new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
authorpaulson
Fri, 11 Aug 2000 13:27:17 +0200
changeset 9578 ab26d6c8ebfe
parent 9577 9e66e8ed8237
child 9579 28e26f468f08
new theory Integ/IntDiv and many more monotonicity laws, etc., for the integers
src/ZF/Integ/Bin.ML
src/ZF/Integ/Int.ML
src/ZF/Integ/Int.thy
src/ZF/Integ/IntDiv.ML
src/ZF/Integ/IntDiv.thy
src/ZF/IsaMakefile
src/ZF/Main.thy
--- a/src/ZF/Integ/Bin.ML	Fri Aug 11 13:26:40 2000 +0200
+++ b/src/ZF/Integ/Bin.ML	Fri Aug 11 13:27:17 2000 +0200
@@ -313,11 +313,6 @@
 
 Addsimps [zmult_minus1, zmult_minus1_right];
 
-(*beware!  LOOPS with int_combine_numerals simproc*)
-Goal "#2 $* z = z $+ z";
-by (simp_tac (simpset() addsimps [zadd_zmult_distrib]) 1);
-qed "zmult_2";
-
 
 (*** Simplification rules for comparison of binary numbers (N Voelker) ***)
 
--- a/src/ZF/Integ/Int.ML	Fri Aug 11 13:26:40 2000 +0200
+++ b/src/ZF/Integ/Int.ML	Fri Aug 11 13:27:17 2000 +0200
@@ -702,15 +702,15 @@
 
 (*This lemma allows direct proofs of other <-properties*)
 Goalw [zless_def, znegative_def, zdiff_def, int_def] 
-    "[| w $< z; w: int; z: int |] ==> (EX n. z = w $+ $#(succ(n)))";
+    "[| w $< z; w: int; z: int |] ==> (EX n: nat. z = w $+ $#(succ(n)))";
 by (auto_tac (claset() addSDs [less_imp_succ_add], 
               simpset() addsimps [zadd, zminus, int_of_def]));  
-by (res_inst_tac [("x","k")] exI 1);
+by (res_inst_tac [("x","k")] bexI 1);
 by (etac add_left_cancel 1);
 by Auto_tac;  
 val lemma = result();
 
-Goal "w $< z ==> (EX n. w $+ $#(succ(n)) = intify(z))";
+Goal "w $< z ==> (EX n: nat. w $+ $#(succ(n)) = intify(z))";
 by (subgoal_tac "intify(w) $< intify(z)" 1);
 by (dres_inst_tac [("w","intify(w)")] lemma 1);
 by Auto_tac;  
@@ -729,10 +729,11 @@
 by Auto_tac;  
 qed "zless_succ_zadd";
 
-Goal "w $< z <-> (EX n. w $+ $#(succ(n)) = intify(z))";
+Goal "w $< z <-> (EX n: nat. w $+ $#(succ(n)) = intify(z))";
 by (rtac iffI 1);
 by (etac zless_imp_succ_zadd 1);
 by Auto_tac;  
+by (rename_tac "n" 1);
 by (cut_inst_tac [("w","w"),("n","n")] zless_succ_zadd 1);
 by Auto_tac;  
 qed "zless_iff_succ_zadd";
@@ -763,6 +764,16 @@
 (* [| z $< w; ~ P ==> w $< z |] ==> P *)
 bind_thm ("zless_asym", zless_not_sym RS swap);
 
+Goalw [zle_def] "z $< w ==> z $<= w";
+by (blast_tac (claset() addEs [zless_asym]) 1);
+qed "zless_imp_zle";
+
+Goal "z $<= w | w $<= z";
+by (simp_tac (simpset() addsimps [zle_def]) 1);
+by (cut_facts_tac [zless_linear] 1);
+by (Blast_tac 1);
+qed "zle_linear";
+
 
 (*** "Less Than or Equals", $<= ***)
 
@@ -770,9 +781,18 @@
 by Auto_tac;  
 qed "zle_refl";
 
+Goal "x=y ==> x $<= y";
+by (asm_simp_tac (simpset() addsimps [zle_refl]) 1);
+qed "zle_eq_refl";
+
 Goalw [zle_def] "[| x $<= y; y $<= x |] ==> intify(x) = intify(y)";
 by Auto_tac;  
 by (blast_tac (claset() addDs [zless_trans]) 1);
+qed "zle_anti_sym_intify";
+
+Goal "[| x $<= y; y $<= x; x: int; y: int |] ==> x=y"; 
+by (dtac zle_anti_sym_intify 1);
+by Auto_tac;  
 qed "zle_anti_sym";
 
 Goalw [zle_def] "[| x: int; y: int; z: int; x $<= y; y $<= z |] ==> x $<= z";
--- a/src/ZF/Integ/Int.thy	Fri Aug 11 13:26:40 2000 +0200
+++ b/src/ZF/Integ/Int.thy	Fri Aug 11 13:27:17 2000 +0200
@@ -67,10 +67,4 @@
   zle          ::      [i,i]=>o      (infixl "$<=" 50)
      "z1 $<= z2 == z1 $< z2 | intify(z1)=intify(z2)"
   
-(*div and mod await definitions!*)
-consts
-  "$'/"       ::      [i,i]=>i      (infixl 70) 
-
-  "$'/'/"     ::      [i,i]=>i      (infixl 70)
-    
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Integ/IntDiv.ML	Fri Aug 11 13:27:17 2000 +0200
@@ -0,0 +1,1298 @@
+(*  Title:      HOL/IntDiv.ML
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1999  University of Cambridge
+
+The division operators div, mod and the divides relation "dvd"
+
+Here is the division algorithm in ML:
+
+    fun posDivAlg (a,b) =
+      if a<b then (0,a)
+      else let val (q,r) = posDivAlg(a, 2*b)
+	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
+	   end;
+
+    fun negDivAlg (a,b) =
+      if 0<=a+b then (~1,a+b)
+      else let val (q,r) = negDivAlg(a, 2*b)
+	       in  if 0<=r-b then (2*q+1, r-b) else (2*q, r)
+	   end;
+
+    fun negateSnd (q,r:int) = (q,~r);
+
+    fun divAlg (a,b) = if 0<=a then 
+			  if b>0 then posDivAlg (a,b) 
+			   else if a=0 then (0,0)
+				else negateSnd (negDivAlg (~a,~b))
+		       else 
+			  if 0<b then negDivAlg (a,b)
+			  else        negateSnd (posDivAlg (~a,~b));
+*)
+
+Goal "[| #0 $< k; k: int |] ==> 0 < zmagnitude(k)";
+by (dtac zero_zless_imp_znegative_zminus 1);
+by (dtac zneg_int_of 2);
+by (auto_tac (claset(), simpset() addsimps [inst "x" "k" zminus_equation]));  
+by (subgoal_tac "0 < zmagnitude($# succ(x))" 1);
+by (Asm_full_simp_tac 1);
+by (asm_full_simp_tac (simpset_of Arith.thy addsimps [zmagnitude_int_of]) 1);
+qed "zero_lt_zmagnitude";
+
+
+(*** Inequality lemmas involving $#succ(m) ***)
+
+Goal "(w $< z $+ $# succ(m)) <-> (w $< z $+ $#m | intify(w) = z $+ $#m)"; 
+by (auto_tac (claset(),
+	      simpset() addsimps [zless_iff_succ_zadd, zadd_assoc, 
+                                  int_of_add RS sym]));
+by (res_inst_tac [("x","0")] bexI 3);
+by (TRYALL (dtac sym));
+by (cut_inst_tac [("m","m")] int_succ_int_1 1);
+by (cut_inst_tac [("m","n")] int_succ_int_1 1);
+by (Asm_full_simp_tac 1);
+by (eres_inst_tac [("n","x")] natE 1);
+by Auto_tac;
+by (res_inst_tac [("x","succ(x)")] bexI 1);
+by Auto_tac;  
+qed "zless_add_succ_iff";
+
+Goal "z : int ==> (w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)";
+by (asm_simp_tac (simpset_of Int.thy addsimps
+                  [not_zless_iff_zle RS iff_sym, zless_add_succ_iff]) 1);
+by (auto_tac (claset() addIs [zle_anti_sym] addEs [zless_asym],
+	      simpset() addsimps [zless_imp_zle, not_zless_iff_zle]));
+qed "lemma";
+
+Goal "(w $+ $# succ(m) $<= z) <-> (w $+ $#m $< z)";
+by (cut_inst_tac [("z","intify(z)")] lemma 1);
+by Auto_tac;  
+qed "zadd_succ_zle_iff";
+
+(** USED??
+Goal "w $< $# succ(m) <-> w $< $# m | intify(w) = $# m";
+by (cut_inst_tac [("z","#0")] zless_add_succ_iff 1);
+by Auto_tac;  
+qed "zless_succ_iff";
+
+Goal "(w $<= $# succ(m)) <-> (w $<= $#m | intify(w) = $# succ(m))";
+by (simp_tac (simpset_of Int.thy addsimps [zless_succ_iff, zle_def]) 1);
+qed "zle_succ_iff";
+**)
+
+(** Inequality reasoning **)
+
+Goal "(w $< z $+ #1) <-> (w$<=z)";
+by (subgoal_tac "#1 = $# 1" 1);
+by (asm_simp_tac (simpset_of Int.thy addsimps [zless_add_succ_iff, zle_def]) 1);
+by Auto_tac;  
+qed "zless_add1_iff_zle";
+
+Goal "(w $+ #1 $<= z) <-> (w $< z)";
+by (subgoal_tac "#1 = $# 1" 1);
+by (asm_simp_tac (simpset_of Int.thy addsimps [zadd_succ_zle_iff]) 1);
+by Auto_tac;  
+qed "add1_zle_iff";
+
+Goal "(#1 $+ w $<= z) <-> (w $< z)";
+by (stac zadd_commute 1);
+by (rtac add1_zle_iff 1);
+qed "add1_left_zle_iff";
+
+
+(*** Monotonicity results ***)
+
+Goal "(v$+z $< w$+z) <-> (v $< w)";
+by (Simp_tac 1);
+qed "zadd_right_cancel_zless";
+
+Goal "(z$+v $< z$+w) <-> (v $< w)";
+by (Simp_tac 1);
+qed "zadd_left_cancel_zless";
+
+Addsimps [zadd_right_cancel_zless, zadd_left_cancel_zless];
+
+Goal "(v$+z $<= w$+z) <-> (v $<= w)";
+by (Simp_tac 1);
+qed "zadd_right_cancel_zle";
+
+Goal "(z$+v $<= z$+w) <-> (v $<= w)";
+by (Simp_tac 1);
+qed "zadd_left_cancel_zle";
+
+Addsimps [zadd_right_cancel_zle, zadd_left_cancel_zle];
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+bind_thm ("zadd_zless_mono1", zadd_right_cancel_zless RS iffD2);
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+bind_thm ("zadd_zless_mono2", zadd_left_cancel_zless RS iffD2);
+
+(*"v $<= w ==> v$+z $<= w$+z"*)
+bind_thm ("zadd_zle_mono1", zadd_right_cancel_zle RS iffD2);
+
+(*"v $<= w ==> z$+v $<= z$+w"*)
+bind_thm ("zadd_zle_mono2", zadd_left_cancel_zle RS iffD2);
+
+Goal "[| w' $<= w; z' $<= z |] ==> w' $+ z' $<= w $+ z";
+by (etac (zadd_zle_mono1 RS zle_trans) 1);
+by (Simp_tac 1);
+qed "zadd_zle_mono";
+
+Goal "[| w' $< w; z' $<= z |] ==> w' $+ z' $< w $+ z";
+by (etac (zadd_zless_mono1 RS zless_zle_trans) 1);
+by (Simp_tac 1);
+qed "zadd_zless_mono";
+
+
+(*** Monotonicity of Multiplication ***)
+
+Goal "k : nat ==> i $<= j ==> i $* $#k $<= j $* $#k";
+by (induct_tac "k" 1);
+by (stac int_succ_int_1 2);
+by (ALLGOALS 
+    (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2, zadd_zle_mono])));
+val lemma = result();
+
+Goal "[| i $<= j;  #0 $<= k |] ==> i$*k $<= j$*k";
+by (subgoal_tac "i $* intify(k) $<= j $* intify(k)" 1);
+by (Full_simp_tac 1);
+by (res_inst_tac [("b", "intify(k)")] (not_zneg_mag RS subst) 1);
+by (rtac lemma 3);
+by Auto_tac;
+by (dtac znegative_imp_zless_0 1);
+by (dtac zless_zle_trans 2);
+by Auto_tac;  
+qed "zmult_zle_mono1";
+
+Goal "[| i $<= j;  k $<= #0 |] ==> j$*k $<= i$*k";
+by (rtac (zminus_zle_zminus RS iffD1) 1);
+by (asm_simp_tac (simpset() delsimps [zmult_zminus_right]
+                            addsimps [zmult_zminus_right RS sym,
+				      zmult_zle_mono1, zle_zminus]) 1);
+qed "zmult_zle_mono1_neg";
+
+Goal "[| i $<= j;  #0 $<= k |] ==> k$*i $<= k$*j";
+by (dtac zmult_zle_mono1 1);
+by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
+qed "zmult_zle_mono2";
+
+Goal "[| i $<= j;  k $<= #0 |] ==> k$*j $<= k$*i";
+by (dtac zmult_zle_mono1_neg 1);
+by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
+qed "zmult_zle_mono2_neg";
+
+(* $<= monotonicity, BOTH arguments*)
+Goal "[| i $<= j;  k $<= l;  #0 $<= j;  #0 $<= k |] ==> i$*k $<= j$*l";
+by (etac (zmult_zle_mono1 RS zle_trans) 1);
+by (assume_tac 1);
+by (etac zmult_zle_mono2 1);
+by (assume_tac 1);
+qed "zmult_zle_mono";
+
+
+(** strict, in 1st argument; proof is by induction on k>0 **)
+
+Goal "[| i$<j; k : nat |] ==> 0<k --> $#k $* i $< $#k $* j";
+by (induct_tac "k" 1);
+by (stac int_succ_int_1 2);
+by (etac natE 2);
+by (ALLGOALS (asm_full_simp_tac
+	      (simpset() addsimps [zadd_zmult_distrib, zadd_zless_mono, 
+				   zle_def])));
+by (ftac nat_0_le 1);
+by (mp_tac 1);
+by (subgoal_tac "i $+ (i $+ $# xa $* i) $< j $+ (j $+ $# xa $* j)" 1);
+by (Full_simp_tac 1);
+by (rtac zadd_zless_mono 1);
+by (ALLGOALS (asm_simp_tac (simpset() addsimps [zle_def])));
+val lemma = result() RS mp;
+
+Goal "[| i$<j;  #0 $< k |] ==> k$*i $< k$*j";
+by (subgoal_tac "intify(k) $* i $< intify(k) $* j" 1);
+by (Full_simp_tac 1);
+by (res_inst_tac [("b", "intify(k)")] (not_zneg_mag RS subst) 1);
+by (rtac lemma 3);
+by Auto_tac;
+by (dtac znegative_imp_zless_0 1);
+by (dtac zless_trans 2 THEN assume_tac 2);
+by (auto_tac (claset(), simpset() addsimps [zero_lt_zmagnitude]));  
+qed "zmult_zless_mono2";
+
+Goal "[| i$<j;  #0 $< k |] ==> i$*k $< j$*k";
+by (dtac zmult_zless_mono2 1);
+by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [zmult_commute])));
+qed "zmult_zless_mono1";
+
+(* < monotonicity, BOTH arguments*)
+Goal "[| i $< j;  k $< l;  #0 $< j;  #0 $< k |] ==> i$*k $< j$*l";
+by (etac (zmult_zless_mono1 RS zless_trans) 1);
+by (assume_tac 1);
+by (etac zmult_zless_mono2 1);
+by (assume_tac 1);
+qed "zmult_zless_mono";
+
+Goal "[| i $< j;  k $< #0 |] ==> j$*k $< i$*k";
+by (rtac (zminus_zless_zminus RS iffD1) 1);
+by (asm_simp_tac (simpset() delsimps [zmult_zminus_right]
+                            addsimps [zmult_zminus_right RS sym,
+				      zmult_zless_mono1, zless_zminus]) 1);
+qed "zmult_zless_mono1_neg";
+
+Goal "[| i $< j;  k $< #0 |] ==> k$*j $< k$*i";
+by (rtac (zminus_zless_zminus RS iffD1) 1);
+by (asm_simp_tac (simpset() delsimps [zmult_zminus]
+                            addsimps [zmult_zminus RS sym,
+				      zmult_zless_mono2, zless_zminus]) 1);
+qed "zmult_zless_mono2_neg";
+
+Goal "[| m: int; n: int |] ==> (m$*n = #0) <-> (m = #0 | n = #0)";
+by (case_tac "m $< #0" 1);
+by (auto_tac (claset(), 
+     simpset() addsimps [not_zless_iff_zle, zle_def, neq_iff_zless])); 
+by (REPEAT 
+    (force_tac (claset() addDs [zmult_zless_mono1_neg, zmult_zless_mono1], 
+		simpset()) 1));
+val lemma = result();
+
+Goal "(m$*n = #0) <-> (intify(m) = #0 | intify(n) = #0)";
+by (asm_full_simp_tac (simpset() addsimps [lemma RS iff_sym]) 1);
+qed "zmult_eq_0_iff";
+
+
+Goal "[| m: int; n: int |] ==> #0 $< k ==> (m$*k $< n$*k) <-> (m$<n)";
+by (safe_tac (claset() addSIs [zmult_zless_mono1]));
+by (cut_facts_tac  [zless_linear] 1);
+by Auto_tac;  
+by (blast_tac (claset() addIs [zmult_zless_mono1] addEs [zless_asym]) 1);
+val lemma = result();
+
+Goal "#0 $< k ==> (m$*k $< n$*k) <-> (m$<n)";
+by (cut_inst_tac [("m","intify(m)"),("n","intify(n)")] lemma 1);
+by Auto_tac;  
+qed "zmult_zless_cancel2";
+
+Goal "#0 $< k ==> (k$*m $< k$*n) <-> (m$<n)";
+by (dtac zmult_zless_cancel2 1);
+by (asm_full_simp_tac (simpset() addsimps [zmult_commute]) 1);
+qed "zmult_zless_cancel1";
+Addsimps [zmult_zless_cancel1, zmult_zless_cancel2];
+
+Goal "[| m: int; n: int |] ==> k $< #0 ==> (m$*k $< n$*k) <-> (n$<m)";
+by (safe_tac (claset() addSIs [zmult_zless_mono1_neg]));
+by (cut_facts_tac [zless_linear] 1);
+by Auto_tac;  
+by (blast_tac (claset() addIs [zmult_zless_mono1_neg] 
+                        addEs [zless_asym]) 1);
+val lemma = result();
+
+Goal "k $< #0 ==> (m$*k $< n$*k) <-> (n$<m)";
+by (cut_inst_tac [("m","intify(m)"),("n","intify(n)")] lemma 1);
+by Auto_tac;  
+qed "zmult_zless_cancel2_neg";
+
+Goal "k $< #0 ==> (k$*m $< k$*n) <-> (n$<m)";
+by (dtac zmult_zless_cancel2_neg 1);
+by (asm_full_simp_tac (simpset() addsimps [zmult_commute]) 1);
+qed "zmult_zless_cancel1_neg";
+Addsimps [zmult_zless_cancel1_neg, zmult_zless_cancel2_neg];
+
+Goal "#0 $< k ==> (m$*k $<= n$*k) <-> (m$<=n)";
+by (asm_full_simp_tac (simpset() addsimps [not_zless_iff_zle RS iff_sym]) 1);
+qed "zmult_zle_cancel2";
+
+Goal "#0 $< k ==> (k$*m $<= k$*n) <-> (m$<=n)";
+by (asm_full_simp_tac (simpset() addsimps [not_zless_iff_zle RS iff_sym]) 1);
+qed "zmult_zle_cancel1";
+Addsimps [zmult_zle_cancel1, zmult_zle_cancel2];
+
+Goal "k $< #0 ==> (m$*k $<= n$*k) <-> (n$<=m)";
+by (asm_full_simp_tac (simpset() addsimps [not_zless_iff_zle RS iff_sym]) 1);
+qed "zmult_zle_cancel2_neg";
+
+Goal "k $< #0 ==> (k$*m $<= k$*n) <-> (n$<=m)";
+by (asm_full_simp_tac (simpset() addsimps [not_zless_iff_zle RS iff_sym]) 1);
+qed "zmult_zle_cancel1_neg";
+Addsimps [zmult_zle_cancel1_neg, zmult_zle_cancel2_neg];
+
+Goal "[| k ~= #0; k: int; m: int; n: int |] ==> (m$*k = n$*k) <-> (m=n)";
+by (rotate_tac 1 1); 
+by (cut_inst_tac [("z","m"),("w","n")] zless_linear 1);
+by Safe_tac;
+by (asm_full_simp_tac (simpset() addsimps []) 2);
+by (REPEAT 
+    (force_tac (claset() addD2 ("mono_neg", zmult_zless_mono1_neg)
+                         addD2 ("mono_pos", zmult_zless_mono1), 
+		simpset() addsimps [neq_iff_zless]) 1));
+qed "zmult_cancel2";
+
+Goal "intify(k) ~= #0 ==> (m$*k = n$*k) <-> (intify(m) = intify(n))";
+by (rtac iff_trans 1);
+by (rtac zmult_cancel2 2);
+by Auto_tac;  
+qed "zmult_cancel2_intify";
+
+Goal "[| k ~= #0; k: int; m: int; n: int |] ==> (k$*m = k$*n) <-> (m=n)";
+by (dtac zmult_cancel2 1);
+by (asm_full_simp_tac (simpset() addsimps [zmult_commute]) 4);
+by Auto_tac;  
+qed "zmult_cancel1";
+
+Goal "intify(k) ~= #0 ==> (k$*m = k$*n) <-> (intify(m) = intify(n))";
+by (rtac iff_trans 1);
+by (rtac zmult_cancel1 2);
+by Auto_tac;  
+qed "zmult_cancel1_intify";
+Addsimps [zmult_cancel1, zmult_cancel2];
+
+
+(*** Uniqueness and monotonicity of quotients and remainders ***)
+
+
+Goal "[| b$*q' $+ r' $<= b$*q $+ r;  #0 $<= r';  #0 $< b;  r $< b |] \
+\     ==> q' $<= q";
+by (subgoal_tac "r' $+ b $* (q'$-q) $<= r" 1);
+by (full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]@zadd_ac@zcompare_rls) 2);
+by (subgoal_tac "#0 $< b $* (#1 $+ q $- q')" 1);
+by (etac zle_zless_trans 2);
+by (full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2,
+				       zadd_zmult_distrib2]@zadd_ac@zcompare_rls) 2);
+by (etac zle_zless_trans 2);
+by (Asm_simp_tac 2);
+by (subgoal_tac "b $* q' $< b $* (#1 $+ q)" 1);
+by (full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2,
+				       zadd_zmult_distrib2]@zadd_ac@zcompare_rls) 2);
+by (asm_full_simp_tac (simpset() addsimps [zless_add1_iff_zle]@
+                                          zadd_ac@zcompare_rls) 1);
+qed "unique_quotient_lemma";
+
+Goal "[| b$*q' $+ r' $<= b$*q $+ r;  r $<= #0;  b $< #0;  b $< r' |] \
+\     ==> q $<= q'";
+by (res_inst_tac [("b", "$-b"), ("r", "$-r'"), ("r'", "$-r")] 
+    unique_quotient_lemma 1);
+by (auto_tac (claset(), 
+	      simpset() delsimps [zminus_zadd_distrib]
+			addsimps [zminus_zadd_distrib RS sym,
+	                          zle_zminus, zless_zminus])); 
+qed "unique_quotient_lemma_neg";
+
+
+Goal "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b: int; b ~= #0; \
+\        q: int; q' : int |] ==> q = q'";
+by (asm_full_simp_tac 
+    (simpset() addsimps split_ifs@
+                        [quorem_def, neq_iff_zless]) 1);
+by Safe_tac; 
+by (ALLGOALS Asm_full_simp_tac);
+by (REPEAT 
+    (blast_tac (claset() addIs [zle_anti_sym]
+			 addDs [zle_eq_refl RS unique_quotient_lemma, 
+				zle_eq_refl RS unique_quotient_lemma_neg,
+				sym]) 1));
+qed "unique_quotient";
+
+
+Goal "[| quorem (<a,b>, <q,r>);  quorem (<a,b>, <q',r'>);  b: int; b ~= #0; \
+\        q: int; q' : int; \
+\        r: int; r' : int |] ==> r = r'";
+by (subgoal_tac "q = q'" 1);
+by (blast_tac (claset() addIs [unique_quotient]) 2);
+by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
+by Auto_tac;  
+qed "unique_remainder";
+
+
+(*** THE REST TO PORT LATER.  The division algorithm can wait; most properties
+     of division flow from the uniqueness properties proved above...
+
+
+ (*** Correctness of posDivAlg, the division algorithm for a>=0 and b>0 ***)
+
+
+ Goal "adjust a b <q,r> = (let diff = r$-b in \
+ \                         if #0 $<= diff then <#2$*q $+ #1,diff>  \
+ \                                       else <#2$*q,r>)";
+ by (simp_tac (simpset() addsimps [Let_def,adjust_def]) 1);
+ qed "adjust_eq";
+ Addsimps [adjust_eq];
+
+ (*Proving posDivAlg's termination condition*)
+ val [tc] = posDivAlg.tcs;
+ goalw_cterm [] (cterm_of (sign_of (the_context ())) (HOLogic.mk_Trueprop tc));
+ by Auto_tac;
+ val lemma = result();
+
+ (* removing the termination condition from the generated theorems *)
+
+ bind_thm ("posDivAlg_raw_eqn", lemma RS hd posDivAlg.simps);
+
+ (**use with simproc to avoid re-proving the premise*)
+ Goal "#0 $< b ==> \
+ \     posDivAlg <a,b> =      \
+ \      (if a$<b then <#0,a> else adjust a b (posDivAlg<a,#2$*b>))";
+ by (rtac (posDivAlg_raw_eqn RS trans) 1);
+ by (Asm_simp_tac 1);
+ qed "posDivAlg_eqn";
+
+ bind_thm ("posDivAlg_induct", lemma RS posDivAlg.induct);
+
+
+ (*Correctness of posDivAlg: it computes quotients correctly*)
+ Goal "#0 $<= a --> #0 $< b --> quorem (<a,b>, posDivAlg <a,b>)";
+ by (res_inst_tac [("u", "a"), ("v", "b")] posDivAlg_induct 1);
+ by Auto_tac;
+ by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [quorem_def])));
+ (*base case: a<b*)
+ by (asm_full_simp_tac (simpset() addsimps [posDivAlg_eqn]) 1);
+ (*main argument*)
+ by (stac posDivAlg_eqn 1);
+ by (ALLGOALS Asm_simp_tac);
+ by (etac splitE 1);
+ by (auto_tac (claset(), simpset() addsimps [zadd_zmult_distrib2, Let_def]));
+ qed_spec_mp "posDivAlg_correct";
+
+
+ (*** Correctness of negDivAlg, the division algorithm for a<0 and b>0 ***)
+
+ (*Proving negDivAlg's termination condition*)
+ val [tc] = negDivAlg.tcs;
+ goalw_cterm [] (cterm_of (sign_of (the_context ())) (HOLogic.mk_Trueprop tc));
+ by Auto_tac;
+ val lemma = result();
+
+ (* removing the termination condition from the generated theorems *)
+
+ bind_thm ("negDivAlg_raw_eqn", lemma RS hd negDivAlg.simps);
+
+ (**use with simproc to avoid re-proving the premise*)
+ Goal "#0 $< b ==> \
+ \     negDivAlg <a,b> =      \
+ \      (if #0$<=a$+b then <#-1,a$+b> else adjust a b (negDivAlg<a,#2$*b>))";
+ by (rtac (negDivAlg_raw_eqn RS trans) 1);
+ by (Asm_simp_tac 1);
+ qed "negDivAlg_eqn";
+
+ bind_thm ("negDivAlg_induct", lemma RS negDivAlg.induct);
+
+
+ (*Correctness of negDivAlg: it computes quotients correctly
+   It doesn't work if a=0 because the 0/b=0 rather than -1*)
+ Goal "a $< #0 --> #0 $< b --> quorem (<a,b>, negDivAlg <a,b>)";
+ by (res_inst_tac [("u", "a"), ("v", "b")] negDivAlg_induct 1);
+ by Auto_tac;
+ by (ALLGOALS (asm_full_simp_tac (simpset() addsimps [quorem_def])));
+ (*base case: 0$<=a$+b*)
+ by (asm_full_simp_tac (simpset() addsimps [negDivAlg_eqn]) 1);
+ (*main argument*)
+ by (stac negDivAlg_eqn 1);
+ by (ALLGOALS Asm_simp_tac);
+ by (etac splitE 1);
+ by (auto_tac (claset(), simpset() addsimps [zadd_zmult_distrib2, Let_def]));
+ qed_spec_mp "negDivAlg_correct";
+
+
+ (*** Existence shown by proving the division algorithm to be correct ***)
+
+ (*the case a=0*)
+ Goal "b ~= #0 ==> quorem (<#0,b>, <#0,#0>)";
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_def, neq_iff_zless]));
+ qed "quorem_0";
+
+ Goal "posDivAlg <#0,b> = <#0,#0>";
+ by (stac posDivAlg_raw_eqn 1);
+ by Auto_tac;
+ qed "posDivAlg_0";
+ Addsimps [posDivAlg_0];
+
+ Goal "negDivAlg <#-1,b> = <#-1,b-#1>";
+ by (stac negDivAlg_raw_eqn 1);
+ by Auto_tac;
+ qed "negDivAlg_minus1";
+ Addsimps [negDivAlg_minus1];
+
+ Goalw [negateSnd_def] "negateSnd<q,r> = <q,-r>";
+ by Auto_tac;
+ qed "negateSnd_eq";
+ Addsimps [negateSnd_eq];
+
+ Goal "quorem (<-a,-b>, qr) ==> quorem (<a,b>, negateSnd qr)";
+ by (auto_tac (claset(), simpset() addsimps split_ifs@[quorem_def]));
+ qed "quorem_neg";
+
+ Goal "b ~= #0 ==> quorem (<a,b>, divAlg<a,b>)";
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_0, divAlg_def]));
+ by (REPEAT_FIRST (resolve_tac [quorem_neg, posDivAlg_correct,
+				negDivAlg_correct]));
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_def, neq_iff_zless]));
+ qed "divAlg_correct";
+
+ (** Aribtrary definitions for division by zero.  Useful to simplify 
+     certain equations **)
+
+ Goal "a div (#0::int) = #0";
+ by (simp_tac (simpset() addsimps [div_def, divAlg_def, posDivAlg_raw_eqn]) 1);
+ qed "DIVISION_BY_ZERO_ZDIV";  (*NOT for adding to default simpset*)
+
+ Goal "a mod (#0::int) = a";
+ by (simp_tac (simpset() addsimps [mod_def, divAlg_def, posDivAlg_raw_eqn]) 1);
+ qed "DIVISION_BY_ZERO_ZMOD";  (*NOT for adding to default simpset*)
+
+ fun zdiv_undefined_case_tac s i =
+   case_tac s i THEN 
+   asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO_ZDIV, 
+				     DIVISION_BY_ZERO_ZMOD]) i;
+
+ (** Basic laws about division and remainder **)
+
+ Goal "a = b $* (a div b) $+ (a mod b)";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_def, div_def, mod_def]));
+ qed "zmod_zdiv_equality";  
+
+ Goal "(#0::int) $< b ==> #0 $<= a mod b & a mod b $< b";
+ by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_def, mod_def]));
+ bind_thm ("pos_mod_sign", result() RS conjunct1);
+ bind_thm ("pos_mod_bound", result() RS conjunct2);
+
+ Goal "b $< (#0::int) ==> a mod b $<= #0 & b $< a mod b";
+ by (cut_inst_tac [("a","a"),("b","b")] divAlg_correct 1);
+ by (auto_tac (claset(), 
+	       simpset() addsimps [quorem_def, div_def, mod_def]));
+ bind_thm ("neg_mod_sign", result() RS conjunct1);
+ bind_thm ("neg_mod_bound", result() RS conjunct2);
+
+
+ (** proving general properties of div and mod **)
+
+ Goal "b ~= #0 ==> quorem (<a,b>, <a div b,a mod b>)";
+ by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
+ by (auto_tac
+     (claset(),
+      simpset() addsimps [quorem_def, neq_iff_zless, 
+			  pos_mod_sign,pos_mod_bound,
+			  neg_mod_sign, neg_mod_bound]));
+ qed "quorem_div_mod";
+
+ Goal "[| quorem(<a,b>,<q,r>);  b ~= #0 |] ==> a div b = q";
+ by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_quotient]) 1);
+ qed "quorem_div";
+
+ Goal "[| quorem(<a,b>,<q,r>);  b ~= #0 |] ==> a mod b = r";
+ by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS unique_remainder]) 1);
+ qed "quorem_mod";
+
+ Goal "[| (#0::int) $<= a;  a $< b |] ==> a div b = #0";
+ by (rtac quorem_div 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "div_pos_pos_trivial";
+
+ Goal "[| a $<= (#0::int);  b $< a |] ==> a div b = #0";
+ by (rtac quorem_div 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "div_neg_neg_trivial";
+
+ Goal "[| (#0::int) $< a;  a$+b $<= #0 |] ==> a div b = #-1";
+ by (rtac quorem_div 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "div_pos_neg_trivial";
+
+ (*There is no div_neg_pos_trivial because  #0 div b = #0 would supersede it*)
+
+ Goal "[| (#0::int) $<= a;  a $< b |] ==> a mod b = a";
+ by (res_inst_tac [("q","#0")] quorem_mod 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "mod_pos_pos_trivial";
+
+ Goal "[| a $<= (#0::int);  b $< a |] ==> a mod b = a";
+ by (res_inst_tac [("q","#0")] quorem_mod 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "mod_neg_neg_trivial";
+
+ Goal "[| (#0::int) $< a;  a$+b $<= #0 |] ==> a mod b = a$+b";
+ by (res_inst_tac [("q","#-1")] quorem_mod 1);
+ by (auto_tac (claset(), simpset() addsimps [quorem_def]));
+ qed "mod_pos_neg_trivial";
+
+ (*There is no mod_neg_pos_trivial...*)
+
+
+ (*Simpler laws such as -a div b = -(a div b) FAIL*)
+ Goal "(-a) div (-b) = a div b";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg)) 
+	   RS quorem_div) 1);
+ by Auto_tac;
+ qed "zdiv_zminus_zminus";
+ Addsimps [zdiv_zminus_zminus];
+
+ (*Simpler laws such as -a mod b = -(a mod b) FAIL*)
+ Goal "(-a) mod (-b) = - (a mod b)";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (stac ((simplify(simpset()) (quorem_div_mod RS quorem_neg)) 
+	   RS quorem_mod) 1);
+ by Auto_tac;
+ qed "zmod_zminus_zminus";
+ Addsimps [zmod_zminus_zminus];
+
+
+ (*** division of a number by itself ***)
+
+ Goal "[| (#0::int) $< a; a = r $+ a$*q; r $< a |] ==> #1 $<= q";
+ by (subgoal_tac "#0 $< a$*q" 1);
+ by (arith_tac 2);
+ by (asm_full_simp_tac (simpset() addsimps [int_0_less_mult_iff]) 1);
+ val lemma1 = result();
+
+ Goal "[| (#0::int) $< a; a = r $+ a$*q; #0 $<= r |] ==> q $<= #1";
+ by (subgoal_tac "#0 $<= a$*(#1$-q)" 1);
+ by (asm_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 2);
+ by (asm_full_simp_tac (simpset() addsimps [int_0_le_mult_iff]) 1);
+ val lemma2 = result();
+
+ Goal "[| quorem(<a,a>,<q,r>);  a ~= (#0::int) |] ==> q = #1";
+ by (asm_full_simp_tac 
+     (simpset() addsimps split_ifs@[quorem_def, neq_iff_zless]) 1);
+ by (rtac order_antisym 1);
+ by Safe_tac;
+ by Auto_tac;
+ by (res_inst_tac [("a", "-a"),("r", "-r")] lemma1 3);
+ by (res_inst_tac [("a", "-a"),("r", "-r")] lemma2 1);
+ by (REPEAT (force_tac  (claset() addIs [lemma1,lemma2], 
+	       simpset() addsimps [zadd_commute, zmult_zminus]) 1));
+ qed "self_quotient";
+
+ Goal "[| quorem(<a,a>,<q,r>);  a ~= (#0::int) |] ==> r = #0";
+ by (ftac self_quotient 1);
+ by (assume_tac 1);
+ by (asm_full_simp_tac (simpset() addsimps [quorem_def]) 1);
+ qed "self_remainder";
+
+ Goal "a ~= #0 ==> a div a = (#1::int)";
+ by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_quotient]) 1);
+ qed "zdiv_self";
+ Addsimps [zdiv_self];
+
+ (*Here we have 0 mod 0 = 0, also assumed by Knuth (who puts m mod 0 = 0) *)
+ Goal "a mod a = (#0::int)";
+ by (zdiv_undefined_case_tac "a = #0" 1);
+ by (asm_simp_tac (simpset() addsimps [quorem_div_mod RS self_remainder]) 1);
+ qed "zmod_self";
+ Addsimps [zmod_self];
+
+
+ (*** Computation of division and remainder ***)
+
+ Goal "(#0::int) div b = #0";
+ by (simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "zdiv_zero";
+
+ Goal "(#0::int) $< b ==> #-1 div b = #-1";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "div_eq_minus1";
+
+ Goal "(#0::int) mod b = #0";
+ by (simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "zmod_zero";
+
+ Addsimps [zdiv_zero, zmod_zero];
+
+ Goal "(#0::int) $< b ==> #-1 div b = #-1";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "zdiv_minus1";
+
+ Goal "(#0::int) $< b ==> #-1 mod b = b-#1";
+ by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "zmod_minus1";
+
+ (** a positive, b positive **)
+
+ Goal "[| #0 $< a;  #0 $<= b |] ==> a div b = fst (posDivAlg<a,b>)";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "div_pos_pos";
+
+ Goal "[| #0 $< a;  #0 $<= b |] ==> a mod b = snd (posDivAlg<a,b>)";
+ by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "mod_pos_pos";
+
+ (** a negative, b positive **)
+
+ Goal "[| a $< #0;  #0 $< b |] ==> a div b = fst (negDivAlg<a,b>)";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "div_neg_pos";
+
+ Goal "[| a $< #0;  #0 $< b |] ==> a mod b = snd (negDivAlg<a,b>)";
+ by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "mod_neg_pos";
+
+ (** a positive, b negative **)
+
+ Goal "[| #0 $< a;  b $< #0 |] ==> a div b = fst (negateSnd(negDivAlg<-a,-b>))";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "div_pos_neg";
+
+ Goal "[| #0 $< a;  b $< #0 |] ==> a mod b = snd (negateSnd(negDivAlg<-a,-b>))";
+ by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "mod_pos_neg";
+
+ (** a negative, b negative **)
+
+ Goal "[| a $< #0;  b $<= #0 |] ==> a div b = fst (negateSnd(posDivAlg<-a,-b>))";
+ by (asm_simp_tac (simpset() addsimps [div_def, divAlg_def]) 1);
+ qed "div_neg_neg";
+
+ Goal "[| a $< #0;  b $<= #0 |] ==> a mod b = snd (negateSnd(posDivAlg<-a,-b>))";
+ by (asm_simp_tac (simpset() addsimps [mod_def, divAlg_def]) 1);
+ qed "mod_neg_neg";
+
+ Addsimps (map (read_instantiate_sg (sign_of (the_context ()))
+		[("a", "number_of ?v"), ("b", "number_of ?w")])
+	   [div_pos_pos, div_neg_pos, div_pos_neg, div_neg_neg,
+	    mod_pos_pos, mod_neg_pos, mod_pos_neg, mod_neg_neg,
+	    posDivAlg_eqn, negDivAlg_eqn]);
+
+
+ (** Special-case simplification **)
+
+ Goal "a mod (#1::int) = #0";
+ by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_sign 1);
+ by (cut_inst_tac [("a","a"),("b","#1")] pos_mod_bound 2);
+ by Auto_tac;
+ qed "zmod_1";
+ Addsimps [zmod_1];
+
+ Goal "a div (#1::int) = a";
+ by (cut_inst_tac [("a","a"),("b","#1")] zmod_zdiv_equality 1);
+ by Auto_tac;
+ qed "zdiv_1";
+ Addsimps [zdiv_1];
+
+ Goal "a mod (#-1::int) = #0";
+ by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_sign 1);
+ by (cut_inst_tac [("a","a"),("b","#-1")] neg_mod_bound 2);
+ by Auto_tac;
+ qed "zmod_minus1_right";
+ Addsimps [zmod_minus1_right];
+
+ Goal "a div (#-1::int) = -a";
+ by (cut_inst_tac [("a","a"),("b","#-1")] zmod_zdiv_equality 1);
+ by Auto_tac;
+ qed "zdiv_minus1_right";
+ Addsimps [zdiv_minus1_right];
+
+
+ (*** Monotonicity in the first argument (divisor) ***)
+
+ Goal "[| a $<= a';  #0 $< b |] ==> a div b $<= a' div b";
+ by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
+ by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
+ by (rtac unique_quotient_lemma 1);
+ by (etac subst 1);
+ by (etac subst 1);
+ by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
+ qed "zdiv_mono1";
+
+ Goal "[| a $<= a';  b $< #0 |] ==> a' div b $<= a div b";
+ by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
+ by (cut_inst_tac [("a","a'"),("b","b")] zmod_zdiv_equality 1);
+ by (rtac unique_quotient_lemma_neg 1);
+ by (etac subst 1);
+ by (etac subst 1);
+ by (ALLGOALS (asm_simp_tac (simpset() addsimps [neg_mod_sign,neg_mod_bound])));
+ qed "zdiv_mono1_neg";
+
+
+ (*** Monotonicity in the second argument (dividend) ***)
+
+ Goal "[| b$*q $+ r = b'$*q' $+ r';  #0 $<= b'$*q' $+ r';  \
+ \        r' $< b';  #0 $<= r;  #0 $< b';  b' $<= b |]  \
+ \     ==> q $<= q'";
+ by (subgoal_tac "#0 $<= q'" 1);
+  by (subgoal_tac "#0 $< b'$*(q' $+ #1)" 2);
+   by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 3);
+  by (asm_full_simp_tac (simpset() addsimps [int_0_less_mult_iff]) 2);
+ by (subgoal_tac "b$*q $< b$*(q' $+ #1)" 1);
+  by (Asm_full_simp_tac 1);
+ by (subgoal_tac "b$*q = r' $- r $+ b'$*q'" 1);
+  by (Simp_tac 2);
+ by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
+ by (stac zadd_commute 1 THEN rtac zadd_zless_mono 1 THEN arith_tac 1);
+ by (rtac zmult_zle_mono1 1);
+ by Auto_tac;
+ qed "zdiv_mono2_lemma";
+
+ Goal "[| (#0::int) $<= a;  #0 $< b';  b' $<= b |]  \
+ \     ==> a div b $<= a div b'";
+ by (subgoal_tac "b ~= #0" 1);
+ by (arith_tac 2);
+ by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
+ by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
+ by (rtac zdiv_mono2_lemma 1);
+ by (etac subst 1);
+ by (etac subst 1);
+ by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
+ qed "zdiv_mono2";
+
+ Goal "[| b$*q $+ r = b'$*q' $+ r';  b'$*q' $+ r' $< #0;  \
+ \        r $< b;  #0 $<= r';  #0 $< b';  b' $<= b |]  \
+ \     ==> q' $<= q";
+ by (subgoal_tac "q' $< #0" 1);
+  by (subgoal_tac "b'$*q' $< #0" 2);
+   by (arith_tac 3);
+  by (asm_full_simp_tac (simpset() addsimps [zmult_less_0_iff]) 2);
+ by (subgoal_tac "b$*q' $< b$*(q $+ #1)" 1);
+  by (Asm_full_simp_tac 1);
+ by (asm_simp_tac (simpset() addsimps [zadd_zmult_distrib2]) 1);
+ by (subgoal_tac "b$*q' $<= b'$*q'" 1);
+  by (asm_simp_tac (simpset() addsimps [zmult_zle_mono1_neg]) 2);
+ by (subgoal_tac "b'$*q' $< b $+ b$*q" 1);
+  by (Asm_simp_tac 2);
+ by (arith_tac 1);
+ qed "zdiv_mono2_neg_lemma";
+
+ Goal "[| a $< (#0::int);  #0 $< b';  b' $<= b |]  \
+ \     ==> a div b' $<= a div b";
+ by (cut_inst_tac [("a","a"),("b","b")] zmod_zdiv_equality 1);
+ by (cut_inst_tac [("a","a"),("b","b'")] zmod_zdiv_equality 1);
+ by (rtac zdiv_mono2_neg_lemma 1);
+ by (etac subst 1);
+ by (etac subst 1);
+ by (ALLGOALS (asm_simp_tac (simpset() addsimps [pos_mod_sign,pos_mod_bound])));
+ qed "zdiv_mono2_neg";
+
+
+ (*** More algebraic laws for div and mod ***)
+
+ (** proving (a*b) div c = a $* (b div c) $+ a * (b mod c) **)
+
+ Goal "[| quorem(<b,c>,<q,r>);  c ~= #0 |] \
+ \     ==> quorem (<a$*b,c>, <a$*q $+ a$*r div c,a$*r mod c>)";
+ by (auto_tac
+     (claset(),
+      simpset() addsimps split_ifs@
+			 [quorem_def, neq_iff_zless, 
+			  zadd_zmult_distrib2,
+			  pos_mod_sign,pos_mod_bound,
+			  neg_mod_sign, neg_mod_bound]));
+ by (ALLGOALS(rtac zmod_zdiv_equality));
+ val lemma = result();
+
+ Goal "(a$*b) div c = a$*(b div c) $+ a$*(b mod c) div c";
+ by (zdiv_undefined_case_tac "c = #0" 1);
+ by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_div]) 1);
+ qed "zdiv_zmult1_eq";
+
+ Goal "(a$*b) mod c = a$*(b mod c) mod c";
+ by (zdiv_undefined_case_tac "c = #0" 1);
+ by (blast_tac (claset() addIs [quorem_div_mod RS lemma RS quorem_mod]) 1);
+ qed "zmod_zmult1_eq";
+
+ Goal "(a$*b) mod c = ((a mod c) $* b) mod c";
+ by (rtac trans 1);
+ by (res_inst_tac [("s","b$*a mod c")] trans 1);
+ by (rtac zmod_zmult1_eq 2);
+ by (ALLGOALS (simp_tac (simpset() addsimps [zmult_commute])));
+ qed "zmod_zmult1_eq'";
+
+ Goal "(a$*b) mod c = ((a mod c) $* (b mod c)) mod c";
+ by (rtac (zmod_zmult1_eq' RS trans) 1);
+ by (rtac zmod_zmult1_eq 1);
+ qed "zmod_zmult_distrib";
+
+ Goal "b ~= (#0::int) ==> (a$*b) div b = a";
+ by (asm_simp_tac (simpset() addsimps [zdiv_zmult1_eq]) 1);
+ qed "zdiv_zmult_self1";
+
+ Goal "b ~= (#0::int) ==> (b$*a) div b = a";
+ by (stac zmult_commute 1 THEN etac zdiv_zmult_self1 1);
+ qed "zdiv_zmult_self2";
+
+ Addsimps [zdiv_zmult_self1, zdiv_zmult_self2];
+
+ Goal "(a$*b) mod b = (#0::int)";
+ by (simp_tac (simpset() addsimps [zmod_zmult1_eq]) 1);
+ qed "zmod_zmult_self1";
+
+ Goal "(b$*a) mod b = (#0::int)";
+ by (simp_tac (simpset() addsimps [zmult_commute, zmod_zmult1_eq]) 1);
+ qed "zmod_zmult_self2";
+
+ Addsimps [zmod_zmult_self1, zmod_zmult_self2];
+
+
+ (** proving (a$+b) div c = a div c $+ b div c $+ ((a mod c $+ b mod c) div c) **)
+
+ Goal "[| quorem(<a,c>,<aq,ar>);  quorem(<b,c>,<bq,br>);  c ~= #0 |] \
+ \     ==> quorem (<a$+b,c>, (aq $+ bq $+ (ar$+br) div c, (ar$+br) mod c))";
+ by (auto_tac
+     (claset(),
+      simpset() addsimps split_ifs@
+			 [quorem_def, neq_iff_zless, 
+			  zadd_zmult_distrib2,
+			  pos_mod_sign,pos_mod_bound,
+			  neg_mod_sign, neg_mod_bound]));
+ by (ALLGOALS(rtac zmod_zdiv_equality));
+ val lemma = result();
+
+ (*NOT suitable for rewriting: the RHS has an instance of the LHS*)
+ Goal "(a$+b) div c = a div c $+ b div c $+ ((a mod c $+ b mod c) div c)";
+ by (zdiv_undefined_case_tac "c = #0" 1);
+ by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
+				MRS lemma RS quorem_div]) 1);
+ qed "zdiv_zadd1_eq";
+
+ Goal "(a$+b) mod c = (a mod c $+ b mod c) mod c";
+ by (zdiv_undefined_case_tac "c = #0" 1);
+ by (blast_tac (claset() addIs [[quorem_div_mod,quorem_div_mod]
+				MRS lemma RS quorem_mod]) 1);
+ qed "zmod_zadd1_eq";
+
+ Goal "(a mod b) div b = (#0::int)";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (auto_tac (claset(), 
+	simpset() addsimps [neq_iff_zless, 
+			    pos_mod_sign, pos_mod_bound, div_pos_pos_trivial, 
+			    neg_mod_sign, neg_mod_bound, div_neg_neg_trivial]));
+ qed "mod_div_trivial";
+ Addsimps [mod_div_trivial];
+
+ Goal "(a mod b) mod b = a mod b";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (auto_tac (claset(), 
+	simpset() addsimps [neq_iff_zless, 
+			    pos_mod_sign, pos_mod_bound, mod_pos_pos_trivial, 
+			    neg_mod_sign, neg_mod_bound, mod_neg_neg_trivial]));
+ qed "mod_mod_trivial";
+ Addsimps [mod_mod_trivial];
+
+ Goal "(a$+b) mod c = ((a mod c) $+ b) mod c";
+ by (rtac (trans RS sym) 1);
+ by (rtac zmod_zadd1_eq 1);
+ by (Simp_tac 1);
+ by (rtac (zmod_zadd1_eq RS sym) 1);
+ qed "zmod_zadd_left_eq";
+
+ Goal "(a$+b) mod c = (a $+ (b mod c)) mod c";
+ by (rtac (trans RS sym) 1);
+ by (rtac zmod_zadd1_eq 1);
+ by (Simp_tac 1);
+ by (rtac (zmod_zadd1_eq RS sym) 1);
+ qed "zmod_zadd_right_eq";
+
+
+ Goal "a ~= (#0::int) ==> (a$+b) div a = b div a $+ #1";
+ by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
+ qed "zdiv_zadd_self1";
+
+ Goal "a ~= (#0::int) ==> (b$+a) div a = b div a $+ #1";
+ by (asm_simp_tac (simpset() addsimps [zdiv_zadd1_eq]) 1);
+ qed "zdiv_zadd_self2";
+ Addsimps [zdiv_zadd_self1, zdiv_zadd_self2];
+
+ Goal "(a$+b) mod a = b mod a";
+ by (zdiv_undefined_case_tac "a = #0" 1);
+ by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
+ qed "zmod_zadd_self1";
+
+ Goal "(b$+a) mod a = b mod a";
+ by (zdiv_undefined_case_tac "a = #0" 1);
+ by (asm_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1);
+ qed "zmod_zadd_self2";
+ Addsimps [zmod_zadd_self1, zmod_zadd_self2];
+
+
+ (*** proving  a div (b*c) = (a div b) div c ***)
+
+ (*The condition c>0 seems necessary.  Consider that 7 div ~6 = ~2 but
+   7 div 2 div ~3 = 3 div ~3 = ~1.  The subcase (a div b) mod c = 0 seems
+   to cause particular problems.*)
+
+ (** first, four lemmas to bound the remainder for the cases b<0 and b>0 **)
+
+ Goal "[| (#0::int) $< c;  b $< r;  r $<= #0 |] ==> b$*c $< b$*(q mod c) $+ r";
+ by (subgoal_tac "b $* (c $- q mod c) $< r $* #1" 1);
+ by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
+ by (rtac order_le_less_trans 1);
+ by (etac zmult_zless_mono1 2);
+ by (rtac zmult_zle_mono2_neg 1);
+ by (auto_tac
+     (claset(),
+      simpset() addsimps zcompare_rls@
+			 [zadd_commute, add1_zle_eq, pos_mod_bound]));
+ val lemma1 = result();
+
+ Goal "[| (#0::int) $< c;   b $< r;  r $<= #0 |] ==> b $* (q mod c) $+ r $<= #0";
+ by (subgoal_tac "b $* (q mod c) $<= #0" 1);
+ by (arith_tac 1);
+ by (asm_simp_tac (simpset() addsimps [zmult_le_0_iff, pos_mod_sign]) 1);
+ val lemma2 = result();
+
+ Goal "[| (#0::int) $< c;  #0 $<= r;  r $< b |] ==> #0 $<= b $* (q mod c) $+ r";
+ by (subgoal_tac "#0 $<= b $* (q mod c)" 1);
+ by (arith_tac 1);
+ by (asm_simp_tac (simpset() addsimps [int_0_le_mult_iff, pos_mod_sign]) 1);
+ val lemma3 = result();
+
+ Goal "[| (#0::int) $< c; #0 $<= r; r $< b |] ==> b $* (q mod c) $+ r $< b $* c";
+ by (subgoal_tac "r $* #1 $< b $* (c $- q mod c)" 1);
+ by (asm_full_simp_tac (simpset() addsimps [zdiff_zmult_distrib2]) 1);
+ by (rtac order_less_le_trans 1);
+ by (etac zmult_zless_mono1 1);
+ by (rtac zmult_zle_mono2 2);
+ by (auto_tac
+     (claset(),
+      simpset() addsimps zcompare_rls@
+			 [zadd_commute, add1_zle_eq, pos_mod_bound]));
+ val lemma4 = result();
+
+ Goal "[| quorem (<a,b>, <q,r>);  b ~= #0;  #0 $< c |] \
+ \     ==> quorem (<a,b$*c>, (q div c, b$*(q mod c) $+ r))";
+ by (auto_tac  
+     (claset(),
+      simpset() addsimps zmult_ac@
+			 [zmod_zdiv_equality, quorem_def, neq_iff_zless,
+			  int_0_less_mult_iff,
+			  zadd_zmult_distrib2 RS sym,
+			  lemma1, lemma2, lemma3, lemma4]));
+ val lemma = result();
+
+ Goal "(#0::int) $< c ==> a div (b$*c) = (a div b) div c";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (force_tac (claset(),
+		simpset() addsimps [quorem_div_mod RS lemma RS quorem_div, 
+				    zmult_eq_0_iff]) 1);
+ qed "zdiv_zmult2_eq";
+
+ Goal "(#0::int) $< c ==> a mod (b$*c) = b$*(a div b mod c) $+ a mod b";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (force_tac (claset(),
+		simpset() addsimps [quorem_div_mod RS lemma RS quorem_mod, 
+				    zmult_eq_0_iff]) 1);
+ qed "zmod_zmult2_eq";
+
+
+ (*** Cancellation of common factors in "div" ***)
+
+ Goal "[| (#0::int) $< b;  c ~= #0 |] ==> (c$*a) div (c$*b) = a div b";
+ by (stac zdiv_zmult2_eq 1);
+ by Auto_tac;
+ val lemma1 = result();
+
+ Goal "[| b $< (#0::int);  c ~= #0 |] ==> (c$*a) div (c$*b) = a div b";
+ by (subgoal_tac "(c $* (-a)) div (c $* (-b)) = (-a) div (-b)" 1);
+ by (rtac lemma1 2);
+ by Auto_tac;
+ val lemma2 = result();
+
+ Goal "c ~= (#0::int) ==> (c$*a) div (c$*b) = a div b";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (auto_tac
+     (claset(), 
+      simpset() addsimps [read_instantiate [("x", "b")] neq_iff_zless, 
+			  lemma1, lemma2]));
+ qed "zdiv_zmult_zmult1";
+
+ Goal "c ~= (#0::int) ==> (a$*c) div (b$*c) = a div b";
+ by (dtac zdiv_zmult_zmult1 1);
+ by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
+ qed "zdiv_zmult_zmult2";
+
+
+
+ (*** Distribution of factors over "mod" ***)
+
+ Goal "[| (#0::int) $< b;  c ~= #0 |] ==> (c$*a) mod (c$*b) = c $* (a mod b)";
+ by (stac zmod_zmult2_eq 1);
+ by Auto_tac;
+ val lemma1 = result();
+
+ Goal "[| b $< (#0::int);  c ~= #0 |] ==> (c$*a) mod (c$*b) = c $* (a mod b)";
+ by (subgoal_tac "(c $* (-a)) mod (c $* (-b)) = c $* ((-a) mod (-b))" 1);
+ by (rtac lemma1 2);
+ by Auto_tac;
+ val lemma2 = result();
+
+ Goal "(c$*a) mod (c$*b) = c $* (a mod b)";
+ by (zdiv_undefined_case_tac "b = #0" 1);
+ by (zdiv_undefined_case_tac "c = #0" 1);
+ by (auto_tac
+     (claset(), 
+      simpset() addsimps [read_instantiate [("x", "b")] neq_iff_zless, 
+			  lemma1, lemma2]));
+ qed "zmod_zmult_zmult1";
+
+ Goal "(a$*c) mod (b$*c) = (a mod b) $* c";
+ by (cut_inst_tac [("c","c")] zmod_zmult_zmult1 1);
+ by (auto_tac (claset(), simpset() addsimps [zmult_commute]));
+ qed "zmod_zmult_zmult2";
+
+
+ (*** Speeding up the division algorithm with shifting ***)
+
+ (** computing "div" by shifting **)
+
+ Goal "(#0::int) $<= a ==> (#1 $+ #2$*b) div (#2$*a) = b div a";
+ by (zdiv_undefined_case_tac "a = #0" 1);
+ by (subgoal_tac "#1 $<= a" 1);
+  by (arith_tac 2);
+ by (subgoal_tac "#1 $< a $* #2" 1);
+  by (arith_tac 2);
+ by (subgoal_tac "#2$*(#1 $+ b mod a) $<= #2$*a" 1);
+  by (rtac zmult_zle_mono2 2);
+ by (auto_tac (claset(),
+	       simpset() addsimps [zadd_commute, zmult_commute, 
+				   add1_zle_eq, pos_mod_bound]));
+ by (stac zdiv_zadd1_eq 1);
+ by (asm_simp_tac (simpset() addsimps [zdiv_zmult_zmult2, zmod_zmult_zmult2, 
+				       div_pos_pos_trivial]) 1);
+ by (stac div_pos_pos_trivial 1);
+ by (asm_simp_tac (simpset() 
+	    addsimps [mod_pos_pos_trivial,
+		     pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
+ by (auto_tac (claset(),
+	       simpset() addsimps [mod_pos_pos_trivial]));
+ by (subgoal_tac "#0 $<= b mod a" 1);
+  by (asm_simp_tac (simpset() addsimps [pos_mod_sign]) 2);
+ by (arith_tac 1);
+ qed "pos_zdiv_mult_2";
+
+
+ Goal "a $<= (#0::int) ==> (#1 $+ #2$*b) div (#2$*a) = (b$+#1) div a";
+ by (subgoal_tac "(#1 $+ #2$*(-b-#1)) div (#2 $* (-a)) = (-b-#1) div (-a)" 1);
+ by (rtac pos_zdiv_mult_2 2);
+ by (auto_tac (claset(),
+	       simpset() addsimps [zmult_zminus_right]));
+ by (subgoal_tac "(#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))" 1);
+ by (Simp_tac 2);
+ by (asm_full_simp_tac (HOL_ss
+			addsimps [zdiv_zminus_zminus, zdiff_def,
+				  zminus_zadd_distrib RS sym]) 1);
+ qed "neg_zdiv_mult_2";
+
+
+ (*Not clear why this must be proved separately; probably number_of causes
+   simplification problems*)
+ Goal "~ #0 $<= x ==> x $<= (#0::int)";
+ by Auto_tac;
+ val lemma = result();
+
+ Goal "number_of (v BIT b) div number_of (w BIT False) = \
+ \         (if ~b | (#0::int) $<= number_of w                   \
+ \          then number_of v div (number_of w)    \
+ \          else (number_of v $+ (#1::int)) div (number_of w))";
+ by (simp_tac (simpset_of Int.thy addsimps [zadd_assoc, number_of_BIT]) 1);
+ by (asm_simp_tac (simpset()
+		   delsimps bin_arith_extra_simps@bin_rel_simps
+		   addsimps [zdiv_zmult_zmult1,
+			     pos_zdiv_mult_2, lemma, neg_zdiv_mult_2]) 1);
+ qed "zdiv_number_of_BIT";
+
+ Addsimps [zdiv_number_of_BIT];
+
+
+ (** computing "mod" by shifting (proofs resemble those for "div") **)
+
+ Goal "(#0::int) $<= a ==> (#1 $+ #2$*b) mod (#2$*a) = #1 $+ #2 $* (b mod a)";
+ by (zdiv_undefined_case_tac "a = #0" 1);
+ by (subgoal_tac "#1 $<= a" 1);
+  by (arith_tac 2);
+ by (subgoal_tac "#1 $< a $* #2" 1);
+  by (arith_tac 2);
+ by (subgoal_tac "#2$*(#1 $+ b mod a) $<= #2$*a" 1);
+  by (rtac zmult_zle_mono2 2);
+ by (auto_tac (claset(),
+	       simpset() addsimps [zadd_commute, zmult_commute, 
+				   add1_zle_eq, pos_mod_bound]));
+ by (stac zmod_zadd1_eq 1);
+ by (asm_simp_tac (simpset() addsimps [zmod_zmult_zmult2, 
+				       mod_pos_pos_trivial]) 1);
+ by (rtac mod_pos_pos_trivial 1);
+ by (asm_simp_tac (simpset() 
+		   addsimps [mod_pos_pos_trivial,
+		     pos_mod_sign RS zadd_zle_mono1 RSN (2,order_trans)]) 1);
+ by (auto_tac (claset(),
+	       simpset() addsimps [mod_pos_pos_trivial]));
+ by (subgoal_tac "#0 $<= b mod a" 1);
+  by (asm_simp_tac (simpset() addsimps [pos_mod_sign]) 2);
+ by (arith_tac 1);
+ qed "pos_zmod_mult_2";
+
+
+ Goal "a $<= (#0::int) ==> (#1 $+ #2$*b) mod (#2$*a) = #2 $* ((b$+#1) mod a) - #1";
+ by (subgoal_tac 
+     "(#1 $+ #2$*(-b-#1)) mod (#2$*(-a)) = #1 $+ #2$*((-b-#1) mod (-a))" 1);
+ by (rtac pos_zmod_mult_2 2);
+ by (auto_tac (claset(),
+	       simpset() addsimps [zmult_zminus_right]));
+ by (subgoal_tac "(#-1 - (#2 $* b)) = - (#1 $+ (#2 $* b))" 1);
+ by (Simp_tac 2);
+ by (asm_full_simp_tac (HOL_ss
+			addsimps [zmod_zminus_zminus, zdiff_def,
+				  zminus_zadd_distrib RS sym]) 1);
+ by (dtac (zminus_equation RS iffD1 RS sym) 1);
+ by Auto_tac;
+ qed "neg_zmod_mult_2";
+
+ Goal "number_of (v BIT b) mod number_of (w BIT False) = \
+ \         (if b then \
+ \               if (#0::int) $<= number_of w \
+ \               then #2 $* (number_of v mod number_of w) $+ #1    \
+ \               else #2 $* ((number_of v $+ (#1::int)) mod number_of w) - #1  \
+ \          else #2 $* (number_of v mod number_of w))";
+ by (simp_tac (simpset_of Int.thy addsimps [zadd_assoc, number_of_BIT]) 1);
+ by (asm_simp_tac (simpset()
+		   delsimps bin_arith_extra_simps@bin_rel_simps
+		   addsimps [zmod_zmult_zmult1,
+			     pos_zmod_mult_2, lemma, neg_zmod_mult_2]) 1);
+ qed "zmod_number_of_BIT";
+
+ Addsimps [zmod_number_of_BIT];
+
+
+ (** Quotients of signs **)
+
+ Goal "[| a $< (#0::int);  #0 $< b |] ==> a div b $< #0";
+ by (subgoal_tac "a div b $<= #-1" 1);
+ by (Force_tac 1);
+ by (rtac order_trans 1);
+ by (res_inst_tac [("a'","#-1")]  zdiv_mono1 1);
+ by (auto_tac (claset(), simpset() addsimps [zdiv_minus1]));
+ qed "div_neg_pos_less0";
+
+ Goal "[| (#0::int) $<= a;  b $< #0 |] ==> a div b $<= #0";
+ by (dtac zdiv_mono1_neg 1);
+ by Auto_tac;
+ qed "div_nonneg_neg_le0";
+
+ Goal "(#0::int) $< b ==> (#0 $<= a div b) = (#0 $<= a)";
+ by Auto_tac;
+ by (dtac zdiv_mono1 2);
+ by (auto_tac (claset(), simpset() addsimps [neq_iff_zless]));
+ by (full_simp_tac (simpset() addsimps [not_zless_iff_zle RS sym]) 1);
+ by (blast_tac (claset() addIs [div_neg_pos_less0]) 1);
+ qed "pos_imp_zdiv_nonneg_iff";
+
+ Goal "b $< (#0::int) ==> (#0 $<= a div b) = (a $<= (#0::int))";
+ by (stac (zdiv_zminus_zminus RS sym) 1);
+ by (stac pos_imp_zdiv_nonneg_iff 1);
+ by Auto_tac;
+ qed "neg_imp_zdiv_nonneg_iff";
+
+ (*But not (a div b $<= 0 iff a$<=0); consider a=1, b=2 when a div b = 0.*)
+ Goal "(#0::int) $< b ==> (a div b $< #0) = (a $< #0)";
+ by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
+				       pos_imp_zdiv_nonneg_iff]) 1);
+ qed "pos_imp_zdiv_neg_iff";
+
+ (*Again the law fails for $<=: consider a = -1, b = -2 when a div b = 0*)
+ Goal "b $< (#0::int) ==> (a div b $< #0) = (#0 $< a)";
+ by (asm_simp_tac (simpset() addsimps [linorder_not_le RS sym,
+				       neg_imp_zdiv_nonneg_iff]) 1);
+ qed "neg_imp_zdiv_neg_iff";
+*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/ZF/Integ/IntDiv.thy	Fri Aug 11 13:27:17 2000 +0200
@@ -0,0 +1,62 @@
+(*  Title:      ZF/IntDiv.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1999  University of Cambridge
+
+The division operators div, mod
+*)
+
+IntDiv = IntArith + 
+
+constdefs
+  quorem :: "[i,i] => o"
+    "quorem == %<a,b> <q,r>.
+                      a = b$*q $+ r &
+                      (#0$<b & #0$<=r & r$<b | ~(#0$<b) & b$<r & r $<= #0)"
+
+  adjust :: "[i,i,i] => i"
+    "adjust(a,b) == %<q,r>. if #0 $<= r$-b then <#2$*q $+ #1,r$-b>
+                            else <#2$*q,r>"
+
+(**
+(** the division algorithm **)
+
+(*for the case a>=0, b>0*)
+consts posDivAlg :: "int*int => int*int"
+recdef posDivAlg "inv_image less_than (%<a,b>. nat(a $- b $+ #1))"
+    "posDivAlg <a,b> =
+       (if (a$<b | b$<=#0) then <#0,a>
+        else adjust a b (posDivAlg<a,#2$*b>))"
+
+(*for the case a<0, b>0*)
+consts negDivAlg :: "int*int => int*int"
+recdef negDivAlg "inv_image less_than (%<a,b>. nat(- a $- b))"
+    "negDivAlg <a,b> =
+       (if (#0$<=a$+b | b$<=#0) then <#-1,a$+b>
+        else adjust a b (negDivAlg<a,#2$*b>))"
+
+(*for the general case b~=0*)
+
+constdefs
+  negateSnd :: "int*int => int*int"
+    "negateSnd == %<q,r>. <q,-r>"
+
+  (*The full division algorithm considers all possible signs for a, b
+    including the special case a=0, b<0, because negDivAlg requires a<0*)
+  divAlg :: "int*int => int*int"
+    "divAlg ==
+       %<a,b>. if #0$<=a then
+                  if #0$<=b then posDivAlg <a,b>
+                  else if a=#0 then <#0,#0>
+                       else negateSnd (negDivAlg <-a,-b>)
+               else 
+                  if #0$<b then negDivAlg <a,b>
+                  else         negateSnd (posDivAlg <-a,-b>)"
+
+defs
+  div_def   "a div b == fst (divAlg <a,b>)"
+  mod_def   "a mod b == snd (divAlg <a,b>)"
+
+**)
+
+end
--- a/src/ZF/IsaMakefile	Fri Aug 11 13:26:40 2000 +0200
+++ b/src/ZF/IsaMakefile	Fri Aug 11 13:27:17 2000 +0200
@@ -31,10 +31,11 @@
   Cardinal.ML Cardinal.thy CardinalArith.ML CardinalArith.thy		\
   Cardinal_AC.ML Cardinal_AC.thy Datatype.ML Datatype.thy Epsilon.ML	\
   Epsilon.thy Finite.ML Finite.thy Fixedpt.ML Fixedpt.thy Inductive.ML	\
-  Inductive.thy InfDatatype.ML InfDatatype.thy Integ/Bin.ML		\
-  Integ/Bin.thy Integ/EquivClass.ML Integ/EquivClass.thy Integ/Int.ML	\
-  Integ/Int.thy Integ/twos_compl.ML \
-  Integ/int_arith.ML Integ/IntArith.thy \
+  Inductive.thy InfDatatype.ML InfDatatype.thy \
+  Integ/Bin.ML Integ/Bin.thy \
+  Integ/EquivClass.ML Integ/EquivClass.thy Integ/Int.ML	Integ/Int.thy \
+  Integ/IntDiv.ML Integ/IntDiv.thy \
+  Integ/twos_compl.ML Integ/int_arith.ML Integ/IntArith.thy \
   Let.ML Let.thy List.ML List.thy	\
   Main.thy Nat.ML Nat.thy Order.ML Order.thy OrderArith.ML		\
   OrderArith.thy OrderType.ML OrderType.thy Ordinal.ML Ordinal.thy	\
--- a/src/ZF/Main.thy	Fri Aug 11 13:26:40 2000 +0200
+++ b/src/ZF/Main.thy	Fri Aug 11 13:27:17 2000 +0200
@@ -2,5 +2,5 @@
 (*$Id$
   theory Main includes everything*)
 
-Main = Update + InfDatatype + List + EquivClass + IntArith
+Main = Update + InfDatatype + List + EquivClass + IntDiv