0
|
1 |
(* Title: ZF/list-fn.ML
|
|
2 |
ID: $Id$
|
|
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
|
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
|
|
6 |
For list-fn.thy. Lists in Zermelo-Fraenkel Set Theory
|
|
7 |
*)
|
|
8 |
|
|
9 |
open ListFn;
|
|
10 |
|
|
11 |
|
|
12 |
(** list_rec -- by Vset recursion **)
|
|
13 |
|
|
14 |
(*Used to verify list_rec*)
|
|
15 |
val list_rec_ss = ZF_ss
|
|
16 |
addcongs (mk_typed_congs ListFn.thy [("h", "[i,i,i]=>i")])
|
|
17 |
addrews List.case_eqns;
|
|
18 |
|
|
19 |
goal ListFn.thy "list_rec(Nil,c,h) = c";
|
|
20 |
by (rtac (list_rec_def RS def_Vrec RS trans) 1);
|
|
21 |
by (SIMP_TAC list_rec_ss 1);
|
|
22 |
val list_rec_Nil = result();
|
|
23 |
|
|
24 |
goal ListFn.thy "list_rec(Cons(a,l), c, h) = h(a, l, list_rec(l,c,h))";
|
|
25 |
by (rtac (list_rec_def RS def_Vrec RS trans) 1);
|
|
26 |
by (SIMP_TAC (list_rec_ss addrews [Vset_rankI, rank_Cons2]) 1);
|
|
27 |
val list_rec_Cons = result();
|
|
28 |
|
|
29 |
(*Type checking -- proved by induction, as usual*)
|
|
30 |
val prems = goal ListFn.thy
|
|
31 |
"[| l: list(A); \
|
|
32 |
\ c: C(Nil); \
|
|
33 |
\ !!x y r. [| x:A; y: list(A); r: C(y) |] ==> h(x,y,r): C(Cons(x,y)) \
|
|
34 |
\ |] ==> list_rec(l,c,h) : C(l)";
|
|
35 |
by (list_ind_tac "l" prems 1);
|
|
36 |
by (ALLGOALS (ASM_SIMP_TAC
|
|
37 |
(ZF_ss addrews (prems@[list_rec_Nil,list_rec_Cons]))));
|
|
38 |
val list_rec_type = result();
|
|
39 |
|
|
40 |
(** Versions for use with definitions **)
|
|
41 |
|
|
42 |
val [rew] = goal ListFn.thy
|
|
43 |
"[| !!l. j(l)==list_rec(l, c, h) |] ==> j(Nil) = c";
|
|
44 |
by (rewtac rew);
|
|
45 |
by (rtac list_rec_Nil 1);
|
|
46 |
val def_list_rec_Nil = result();
|
|
47 |
|
|
48 |
val [rew] = goal ListFn.thy
|
|
49 |
"[| !!l. j(l)==list_rec(l, c, h) |] ==> j(Cons(a,l)) = h(a,l,j(l))";
|
|
50 |
by (rewtac rew);
|
|
51 |
by (rtac list_rec_Cons 1);
|
|
52 |
val def_list_rec_Cons = result();
|
|
53 |
|
|
54 |
fun list_recs def = map standard
|
|
55 |
([def] RL [def_list_rec_Nil, def_list_rec_Cons]);
|
|
56 |
|
|
57 |
(** map **)
|
|
58 |
|
|
59 |
val [map_Nil,map_Cons] = list_recs map_def;
|
|
60 |
|
|
61 |
val prems = goalw ListFn.thy [map_def]
|
|
62 |
"[| l: list(A); !!x. x: A ==> h(x): B |] ==> map(h,l) : list(B)";
|
|
63 |
by (REPEAT (ares_tac (prems@[list_rec_type, NilI, ConsI]) 1));
|
|
64 |
val map_type = result();
|
|
65 |
|
|
66 |
val [major] = goal ListFn.thy "l: list(A) ==> map(h,l) : list({h(u). u:A})";
|
|
67 |
by (rtac (major RS map_type) 1);
|
|
68 |
by (etac RepFunI 1);
|
|
69 |
val map_type2 = result();
|
|
70 |
|
|
71 |
(** length **)
|
|
72 |
|
|
73 |
val [length_Nil,length_Cons] = list_recs length_def;
|
|
74 |
|
|
75 |
val prems = goalw ListFn.thy [length_def]
|
|
76 |
"l: list(A) ==> length(l) : nat";
|
|
77 |
by (REPEAT (ares_tac (prems @ [list_rec_type, nat_0I, nat_succI]) 1));
|
|
78 |
val length_type = result();
|
|
79 |
|
|
80 |
(** app **)
|
|
81 |
|
|
82 |
val [app_Nil,app_Cons] = list_recs app_def;
|
|
83 |
|
|
84 |
val prems = goalw ListFn.thy [app_def]
|
|
85 |
"[| xs: list(A); ys: list(A) |] ==> xs@ys : list(A)";
|
|
86 |
by (REPEAT (ares_tac (prems @ [list_rec_type, ConsI]) 1));
|
|
87 |
val app_type = result();
|
|
88 |
|
|
89 |
(** rev **)
|
|
90 |
|
|
91 |
val [rev_Nil,rev_Cons] = list_recs rev_def;
|
|
92 |
|
|
93 |
val prems = goalw ListFn.thy [rev_def]
|
|
94 |
"xs: list(A) ==> rev(xs) : list(A)";
|
|
95 |
by (REPEAT (ares_tac (prems @ [list_rec_type, NilI, ConsI, app_type]) 1));
|
|
96 |
val rev_type = result();
|
|
97 |
|
|
98 |
|
|
99 |
(** flat **)
|
|
100 |
|
|
101 |
val [flat_Nil,flat_Cons] = list_recs flat_def;
|
|
102 |
|
|
103 |
val prems = goalw ListFn.thy [flat_def]
|
|
104 |
"ls: list(list(A)) ==> flat(ls) : list(A)";
|
|
105 |
by (REPEAT (ares_tac (prems @ [list_rec_type, NilI, ConsI, app_type]) 1));
|
|
106 |
val flat_type = result();
|
|
107 |
|
|
108 |
|
|
109 |
(** list_add **)
|
|
110 |
|
|
111 |
val [list_add_Nil,list_add_Cons] = list_recs list_add_def;
|
|
112 |
|
|
113 |
val prems = goalw ListFn.thy [list_add_def]
|
|
114 |
"xs: list(nat) ==> list_add(xs) : nat";
|
|
115 |
by (REPEAT (ares_tac (prems @ [list_rec_type, nat_0I, add_type]) 1));
|
|
116 |
val list_add_type = result();
|
|
117 |
|
|
118 |
(** ListFn simplification **)
|
|
119 |
|
|
120 |
val list_typechecks =
|
|
121 |
[NilI, ConsI, list_rec_type,
|
|
122 |
map_type, map_type2, app_type, length_type, rev_type, flat_type,
|
|
123 |
list_add_type];
|
|
124 |
|
|
125 |
val list_congs =
|
|
126 |
List.congs @
|
|
127 |
mk_congs ListFn.thy
|
|
128 |
["list_rec","map","op @","length","rev","flat","list_add"];
|
|
129 |
|
|
130 |
val list_ss = arith_ss
|
|
131 |
addcongs list_congs
|
|
132 |
addrews List.case_eqns
|
|
133 |
addrews list_typechecks
|
|
134 |
addrews [list_rec_Nil, list_rec_Cons,
|
|
135 |
map_Nil, map_Cons,
|
|
136 |
app_Nil, app_Cons,
|
|
137 |
length_Nil, length_Cons,
|
|
138 |
rev_Nil, rev_Cons,
|
|
139 |
flat_Nil, flat_Cons,
|
|
140 |
list_add_Nil, list_add_Cons];
|
|
141 |
|
|
142 |
(*** theorems about map ***)
|
|
143 |
|
|
144 |
val prems = goal ListFn.thy
|
|
145 |
"l: list(A) ==> map(%u.u, l) = l";
|
|
146 |
by (list_ind_tac "l" prems 1);
|
|
147 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
148 |
val map_ident = result();
|
|
149 |
|
|
150 |
val prems = goal ListFn.thy
|
|
151 |
"l: list(A) ==> map(h, map(j,l)) = map(%u.h(j(u)), l)";
|
|
152 |
by (list_ind_tac "l" prems 1);
|
|
153 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
154 |
val map_compose = result();
|
|
155 |
|
|
156 |
val prems = goal ListFn.thy
|
|
157 |
"xs: list(A) ==> map(h, xs@ys) = map(h,xs) @ map(h,ys)";
|
|
158 |
by (list_ind_tac "xs" prems 1);
|
|
159 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
160 |
val map_app_distrib = result();
|
|
161 |
|
|
162 |
val prems = goal ListFn.thy
|
|
163 |
"ls: list(list(A)) ==> map(h, flat(ls)) = flat(map(map(h),ls))";
|
|
164 |
by (list_ind_tac "ls" prems 1);
|
|
165 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [map_app_distrib])));
|
|
166 |
val map_flat = result();
|
|
167 |
|
|
168 |
val prems = goal ListFn.thy
|
|
169 |
"l: list(A) ==> \
|
|
170 |
\ list_rec(map(h,l), c, d) = \
|
|
171 |
\ list_rec(l, c, %x xs r. d(h(x), map(h,xs), r))";
|
|
172 |
by (list_ind_tac "l" prems 1);
|
|
173 |
by (ALLGOALS
|
|
174 |
(ASM_SIMP_TAC
|
|
175 |
(list_ss addcongs (mk_typed_congs ListFn.thy [("d", "[i,i,i]=>i")]))));
|
|
176 |
val list_rec_map = result();
|
|
177 |
|
|
178 |
(** theorems about list(Collect(A,P)) -- used in ex/term.ML **)
|
|
179 |
|
|
180 |
(* c : list(Collect(B,P)) ==> c : list(B) *)
|
|
181 |
val list_CollectD = standard (Collect_subset RS list_mono RS subsetD);
|
|
182 |
|
|
183 |
val prems = goal ListFn.thy
|
|
184 |
"l: list({x:A. h(x)=j(x)}) ==> map(h,l) = map(j,l)";
|
|
185 |
by (list_ind_tac "l" prems 1);
|
|
186 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
187 |
val map_list_Collect = result();
|
|
188 |
|
|
189 |
(*** theorems about length ***)
|
|
190 |
|
|
191 |
val prems = goal ListFn.thy
|
|
192 |
"xs: list(A) ==> length(map(h,xs)) = length(xs)";
|
|
193 |
by (list_ind_tac "xs" prems 1);
|
|
194 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
195 |
val length_map = result();
|
|
196 |
|
|
197 |
val prems = goal ListFn.thy
|
|
198 |
"xs: list(A) ==> length(xs@ys) = length(xs) #+ length(ys)";
|
|
199 |
by (list_ind_tac "xs" prems 1);
|
|
200 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
201 |
val length_app = result();
|
|
202 |
|
|
203 |
(* [| m: nat; n: nat |] ==> m #+ succ(n) = succ(n) #+ m
|
|
204 |
Used for rewriting below*)
|
|
205 |
val add_commute_succ = nat_succI RSN (2,add_commute);
|
|
206 |
|
|
207 |
val prems = goal ListFn.thy
|
|
208 |
"xs: list(A) ==> length(rev(xs)) = length(xs)";
|
|
209 |
by (list_ind_tac "xs" prems 1);
|
|
210 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [length_app, add_commute_succ])));
|
|
211 |
val length_rev = result();
|
|
212 |
|
|
213 |
val prems = goal ListFn.thy
|
|
214 |
"ls: list(list(A)) ==> length(flat(ls)) = list_add(map(length,ls))";
|
|
215 |
by (list_ind_tac "ls" prems 1);
|
|
216 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [length_app])));
|
|
217 |
val length_flat = result();
|
|
218 |
|
|
219 |
(*** theorems about app ***)
|
|
220 |
|
|
221 |
val [major] = goal ListFn.thy "xs: list(A) ==> xs@Nil=xs";
|
|
222 |
by (rtac (major RS List.induct) 1);
|
|
223 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
224 |
val app_right_Nil = result();
|
|
225 |
|
|
226 |
val prems = goal ListFn.thy "xs: list(A) ==> (xs@ys)@zs = xs@(ys@zs)";
|
|
227 |
by (list_ind_tac "xs" prems 1);
|
|
228 |
by (ALLGOALS (ASM_SIMP_TAC list_ss));
|
|
229 |
val app_assoc = result();
|
|
230 |
|
|
231 |
val prems = goal ListFn.thy
|
|
232 |
"ls: list(list(A)) ==> flat(ls@ms) = flat(ls)@flat(ms)";
|
|
233 |
by (list_ind_tac "ls" prems 1);
|
|
234 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [app_assoc])));
|
|
235 |
val flat_app_distrib = result();
|
|
236 |
|
|
237 |
(*** theorems about rev ***)
|
|
238 |
|
|
239 |
val prems = goal ListFn.thy "l: list(A) ==> rev(map(h,l)) = map(h,rev(l))";
|
|
240 |
by (list_ind_tac "l" prems 1);
|
|
241 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [map_app_distrib])));
|
|
242 |
val rev_map_distrib = result();
|
|
243 |
|
|
244 |
(*Simplifier needs the premises as assumptions because rewriting will not
|
|
245 |
instantiate the variable ?A in the rules' typing conditions; note that
|
|
246 |
rev_type does not instantiate ?A. Only the premises do.
|
|
247 |
*)
|
|
248 |
val prems = goal ListFn.thy
|
|
249 |
"[| xs: list(A); ys: list(A) |] ==> rev(xs@ys) = rev(ys)@rev(xs)";
|
|
250 |
by (cut_facts_tac prems 1);
|
|
251 |
by (etac List.induct 1);
|
|
252 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [app_right_Nil,app_assoc])));
|
|
253 |
val rev_app_distrib = result();
|
|
254 |
|
|
255 |
val prems = goal ListFn.thy "l: list(A) ==> rev(rev(l))=l";
|
|
256 |
by (list_ind_tac "l" prems 1);
|
|
257 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [rev_app_distrib])));
|
|
258 |
val rev_rev_ident = result();
|
|
259 |
|
|
260 |
val prems = goal ListFn.thy
|
|
261 |
"ls: list(list(A)) ==> rev(flat(ls)) = flat(map(rev,rev(ls)))";
|
|
262 |
by (list_ind_tac "ls" prems 1);
|
|
263 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews
|
|
264 |
[map_app_distrib, flat_app_distrib, rev_app_distrib, app_right_Nil])));
|
|
265 |
val rev_flat = result();
|
|
266 |
|
|
267 |
|
|
268 |
(*** theorems about list_add ***)
|
|
269 |
|
|
270 |
val prems = goal ListFn.thy
|
|
271 |
"[| xs: list(nat); ys: list(nat) |] ==> \
|
|
272 |
\ list_add(xs@ys) = list_add(ys) #+ list_add(xs)";
|
|
273 |
by (cut_facts_tac prems 1);
|
|
274 |
by (list_ind_tac "xs" prems 1);
|
|
275 |
by (ALLGOALS
|
|
276 |
(ASM_SIMP_TAC (list_ss addrews [add_0_right, add_assoc RS sym])));
|
|
277 |
by (resolve_tac arith_congs 1);
|
|
278 |
by (REPEAT (ares_tac [refl, list_add_type, add_commute] 1));
|
|
279 |
val list_add_app = result();
|
|
280 |
|
|
281 |
val prems = goal ListFn.thy
|
|
282 |
"l: list(nat) ==> list_add(rev(l)) = list_add(l)";
|
|
283 |
by (list_ind_tac "l" prems 1);
|
|
284 |
by (ALLGOALS
|
|
285 |
(ASM_SIMP_TAC (list_ss addrews [list_add_app, add_0_right])));
|
|
286 |
val list_add_rev = result();
|
|
287 |
|
|
288 |
val prems = goal ListFn.thy
|
|
289 |
"ls: list(list(nat)) ==> list_add(flat(ls)) = list_add(map(list_add,ls))";
|
|
290 |
by (list_ind_tac "ls" prems 1);
|
|
291 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews [list_add_app])));
|
|
292 |
by (REPEAT (ares_tac [refl, list_add_type, map_type, add_commute] 1));
|
|
293 |
val list_add_flat = result();
|
|
294 |
|
|
295 |
(** New induction rule **)
|
|
296 |
|
|
297 |
val major::prems = goal ListFn.thy
|
|
298 |
"[| l: list(A); \
|
|
299 |
\ P(Nil); \
|
|
300 |
\ !!x y. [| x: A; y: list(A); P(y) |] ==> P(y @ [x]) \
|
|
301 |
\ |] ==> P(l)";
|
|
302 |
by (rtac (major RS rev_rev_ident RS subst) 1);
|
|
303 |
by (rtac (major RS rev_type RS List.induct) 1);
|
|
304 |
by (ALLGOALS (ASM_SIMP_TAC (list_ss addrews prems)));
|
|
305 |
val list_append_induct = result();
|
|
306 |
|