0

1 
(* Title: ZF/zf.thy


2 
ID: $Id$


3 
Author: Lawrence C Paulson and Martin D Coen, CU Computer Laboratory


4 
Copyright 1993 University of Cambridge


5 


6 
ZermeloFraenkel Set Theory


7 
*)


8 


9 
ZF = FOL +


10 


11 
types


12 
i, is, syntax 0


13 


14 
arities


15 
i :: term


16 


17 


18 
consts


19 


20 
"0" :: "i" ("0") (*the empty set*)


21 
Pow :: "i => i" (*power sets*)


22 
Inf :: "i" (*infinite set*)


23 


24 
(* Bounded Quantifiers *)


25 


26 
"@Ball" :: "[idt, i, o] => o" ("(3ALL _:_./ _)" 10)


27 
"@Bex" :: "[idt, i, o] => o" ("(3EX _:_./ _)" 10)


28 
Ball :: "[i, i => o] => o"


29 
Bex :: "[i, i => o] => o"


30 


31 
(* General Union and Intersection *)


32 


33 
"@INTER" :: "[idt, i, i] => i" ("(3INT _:_./ _)" 10)


34 
"@UNION" :: "[idt, i, i] => i" ("(3UN _:_./ _)" 10)


35 
Union, Inter :: "i => i"


36 


37 
(* Variations on Replacement *)


38 


39 
"@Replace" :: "[idt, idt, i, o] => i" ("(1{_ ./ _: _, _})")


40 
"@RepFun" :: "[i, idt, i] => i" ("(1{_ ./ _: _})")


41 
"@Collect" :: "[idt, i, o] => i" ("(1{_: _ ./ _})")


42 
PrimReplace :: "[i, [i, i] => o] => i"


43 
Replace :: "[i, [i, i] => o] => i"


44 
RepFun :: "[i, i => i] => i"


45 
Collect :: "[i, i => o] => i"


46 


47 
(* Descriptions *)


48 


49 
"@THE" :: "[idt, o] => i" ("(3THE _./ _)" 10)


50 
The :: "[i => o] => i"


51 
if :: "[o, i, i] => i"


52 


53 
(* Enumerations of type i *)


54 


55 
"" :: "i => is" ("_")


56 
"@Enum" :: "[i, is] => is" ("_,/ _")


57 


58 
(* Finite Sets *)


59 


60 
"@Finset" :: "is => i" ("{(_)}")


61 
Upair, cons :: "[i, i] => i"


62 
succ :: "i => i"


63 


64 
(* Ordered Pairing and nTuples *)


65 


66 
"@Tuple" :: "[i, is] => i" ("<(_,/ _)>")


67 
PAIR :: "syntax"


68 
Pair :: "[i, i] => i"


69 
fst, snd :: "i => i"


70 
split :: "[[i,i] => i, i] => i"


71 
fsplit :: "[[i,i] => o, i] => o"


72 


73 
(* Sigma and Pi Operators *)


74 


75 
"@PROD" :: "[idt, i, i] => i" ("(3PROD _:_./ _)" 10)


76 
"@SUM" :: "[idt, i, i] => i" ("(3SUM _:_./ _)" 10)


77 
"@lam" :: "[idt, i, i] => i" ("(3lam _:_./ _)" 10)


78 
Pi, Sigma :: "[i, i => i] => i"


79 


80 
(* Relations and Functions *)


81 


82 
domain :: "i => i"


83 
range :: "i => i"


84 
field :: "i => i"


85 
converse :: "i => i"


86 
Lambda :: "[i, i => i] => i"


87 
restrict :: "[i, i] => i"


88 


89 
(* Infixes in order of decreasing precedence *)


90 


91 
"``" :: "[i, i] => i" (infixl 90) (*image*)


92 
"``" :: "[i, i] => i" (infixl 90) (*inverse image*)


93 
"`" :: "[i, i] => i" (infixl 90) (*function application*)


94 


95 
(*Except for their translations, * and > are rightassociating infixes*)


96 
" *" :: "[i, i] => i" ("(_ */ _)" [81, 80] 80) (*Cartesian product*)


97 
"Int" :: "[i, i] => i" (infixl 70) (*binary intersection*)


98 
"Un" :: "[i, i] => i" (infixl 65) (*binary union*)


99 
"" :: "[i, i] => i" (infixl 65) (*set difference*)


100 
" >" :: "[i, i] => i" ("(_ >/ _)" [61, 60] 60) (*function space*)


101 
"<=" :: "[i, i] => o" (infixl 50) (*subset relation*)


102 
":" :: "[i, i] => o" (infixl 50) (*membership relation*)


103 


104 


105 
translations


106 
"{x, xs}" == "cons(x, {xs})"


107 
"{x}" == "cons(x, 0)"


108 


109 
"PAIR(x, Pair(y, z))" <= "Pair(x, Pair(y, z))"


110 
"PAIR(x, PAIR(y, z))" <= "Pair(x, PAIR(y, z))"


111 
"<x, y, z>" <= "PAIR(x, <y, z>)"


112 
"<x, y, z>" == "Pair(x, <y, z>)"


113 
"<x, y>" == "Pair(x, y)"


114 


115 
"{x:A. P}" == "Collect(A, %x. P)"


116 
"{y. x:A, Q}" == "Replace(A, %x y. Q)"


117 
"{f. x:A}" == "RepFun(A, %x. f)"


118 
"INT x:A. B" == "Inter({B. x:A})"


119 
"UN x:A. B" == "Union({B. x:A})"


120 
"PROD x:A. B" => "Pi(A, %x. B)"


121 
"SUM x:A. B" => "Sigma(A, %x. B)"


122 
"THE x. P" == "The(%x. P)"


123 
"lam x:A. f" == "Lambda(A, %x. f)"


124 
"ALL x:A. P" == "Ball(A, %x. P)"


125 
"EX x:A. P" == "Bex(A, %x. P)"


126 


127 


128 
rules


129 


130 
(* Bounded Quantifiers *)


131 
Ball_def "Ball(A,P) == ALL x. x:A > P(x)"


132 
Bex_def "Bex(A,P) == EX x. x:A & P(x)"


133 
subset_def "A <= B == ALL x:A. x:B"


134 


135 
(* ZF axioms  see Suppes p.238


136 
Axioms for Union, Pow and Replace state existence only,


137 
uniqueness is derivable using extensionality. *)


138 


139 
extension "A = B <> A <= B & B <= A"


140 
union_iff "A : Union(C) <> (EX B:C. A:B)"


141 
power_set "A : Pow(B) <> A <= B"


142 
succ_def "succ(i) == cons(i,i)"


143 


144 
(*We may name this set, though it is not uniquely defined. *)


145 
infinity "0:Inf & (ALL y:Inf. succ(y): Inf)"


146 


147 
(*This formulation facilitates case analysis on A. *)


148 
foundation "A=0  (EX x:A. ALL y:x. ~ y:A)"


149 


150 
(* Schema axiom since predicate P is a higherorder variable *)


151 
replacement "(ALL x:A. ALL y z. P(x,y) & P(x,z) > y=z) ==> \


152 
\ b : PrimReplace(A,P) <> (EX x:A. P(x,b))"


153 


154 
(* Derived form of replacement, restricting P to its functional part.


155 
The resulting set (for functional P) is the same as with


156 
PrimReplace, but the rules are simpler. *)


157 
Replace_def "Replace(A,P) == PrimReplace(A, %x y. (EX!z.P(x,z)) & P(x,y))"


158 


159 
(* Functional form of replacement  analgous to ML's map functional *)


160 
RepFun_def "RepFun(A,f) == {y . x:A, y=f(x)}"


161 


162 
(* Separation and Pairing can be derived from the Replacement


163 
and Powerset Axioms using the following definitions. *)


164 


165 
Collect_def "Collect(A,P) == {y . x:A, x=y & P(x)}"


166 


167 
(*Unordered pairs (Upair) express binary union/intersection and cons;


168 
set enumerations translate as {a,...,z} = cons(a,...,cons(z,0)...) *)


169 
Upair_def "Upair(a,b) == {y. x:Pow(Pow(0)), (x=0 & y=a)  (x=Pow(0) & y=b)}"


170 
cons_def "cons(a,A) == Upair(a,a) Un A"


171 


172 
(* Difference, general intersection, binary union and small intersection *)


173 


174 
Diff_def "A  B == { x:A . ~(x:B) }"


175 
Inter_def "Inter(A) == { x:Union(A) . ALL y:A. x:y}"


176 
Un_def "A Un B == Union(Upair(A,B))"


177 
Int_def "A Int B == Inter(Upair(A,B))"


178 


179 
(* Definite descriptions  via Replace over the set "1" *)


180 


181 
the_def "The(P) == Union({y . x:{0}, P(y)})"


182 
if_def "if(P,a,b) == THE z. P & z=a  ~P & z=b"


183 


184 
(* Ordered pairs and disjoint union of a family of sets *)


185 


186 
(* this "symmetric" definition works better than {{a}, {a,b}} *)


187 
Pair_def "<a,b> == {{a,a}, {a,b}}"


188 
fst_def "fst == split(%x y.x)"


189 
snd_def "snd == split(%x y.y)"


190 
split_def "split(c,p) == THE y. EX a b. p=<a,b> & y=c(a,b)"


191 
fsplit_def "fsplit(R,z) == EX x y. z=<x,y> & R(x,y)"


192 
Sigma_def "Sigma(A,B) == UN x:A. UN y:B(x). {<x,y>}"


193 


194 
(* Operations on relations *)


195 


196 
(*converse of relation r, inverse of function*)


197 
converse_def "converse(r) == {z. w:r, EX x y. w=<x,y> & z=<y,x>}"


198 


199 
domain_def "domain(r) == {x. w:r, EX y. w=<x,y>}"


200 
range_def "range(r) == domain(converse(r))"


201 
field_def "field(r) == domain(r) Un range(r)"


202 
image_def "r `` A == {y : range(r) . EX x:A. <x,y> : r}"


203 
vimage_def "r `` A == converse(r)``A"


204 


205 
(* Abstraction, application and Cartesian product of a family of sets *)


206 


207 
lam_def "Lambda(A,b) == {<x,b(x)> . x:A}"


208 
apply_def "f`a == THE y. <a,y> : f"


209 
Pi_def "Pi(A,B) == {f: Pow(Sigma(A,B)). ALL x:A. EX! y. <x,y>: f}"


210 


211 
(* Restrict the function f to the domain A *)


212 
restrict_def "restrict(f,A) == lam x:A.f`x"


213 


214 
end


215 


216 


217 
ML


218 


219 
(* 'Dependent' type operators *)


220 


221 
val parse_translation =


222 
[(" >", ndependent_tr "Pi"),


223 
(" *", ndependent_tr "Sigma")];


224 


225 
val print_translation =


226 
[("Pi", dependent_tr' ("@PROD", " >")),


227 
("Sigma", dependent_tr' ("@SUM", " *"))];
