm => reassoc_conjs (thm RS mp_conj)) thm)
-              |> Drule.zero_var_indexes
-              |> `(conj_dests nn);
-          in
-            (postproc nn (prove fp_induct goal), postproc nn (prove fp_strong_induct strong_goal))
-          end;
-
-        fun mk_maybe_not pos = not pos ? HOLogic.mk_not;
-
-        val z = the_single zs;
-        val gunfolds = map (lists_bmoc pgss) unfolds;
-        val hcorecs = map (lists_bmoc phss) corecs;
-
-        val (unfold_thmss, corec_thmss, safe_unfold_thmss, safe_corec_thmss) =
-          let
-            fun mk_goal pfss c cps fcorec_like n k ctr m cfs' =
-              fold_rev (fold_rev Logic.all) ([c] :: pfss)
-                (Logic.list_implies (seq_conds (HOLogic.mk_Trueprop oo mk_maybe_not) n k cps,
-                   mk_Trueprop_eq (fcorec_like $ c, Term.list_comb (ctr, take m cfs'))));
-
-            fun build_corec_like fcorec_likes maybe_tack (T, U) =
-              if T = U then
-                id_const T
-              else
-                (case find_index (curry (op =) U) fpTs of
-                  ~1 => build_map (build_corec_like fcorec_likes maybe_tack) T U
-                | kk => maybe_tack (nth cs kk, nth us kk) (nth fcorec_likes kk));
-
-            fun mk_U maybe_mk_sumT =
-              typ_subst (map2 (fn C => fn fpT => (maybe_mk_sumT fpT C, fpT)) Cs fpTs);
-
-            fun intr_corec_likes fcorec_likes maybe_mk_sumT maybe_tack cqf =
-              let val T = fastype_of cqf in
-                if exists_subtype (member (op =) Cs) T then
-                  build_corec_like fcorec_likes maybe_tack (T, mk_U maybe_mk_sumT T) $ cqf
-                else
-                  cqf
-              end;
-
-            val crgsss' = map (map (map (intr_corec_likes gunfolds (K I) (K I)))) crgsss;
-            val cshsss' =
-              map (map (map (intr_corec_likes hcorecs (curry mk_sumT) (tack z)))) cshsss;
-
-            val unfold_goalss =
-              map8 (map4 oooo mk_goal pgss) cs cpss gunfolds ns kss ctrss mss crgsss';
-            val corec_goalss =
-              map8 (map4 oooo mk_goal phss) cs cpss hcorecs ns kss ctrss mss cshsss';
-
-            val unfold_tacss =
-              map3 (map oo mk_corec_like_tac unfold_defs nesting_map_ids) fp_fold_thms pre_map_defs
-                ctr_defss;
-            val corec_tacss =
-              map3 (map oo mk_corec_like_tac corec_defs nesting_map_ids) fp_rec_thms pre_map_defs
-                ctr_defss;
-
-            fun prove goal tac =
-              Skip_Proof.prove lthy [] [] goal (tac o #context) |> Thm.close_derivation;
-
-            val unfold_thmss = map2 (map2 prove) unfold_goalss unfold_tacss;
-            val corec_thmss =
-              map2 (map2 prove) corec_goalss corec_tacss
-              |> map (map (unfold_thms lthy @{thms sum_case_if}));
-
-            val unfold_safesss = map2 (map2 (map2 (curry (op =)))) crgsss' crgsss;
-            val corec_safesss = map2 (map2 (map2 (curry (op =)))) cshsss' cshsss;
-
-            val filter_safesss =
-              map2 (map_filter (fn (safes, thm) => if forall I safes then SOME thm else NONE) oo
-                curry (op ~~));
-
-            val safe_unfold_thmss = filter_safesss unfold_safesss unfold_thmss;
-            val safe_corec_thmss = filter_safesss corec_safesss corec_thmss;
-          in
-            (unfold_thmss, corec_thmss, safe_unfold_thmss, safe_corec_thmss)
-          end;
-
-        val (disc_unfold_iff_thmss, disc_corec_iff_thmss) =
-          let
-            fun mk_goal c cps fcorec_like n k disc =
-              mk_Trueprop_eq (disc $ (fcorec_like $ c),
-                if n = 1 then @{const True}
-                else Library.foldr1 HOLogic.mk_conj (seq_conds mk_maybe_not n k cps));
-
-            val unfold_goalss = map6 (map2 oooo mk_goal) cs cpss gunfolds ns kss discss;
-            val corec_goalss = map6 (map2 oooo mk_goal) cs cpss hcorecs ns kss discss;
-
-            fun mk_case_split' cp =
-              Drule.instantiate' [] [SOME (certify lthy cp)] @{thm case_split};
-
-            val case_splitss' = map (map mk_case_split') cpss;
-
-            val unfold_tacss =
-              map3 (map oo mk_disc_corec_like_iff_tac) case_splitss' unfold_thmss disc_thmsss;
-            val corec_tacss =
-              map3 (map oo mk_disc_corec_like_iff_tac) case_splitss' corec_thmss disc_thmsss;
-
-            fun prove goal tac =
-              Skip_Proof.prove lthy [] [] goal (tac o #context)
-              |> singleton (Proof_Context.export names_lthy0 no_defs_lthy)
-              |> Thm.close_derivation;
-
-            fun proves [_] [_] = []
-              | proves goals tacs = map2 prove goals tacs;
-          in
-            (map2 proves unfold_goalss unfold_tacss,
-             map2 proves corec_goalss corec_tacss)
-          end;
-
-        val is_triv_discI = is_triv_implies orf is_concl_refl;
-
-        fun mk_disc_corec_like_thms corec_likes discIs =
-          map (op RS) (filter_out (is_triv_discI o snd) (corec_likes ~~ discIs));
-
-        val disc_unfold_thmss = map2 mk_disc_corec_like_thms unfold_thmss discIss;
-        val disc_corec_thmss = map2 mk_disc_corec_like_thms corec_thmss discIss;
-
-        fun mk_sel_corec_like_thm corec_like_thm sel sel_thm =
-          let
-            val (domT, ranT) = dest_funT (fastype_of sel);
-            val arg_cong' =
-              Drule.instantiate' (map (SOME o certifyT lthy) [domT, ranT])
-                [NONE, NONE, SOME (certify lthy sel)] arg_cong
-              |> Thm.varifyT_global;
-            val sel_thm' = sel_thm RSN (2, trans);
-          in
-            corec_like_thm RS arg_cong' RS sel_thm'
-          end;
-
-        fun mk_sel_corec_like_thms corec_likess =
-          map3 (map3 (map2 o mk_sel_corec_like_thm)) corec_likess selsss sel_thmsss |> map flat;
-
-        val sel_unfold_thmss = mk_sel_corec_like_thms unfold_thmss;
-        val sel_corec_thmss = mk_sel_corec_like_thms corec_thmss;
-
-        fun flat_corec_like_thms corec_likes disc_corec_likes sel_corec_likes =
-          corec_likes @ disc_corec_likes @ sel_corec_likes;
-
-        val simp_thmss =
-          mk_simp_thmss wrap_ress
-            (map3 flat_corec_like_thms safe_corec_thmss disc_corec_thmss sel_corec_thmss)
-            (map3 flat_corec_like_thms safe_unfold_thmss disc_unfold_thmss sel_unfold_thmss);
-
-        val anonymous_notes =
-          [(flat safe_unfold_thmss @ flat safe_corec_thmss, simp_attrs)]
-          |> map (fn (thms, attrs) => ((Binding.empty, attrs), [(thms, [])]));
-
-        val common_notes =
-          (if nn > 1 then
-             (* FIXME: attribs *)
-             [(coinductN, [coinduct_thm], []),
-              (strong_coinductN, [strong_coinduct_thm], [])]
-           else
-             [])
-          |> map (fn (thmN, thms, attrs) =>
-            ((Binding.qualify true fp_common_name (Binding.name thmN), attrs), [(thms, [])]));
-
-        val notes =
-          [(coinductN, map single coinduct_thms, []), (* FIXME: attribs *)
-           (corecN, corec_thmss, []),
-           (disc_corecN, disc_corec_thmss, simp_attrs),
-           (disc_corec_iffN, disc_corec_iff_thmss, simp_attrs),
-           (disc_unfoldN, disc_unfold_thmss, simp_attrs),
-           (disc_unfold_iffN, disc_unfold_iff_thmss, simp_attrs),
-           (sel_corecN, sel_corec_thmss, simp_attrs),
-           (sel_unfoldN, sel_unfold_thmss, simp_attrs),
-           (simpsN, simp_thmss, []),
-           (strong_coinductN, map single strong_coinduct_thms, []), (* FIXME: attribs *)
-           (unfoldN, unfold_thmss, [])]
-          |> maps (fn (thmN, thmss, attrs) =>
-            map_filter (fn (_, []) => NONE | (b, thms) =>
-              SOME ((Binding.qualify true (Binding.name_of b) (Binding.name thmN), attrs),
-                [(thms, [])])) (fp_bs ~~ thmss));
-      in
-        lthy |> Local_Theory.notes (anonymous_notes @ common_notes @ notes) |> snd
-      end;
-
-    val lthy' = lthy
-      |> fold_map define_ctrs_case_for_type (fp_bnfs ~~ fp_bs ~~ fpTs ~~ Cs ~~ ctors ~~ dtors ~~
-        fp_folds ~~ fp_recs ~~ ctor_dtors ~~ dtor_ctors ~~ ctor_injects ~~ pre_map_defs ~~
-        pre_set_defss ~~ pre_rel_defs ~~ fp_map_thms ~~ fp_set_thmss ~~ fp_rel_thms ~~ ns ~~ kss ~~
-        mss ~~ ctr_bindingss ~~ ctr_mixfixess ~~ ctr_Tsss ~~ disc_bindingss ~~ sel_bindingsss ~~
-        raw_sel_defaultsss)
-      |> wrap_types_and_more
-      |> (if lfp then derive_induct_fold_rec_thms_for_types
-          else derive_coinduct_unfold_corec_thms_for_types);
-
-    val timer = time (timer ("Constructors, discriminators, selectors, etc., for the new " ^
-      (if lfp then "" else "co") ^ "datatype"));
-  in
-    timer; lthy'
-  end;
-
-val datatypes = define_datatypes (K I) (K I) (K I);
-
-val datatype_cmd = define_datatypes Typedecl.read_constraint Syntax.parse_typ Syntax.read_term;
-
-val parse_ctr_arg =
-  @{keyword "("} |-- parse_binding_colon -- Parse.typ --| @{keyword ")"} ||
-  (Parse.typ >> pair Binding.empty);
-
-val parse_defaults =
-  @{keyword "("} |-- @{keyword "defaults"} |-- Scan.repeat parse_bound_term --| @{keyword ")"};
-
-val parse_single_spec =
-  Parse.type_args_constrained -- Parse.binding -- Parse.opt_mixfix --
-  (@{keyword "="} |-- Parse.enum1 "|" (parse_opt_binding_colon -- Parse.binding --
-    Scan.repeat parse_ctr_arg -- Scan.optional parse_defaults [] -- Parse.opt_mixfix));
-
-val parse_datatype = parse_wrap_options -- Parse.and_list1 parse_single_spec;
-
-fun parse_datatype_cmd lfp construct_fp = parse_datatype >> datatype_cmd lfp construct_fp;
-
-end;
--- a/src/HOL/BNF/Tools/bnf_fp_sugar_tactics.ML	Fri Sep 28 09:17:30 2012 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,179 +0,0 @@
-(*  Title:      HOL/BNF/Tools/bnf_fp_sugar_tactics.ML
-    Author:     Jasmin Blanchette, TU Muenchen
-    Copyright   2012
-
-Tactics for datatype and codatatype sugar.
-*)
-
-signature BNF_FP_SUGAR_TACTICS =
-sig
-  val sum_prod_thms_map: thm list
-  val sum_prod_thms_set: thm list
-  val sum_prod_thms_rel: thm list
-
-  val mk_case_tac: Proof.context -> int -> int -> int -> thm -> thm -> thm -> tactic
-  val mk_coinduct_tac: Proof.context -> thm list -> int -> int list -> thm -> thm list ->
-    thm list -> thm list -> thm list list -> thm list list list -> thm list list list -> tactic
-  val mk_corec_like_tac: thm list -> thm list -> thm -> thm -> thm -> Proof.context -> tactic
-  val mk_ctor_iff_dtor_tac: Proof.context -> ctyp option list -> cterm -> cterm -> thm -> thm ->
-    tactic
-  val mk_disc_corec_like_iff_tac: thm list -> thm list -> thm list -> Proof.context -> tactic
-  val mk_exhaust_tac: Proof.context -> int -> thm list -> thm -> thm -> tactic
-  val mk_half_distinct_tac: Proof.context -> thm -> thm list -> tactic
-  val mk_induct_tac: Proof.context -> int -> int list -> int list list -> int list list list ->
-    thm list -> thm -> thm list -> thm list list -> tactic
-  val mk_inject_tac: Proof.context -> thm -> thm -> tactic
-  val mk_rec_like_tac: thm list -> thm list -> thm list -> thm -> thm -> Proof.context -> tactic
-end;
-
-structure BNF_FP_Sugar_Tactics : BNF_FP_SUGAR_TACTICS =
-struct
-
-open BNF_Tactics
-open BNF_Util
-open BNF_FP
-
-val basic_simp_thms = @{thms simp_thms(7,8,12,14,22,24)};
-val more_simp_thms = basic_simp_thms @ @{thms simp_thms(11,15,16,21)};
-
-val sum_prod_thms_map = @{thms id_apply map_pair_simp sum_map.simps prod.cases};
-val sum_prod_thms_set0 =
-  @{thms SUP_empty Sup_empty Sup_insert UN_insert Un_empty_left Un_empty_right Un_iff
-      Union_Un_distrib collect_def[abs_def] image_def o_apply map_pair_simp
-      mem_Collect_eq mem_UN_compreh_eq prod_set_simps sum_map.simps sum_set_simps};
-val sum_prod_thms_set = @{thms UN_compreh_eq_eq} @ sum_prod_thms_set0;
-val sum_prod_thms_rel =
-  @{thms prod.cases prod_rel_def sum.cases sum_rel_def
-      sum.inject sum.distinct[THEN eq_False[THEN iffD2]]};
-
-val ss_if_True_False = ss_only @{thms if_True if_False};
-
-fun mk_proj T k =
-  let val binders = binder_types T in
-    fold_rev (fn T => fn t => Abs (Name.uu, T, t)) binders (Bound (length binders - k))
-  end;
-
-fun inst_as_projs ctxt k thm =
-  let
-    val fs =
-      Term.add_vars (prop_of thm) []
-      |> filter (fn (_, Type (@{type_name fun}, [_, T'])) => T' <> HOLogic.boolT | _ => false);
-    val cfs =
-      map (fn f as (_, T) => (certify ctxt (Var f), certify ctxt (mk_proj T k))) fs;
-  in
-    Drule.cterm_instantiate cfs thm
-  end;
-
-val inst_as_projs_tac = PRIMITIVE oo inst_as_projs;
-
-fun mk_case_tac ctxt n k m case_def ctr_def dtor_ctor =
-  unfold_thms_tac ctxt [case_def, ctr_def, dtor_ctor] THEN
-  (rtac (mk_sum_casesN_balanced n k RS ssubst) THEN'
-   REPEAT_DETERM_N (Int.max (0, m - 1)) o rtac (@{thm split} RS ssubst) THEN'
-   rtac refl) 1;
-
-fun mk_exhaust_tac ctxt n ctr_defs ctor_iff_dtor sumEN' =
-  unfold_thms_tac ctxt (ctor_iff_dtor :: ctr_defs) THEN rtac sumEN' 1 THEN
-  unfold_thms_tac ctxt @{thms all_prod_eq} THEN
-  EVERY' (maps (fn k => [select_prem_tac n (rotate_tac 1) k, REPEAT_DETERM o dtac meta_spec,
-    etac meta_mp, atac]) (1 upto n)) 1;
-
-fun mk_ctor_iff_dtor_tac ctxt cTs cctor cdtor ctor_dtor dtor_ctor =
-  (rtac iffI THEN'
-   EVERY' (map3 (fn cTs => fn cx => fn th =>
-     dtac (Drule.instantiate' cTs [NONE, NONE, SOME cx] arg_cong) THEN'
-     SELECT_GOAL (unfold_thms_tac ctxt [th]) THEN'
-     atac) [rev cTs, cTs] [cdtor, cctor] [dtor_ctor, ctor_dtor])) 1;
-
-fun mk_half_distinct_tac ctxt ctor_inject ctr_defs =
-  unfold_thms_tac ctxt (ctor_inject :: @{thms sum.inject} @ ctr_defs) THEN
-  rtac @{thm sum.distinct(1)} 1;
-
-fun mk_inject_tac ctxt ctr_def ctor_inject =
-  unfold_thms_tac ctxt [ctr_def] THEN rtac (ctor_inject RS ssubst) 1 THEN
-  unfold_thms_tac ctxt @{thms sum.inject Pair_eq conj_assoc} THEN rtac refl 1;
-
-(*TODO: Try "sum_prod_thms_map" here, enriched with a few theorems*)
-val rec_like_unfold_thms =
-  @{thms comp_def convol_def id_apply map_pair_def prod_case_Pair_iden sum.simps(5,6) sum_map.simps
-      split_conv unit_case_Unity};
-
-fun mk_rec_like_tac pre_map_defs map_ids rec_like_defs ctor_rec_like ctr_def ctxt =
-  unfold_thms_tac ctxt (ctr_def :: ctor_rec_like :: rec_like_defs @ pre_map_defs @ map_ids @
-    rec_like_unfold_thms) THEN unfold_thms_tac ctxt @{thms id_def} THEN rtac refl 1;
-
-fun mk_corec_like_tac corec_like_defs map_ids ctor_dtor_corec_like pre_map_def ctr_def ctxt =
-  unfold_thms_tac ctxt (ctr_def :: corec_like_defs) THEN
-  subst_tac ctxt NONE [ctor_dtor_corec_like] 1 THEN asm_simp_tac ss_if_True_False 1 THEN
-  unfold_thms_tac ctxt (pre_map_def :: sum_prod_thms_map @ map_ids) THEN
-  unfold_thms_tac ctxt @{thms id_def} THEN
-  TRY ((rtac refl ORELSE' subst_tac ctxt NONE @{thms unit_eq} THEN' rtac refl) 1);
-
-fun mk_disc_corec_like_iff_tac case_splits' corec_likes discs ctxt =
-  EVERY (map3 (fn case_split_tac => fn corec_like_thm => fn disc =>
-      case_split_tac 1 THEN unfold_thms_tac ctxt [corec_like_thm] THEN
-      asm_simp_tac (ss_only basic_simp_thms) 1 THEN
-      (if is_refl disc then all_tac else rtac disc 1))
-    (map rtac case_splits' @ [K all_tac]) corec_likes discs);
-
-val solve_prem_prem_tac =
-  REPEAT o (eresolve_tac @{thms bexE rev_bexI} ORELSE' rtac @{thm rev_bexI[OF UNIV_I]} ORELSE'
-    hyp_subst_tac ORELSE' resolve_tac @{thms disjI1 disjI2}) THEN'
-  (rtac refl ORELSE' atac ORELSE' rtac @{thm singletonI});
-
-fun mk_induct_leverage_prem_prems_tac ctxt nn kks set_natural's pre_set_defs =
-  EVERY' (maps (fn kk => [select_prem_tac nn (dtac meta_spec) kk, etac meta_mp,
-     SELECT_GOAL (unfold_thms_tac ctxt (pre_set_defs @ set_natural's @ sum_prod_thms_set0)),
-     solve_prem_prem_tac]) (rev kks)) 1;
-
-fun mk_induct_discharge_prem_tac ctxt nn n set_natural's pre_set_defs m k kks =
-  let val r = length kks in
-    EVERY' [select_prem_tac n (rotate_tac 1) k, rotate_tac ~1, hyp_subst_tac,
-      REPEAT_DETERM_N m o (dtac meta_spec THEN' rotate_tac ~1)] 1 THEN
-    EVERY [REPEAT_DETERM_N r
-        (rotate_tac ~1 1 THEN dtac meta_mp 1 THEN rotate_tac 1 1 THEN prefer_tac 2),
-      if r > 0 then PRIMITIVE Raw_Simplifier.norm_hhf else all_tac, atac 1,
-      mk_induct_leverage_prem_prems_tac ctxt nn kks set_natural's pre_set_defs]
-  end;
-
-fun mk_induct_tac ctxt nn ns mss kkss ctr_defs ctor_induct' set_natural's pre_set_defss =
-  let val n = Integer.sum ns in
-    unfold_thms_tac ctxt ctr_defs THEN rtac ctor_induct' 1 THEN inst_as_projs_tac ctxt 1 THEN
-    EVERY (map4 (EVERY oooo map3 o mk_induct_discharge_prem_tac ctxt nn n set_natural's)
-      pre_set_defss mss (unflat mss (1 upto n)) kkss)
-  end;
-
-fun mk_coinduct_same_ctr ctxt rel_eqs pre_rel_def dtor_ctor ctr_def discs sels =
-  hyp_subst_tac THEN'
-  subst_tac ctxt (SOME [1, 2]) [ctr_def] THEN'
-  SELECT_GOAL (unfold_thms_tac ctxt (pre_rel_def :: dtor_ctor :: sels @ sum_prod_thms_rel)) THEN'
-  (atac ORELSE' REPEAT o etac conjE THEN'
-     full_simp_tac
-       (ss_only (@{thm prod.inject} :: no_refl discs @ rel_eqs @ more_simp_thms)) THEN_MAYBE'
-     REPEAT o hyp_subst_tac THEN' REPEAT o rtac conjI THEN' REPEAT o rtac refl);
-
-fun mk_coinduct_distinct_ctrs discs discs' =
-  hyp_subst_tac THEN' REPEAT o etac conjE THEN'
-  full_simp_tac (ss_only (refl :: no_refl (discs @ discs') @ basic_simp_thms));
-
-fun mk_coinduct_discharge_prem_tac ctxt rel_eqs' nn kk n pre_rel_def dtor_ctor exhaust ctr_defs
-    discss selss =
-  let val ks = 1 upto n in
-    EVERY' ([rtac allI, rtac allI, rtac impI, select_prem_tac nn (dtac meta_spec) kk, dtac
-        meta_spec, dtac meta_mp, atac, rtac exhaust, K (inst_as_projs_tac ctxt 1), hyp_subst_tac] @
-      map4 (fn k => fn ctr_def => fn discs => fn sels =>
-        EVERY' ([rtac exhaust, K (inst_as_projs_tac ctxt 2)] @
-          map2 (fn k' => fn discs' =>
-            if k' = k then
-              mk_coinduct_same_ctr ctxt rel_eqs' pre_rel_def dtor_ctor ctr_def discs sels
-            else
-              mk_coinduct_distinct_ctrs discs discs') ks discss)) ks ctr_defs discss selss)
-  end;
-
-fun mk_coinduct_tac ctxt rel_eqs' nn ns dtor_coinduct' pre_rel_defs dtor_ctors exhausts ctr_defss
-    discsss selsss =
-  (rtac dtor_coinduct' THEN'
-   EVERY' (map8 (mk_coinduct_discharge_prem_tac ctxt rel_eqs' nn)
-     (1 upto nn) ns pre_rel_defs dtor_ctors exhausts ctr_defss discsss selsss)) 1;
-
-end;
--- a/src/HOL/BNF/Tools/bnf_gfp.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Tools/bnf_gfp.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -21,7 +21,7 @@
 open BNF_Tactics
 open BNF_Comp
 open BNF_FP
-open BNF_FP_Sugar
+open BNF_FP_Def_Sugar
 open BNF_GFP_Util
 open BNF_GFP_Tactics
 
@@ -3004,13 +3004,6 @@
   end;
 
 val _ =
-  Outer_Syntax.local_theory @{command_spec "codata_raw"}
-    "define BNF-based coinductive datatypes (low-level)"
-    (Parse.and_list1
-      ((Parse.binding --| @{keyword ":"}) -- (Parse.typ --| @{keyword "="} -- Parse.typ)) >>
-      (snd oo fp_bnf_cmd construct_gfp o apsnd split_list o split_list));
-
-val _ =
   Outer_Syntax.local_theory @{command_spec "codata"} "define BNF-based coinductive datatypes"
     (parse_datatype_cmd false construct_gfp);
 
--- a/src/HOL/BNF/Tools/bnf_lfp.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Tools/bnf_lfp.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -20,7 +20,7 @@
 open BNF_Tactics
 open BNF_Comp
 open BNF_FP
-open BNF_FP_Sugar
+open BNF_FP_Def_Sugar
 open BNF_LFP_Util
 open BNF_LFP_Tactics
 
@@ -1835,13 +1835,6 @@
   end;
 
 val _ =
-  Outer_Syntax.local_theory @{command_spec "data_raw"}
-    "define BNF-based inductive datatypes (low-level)"
-    (Parse.and_list1
-      ((Parse.binding --| @{keyword ":"}) -- (Parse.typ --| @{keyword "="} -- Parse.typ)) >>
-      (snd oo fp_bnf_cmd construct_lfp o apsnd split_list o split_list));
-
-val _ =
   Outer_Syntax.local_theory @{command_spec "data"} "define BNF-based inductive datatypes"
     (parse_datatype_cmd true construct_lfp);
 
--- a/src/HOL/BNF/Tools/bnf_wrap.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/BNF/Tools/bnf_wrap.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -7,6 +7,8 @@
 
 signature BNF_WRAP =
 sig
+  val rep_compat_prefix: string
+
   val mk_half_pairss: 'a list * 'a list -> ('a * 'a) list list
   val join_halves: int -> 'a list list -> 'a list list -> 'a list * 'a list list list
 
@@ -16,11 +18,11 @@
   val name_of_ctr: term -> string
 
   val wrap_datatype: ({prems: thm list, context: Proof.context} -> tactic) list list ->
-    ((bool * term list) * term) *
+    (((bool * bool) * term list) * term) *
       (binding list * (binding list list * (binding * term) list list)) -> local_theory ->
     (term list * term list list * thm * thm list * thm list * thm list * thm list list * thm list *
      thm list list) * local_theory
-  val parse_wrap_options: bool parser
+  val parse_wrap_options: (bool * bool) parser
   val parse_bound_term: (binding * string) parser
 end;
 
@@ -30,6 +32,8 @@
 open BNF_Util
 open BNF_Wrap_Tactics
 
+val rep_compat_prefix = "new";
+
 val isN = "is_";
 val unN = "un_";
 fun mk_unN 1 1 suf = unN ^ suf
@@ -49,6 +53,7 @@
 val nchotomyN = "nchotomy";
 val selsN = "sels";
 val splitN = "split";
+val splitsN = "splits";
 val split_asmN = "split_asm";
 val weak_case_cong_thmsN = "weak_case_cong";
 
@@ -103,7 +108,7 @@
 
 fun eta_expand_arg xs f_xs = fold_rev Term.lambda xs f_xs;
 
-fun prepare_wrap_datatype prep_term (((no_dests, raw_ctrs), raw_case),
+fun prepare_wrap_datatype prep_term ((((no_dests, rep_compat), raw_ctrs), raw_case),
     (raw_disc_bindings, (raw_sel_bindingss, raw_sel_defaultss))) no_defs_lthy =
   let
     (* TODO: sanity checks on arguments *)
@@ -123,6 +128,10 @@
     val data_b = Binding.qualified_name dataT_name;
     val data_b_name = Binding.name_of data_b;
 
+    fun qualify mandatory =
+      Binding.qualify mandatory data_b_name o
+      (rep_compat ? Binding.qualify false rep_compat_prefix);
+
     val (As, B) =
       no_defs_lthy
       |> mk_TFrees' (map Type.sort_of_atyp As0)
@@ -144,13 +153,12 @@
     fun can_omit_disc_binding k m =
       n = 1 orelse m = 0 orelse (n = 2 andalso can_rely_on_disc (3 - k));
 
-    val std_disc_binding =
-      Binding.qualify false data_b_name o Binding.name o prefix isN o base_name_of_ctr;
+    val std_disc_binding = qualify false o Binding.name o prefix isN o base_name_of_ctr;
 
     val disc_bindings =
       raw_disc_bindings'
       |> map4 (fn k => fn m => fn ctr => fn disc =>
-        Option.map (Binding.qualify false data_b_name)
+        Option.map (qualify false)
           (if Binding.eq_name (disc, Binding.empty) then
              if can_omit_disc_binding k m then NONE else SOME (std_disc_binding ctr)
            else if Binding.eq_name (disc, std_binding) then
@@ -166,7 +174,7 @@
     val sel_bindingss =
       pad_list [] n raw_sel_bindingss
       |> map3 (fn ctr => fn m => map2 (fn l => fn sel =>
-        Binding.qualify false data_b_name
+        qualify false
           (if Binding.eq_name (sel, Binding.empty) orelse Binding.eq_name (sel, std_binding) then
             std_sel_binding m l ctr
           else
@@ -618,10 +626,11 @@
            (selsN, all_sel_thms, simp_attrs),
            (splitN, [split_thm], []),
            (split_asmN, [split_asm_thm], []),
+           (splitsN, [split_thm, split_asm_thm], []),
            (weak_case_cong_thmsN, [weak_case_cong_thm], cong_attrs)]
           |> filter_out (null o #2)
           |> map (fn (thmN, thms, attrs) =>
-            ((Binding.qualify true data_b_name (Binding.name thmN), attrs), [(thms, [])]));
+            ((qualify true (Binding.name thmN), attrs), [(thms, [])]));
 
         val notes' =
           [(map (fn th => th RS notE) distinct_thms, safe_elim_attrs)]
@@ -652,7 +661,9 @@
 val parse_bound_termss = parse_bracket_list parse_bound_terms;
 
 val parse_wrap_options =
-  Scan.optional (@{keyword "("} |-- (@{keyword "no_dests"} >> K true) --| @{keyword ")"}) false;
+  Scan.optional (@{keyword "("} |-- Parse.list1 ((@{keyword "no_dests"} >> K (true, false)) ||
+      (@{keyword "rep_compat"} >> K (false, true))) --| @{keyword ")"}
+    >> (pairself (exists I) o split_list)) (false, false);
 
 val _ =
   Outer_Syntax.local_theory_to_proof @{command_spec "wrap_data"} "wraps an existing datatype"
--- a/src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML	Fri Sep 28 09:17:30 2012 +0200
+++ b/src/HOL/Tools/Sledgehammer/sledgehammer_isar.ML	Fri Sep 28 09:21:27 2012 +0200
@@ -278,7 +278,7 @@
       | SOME s => case s |> space_explode " " |> map Real.fromString of
                     [SOME r1, SOME r2] => (r1, r2)
                   | _ => error ("Parameter " ^ quote name ^
-                                "must be assigned a pair of floating-point \
+                                " must be assigned a pair of floating-point \
                                 \values (e.g., \"0.6 0.95\")")
     fun lookup_option lookup' name =
       case lookup name of