17456

1 
header {* Extending FOL by a modified version of HOL set theory *}


2 


3 
theory Set


4 
imports FOL


5 
begin

0

6 

3935

7 
global


8 

17456

9 
typedecl 'a set


10 
arities set :: ("term") "term"

0

11 


12 
consts


13 
Collect :: "['a => o] => 'a set" (*comprehension*)


14 
Compl :: "('a set) => 'a set" (*complement*)

24825

15 
Int :: "['a set, 'a set] => 'a set" (infixl "Int" 70)


16 
Un :: "['a set, 'a set] => 'a set" (infixl "Un" 65)

17456

17 
Union :: "(('a set)set) => 'a set" (*...of a set*)


18 
Inter :: "(('a set)set) => 'a set" (*...of a set*)


19 
UNION :: "['a set, 'a => 'b set] => 'b set" (*general*)


20 
INTER :: "['a set, 'a => 'b set] => 'b set" (*general*)


21 
Ball :: "['a set, 'a => o] => o" (*bounded quants*)


22 
Bex :: "['a set, 'a => o] => o" (*bounded quants*)

0

23 
mono :: "['a set => 'b set] => o" (*monotonicity*)

24825

24 
mem :: "['a, 'a set] => o" (infixl ":" 50) (*membership*)


25 
subset :: "['a set, 'a set] => o" (infixl "<=" 50)

0

26 
singleton :: "'a => 'a set" ("{_}")


27 
empty :: "'a set" ("{}")


28 

3935

29 
syntax

0

30 
"@Coll" :: "[idt, o] => 'a set" ("(1{_./ _})") (*collection*)


31 


32 
(* Big Intersection / Union *)


33 


34 
"@INTER" :: "[idt, 'a set, 'b set] => 'b set" ("(INT _:_./ _)" [0, 0, 0] 10)


35 
"@UNION" :: "[idt, 'a set, 'b set] => 'b set" ("(UN _:_./ _)" [0, 0, 0] 10)


36 


37 
(* Bounded Quantifiers *)


38 


39 
"@Ball" :: "[idt, 'a set, o] => o" ("(ALL _:_./ _)" [0, 0, 0] 10)


40 
"@Bex" :: "[idt, 'a set, o] => o" ("(EX _:_./ _)" [0, 0, 0] 10)


41 


42 
translations

35054

43 
"{x. P}" == "CONST Collect(%x. P)"


44 
"INT x:A. B" == "CONST INTER(A, %x. B)"


45 
"UN x:A. B" == "CONST UNION(A, %x. B)"


46 
"ALL x:A. P" == "CONST Ball(A, %x. P)"


47 
"EX x:A. P" == "CONST Bex(A, %x. P)"

0

48 

3935

49 
local

0

50 

17456

51 
axioms


52 
mem_Collect_iff: "(a : {x. P(x)}) <> P(a)"


53 
set_extension: "A=B <> (ALL x. x:A <> x:B)"

0

54 

17456

55 
defs


56 
Ball_def: "Ball(A, P) == ALL x. x:A > P(x)"


57 
Bex_def: "Bex(A, P) == EX x. x:A & P(x)"


58 
mono_def: "mono(f) == (ALL A B. A <= B > f(A) <= f(B))"


59 
subset_def: "A <= B == ALL x:A. x:B"


60 
singleton_def: "{a} == {x. x=a}"


61 
empty_def: "{} == {x. False}"


62 
Un_def: "A Un B == {x. x:A  x:B}"


63 
Int_def: "A Int B == {x. x:A & x:B}"


64 
Compl_def: "Compl(A) == {x. ~x:A}"


65 
INTER_def: "INTER(A, B) == {y. ALL x:A. y: B(x)}"


66 
UNION_def: "UNION(A, B) == {y. EX x:A. y: B(x)}"


67 
Inter_def: "Inter(S) == (INT x:S. x)"


68 
Union_def: "Union(S) == (UN x:S. x)"


69 

20140

70 


71 
lemma CollectI: "[ P(a) ] ==> a : {x. P(x)}"


72 
apply (rule mem_Collect_iff [THEN iffD2])


73 
apply assumption


74 
done


75 


76 
lemma CollectD: "[ a : {x. P(x)} ] ==> P(a)"


77 
apply (erule mem_Collect_iff [THEN iffD1])


78 
done


79 


80 
lemmas CollectE = CollectD [elim_format]


81 


82 
lemma set_ext: "[ !!x. x:A <> x:B ] ==> A = B"


83 
apply (rule set_extension [THEN iffD2])


84 
apply simp


85 
done


86 


87 


88 
subsection {* Bounded quantifiers *}


89 


90 
lemma ballI: "[ !!x. x:A ==> P(x) ] ==> ALL x:A. P(x)"


91 
by (simp add: Ball_def)


92 


93 
lemma bspec: "[ ALL x:A. P(x); x:A ] ==> P(x)"


94 
by (simp add: Ball_def)


95 


96 
lemma ballE: "[ ALL x:A. P(x); P(x) ==> Q; ~ x:A ==> Q ] ==> Q"


97 
unfolding Ball_def by blast


98 


99 
lemma bexI: "[ P(x); x:A ] ==> EX x:A. P(x)"


100 
unfolding Bex_def by blast


101 


102 
lemma bexCI: "[ EX x:A. ~P(x) ==> P(a); a:A ] ==> EX x:A. P(x)"


103 
unfolding Bex_def by blast


104 


105 
lemma bexE: "[ EX x:A. P(x); !!x. [ x:A; P(x) ] ==> Q ] ==> Q"


106 
unfolding Bex_def by blast


107 


108 
(*Trival rewrite rule; (! x:A.P)=P holds only if A is nonempty!*)


109 
lemma ball_rew: "(ALL x:A. True) <> True"


110 
by (blast intro: ballI)


111 


112 


113 
subsection {* Congruence rules *}


114 


115 
lemma ball_cong:


116 
"[ A=A'; !!x. x:A' ==> P(x) <> P'(x) ] ==>


117 
(ALL x:A. P(x)) <> (ALL x:A'. P'(x))"


118 
by (blast intro: ballI elim: ballE)


119 


120 
lemma bex_cong:


121 
"[ A=A'; !!x. x:A' ==> P(x) <> P'(x) ] ==>


122 
(EX x:A. P(x)) <> (EX x:A'. P'(x))"


123 
by (blast intro: bexI elim: bexE)


124 


125 


126 
subsection {* Rules for subsets *}


127 


128 
lemma subsetI: "(!!x. x:A ==> x:B) ==> A <= B"


129 
unfolding subset_def by (blast intro: ballI)


130 


131 
(*Rule in Modus Ponens style*)


132 
lemma subsetD: "[ A <= B; c:A ] ==> c:B"


133 
unfolding subset_def by (blast elim: ballE)


134 


135 
(*Classical elimination rule*)


136 
lemma subsetCE: "[ A <= B; ~(c:A) ==> P; c:B ==> P ] ==> P"


137 
by (blast dest: subsetD)


138 


139 
lemma subset_refl: "A <= A"


140 
by (blast intro: subsetI)


141 


142 
lemma subset_trans: "[ A<=B; B<=C ] ==> A<=C"


143 
by (blast intro: subsetI dest: subsetD)


144 


145 


146 
subsection {* Rules for equality *}


147 


148 
(*Antisymmetry of the subset relation*)


149 
lemma subset_antisym: "[ A <= B; B <= A ] ==> A = B"


150 
by (blast intro: set_ext dest: subsetD)


151 


152 
lemmas equalityI = subset_antisym


153 


154 
(* Equality rules from ZF set theory  are they appropriate here? *)


155 
lemma equalityD1: "A = B ==> A<=B"


156 
and equalityD2: "A = B ==> B<=A"


157 
by (simp_all add: subset_refl)


158 


159 
lemma equalityE: "[ A = B; [ A<=B; B<=A ] ==> P ] ==> P"


160 
by (simp add: subset_refl)


161 


162 
lemma equalityCE:


163 
"[ A = B; [ c:A; c:B ] ==> P; [ ~ c:A; ~ c:B ] ==> P ] ==> P"


164 
by (blast elim: equalityE subsetCE)


165 


166 
lemma trivial_set: "{x. x:A} = A"


167 
by (blast intro: equalityI subsetI CollectI dest: CollectD)


168 


169 


170 
subsection {* Rules for binary union *}


171 


172 
lemma UnI1: "c:A ==> c : A Un B"


173 
and UnI2: "c:B ==> c : A Un B"


174 
unfolding Un_def by (blast intro: CollectI)+


175 


176 
(*Classical introduction rule: no commitment to A vs B*)


177 
lemma UnCI: "(~c:B ==> c:A) ==> c : A Un B"


178 
by (blast intro: UnI1 UnI2)


179 


180 
lemma UnE: "[ c : A Un B; c:A ==> P; c:B ==> P ] ==> P"


181 
unfolding Un_def by (blast dest: CollectD)


182 


183 


184 
subsection {* Rules for small intersection *}


185 


186 
lemma IntI: "[ c:A; c:B ] ==> c : A Int B"


187 
unfolding Int_def by (blast intro: CollectI)


188 


189 
lemma IntD1: "c : A Int B ==> c:A"


190 
and IntD2: "c : A Int B ==> c:B"


191 
unfolding Int_def by (blast dest: CollectD)+


192 


193 
lemma IntE: "[ c : A Int B; [ c:A; c:B ] ==> P ] ==> P"


194 
by (blast dest: IntD1 IntD2)


195 


196 


197 
subsection {* Rules for set complement *}


198 


199 
lemma ComplI: "[ c:A ==> False ] ==> c : Compl(A)"


200 
unfolding Compl_def by (blast intro: CollectI)


201 


202 
(*This form, with negated conclusion, works well with the Classical prover.


203 
Negated assumptions behave like formulae on the right side of the notional


204 
turnstile...*)


205 
lemma ComplD: "[ c : Compl(A) ] ==> ~c:A"


206 
unfolding Compl_def by (blast dest: CollectD)


207 


208 
lemmas ComplE = ComplD [elim_format]


209 


210 


211 
subsection {* Empty sets *}


212 


213 
lemma empty_eq: "{x. False} = {}"


214 
by (simp add: empty_def)


215 


216 
lemma emptyD: "a : {} ==> P"


217 
unfolding empty_def by (blast dest: CollectD)


218 


219 
lemmas emptyE = emptyD [elim_format]


220 


221 
lemma not_emptyD:


222 
assumes "~ A={}"


223 
shows "EX x. x:A"


224 
proof 


225 
have "\<not> (EX x. x:A) \<Longrightarrow> A = {}"


226 
by (rule equalityI) (blast intro!: subsetI elim!: emptyD)+


227 
with prems show ?thesis by blast


228 
qed


229 


230 


231 
subsection {* Singleton sets *}


232 


233 
lemma singletonI: "a : {a}"


234 
unfolding singleton_def by (blast intro: CollectI)


235 


236 
lemma singletonD: "b : {a} ==> b=a"


237 
unfolding singleton_def by (blast dest: CollectD)


238 


239 
lemmas singletonE = singletonD [elim_format]


240 


241 


242 
subsection {* Unions of families *}


243 


244 
(*The order of the premises presupposes that A is rigid; b may be flexible*)


245 
lemma UN_I: "[ a:A; b: B(a) ] ==> b: (UN x:A. B(x))"


246 
unfolding UNION_def by (blast intro: bexI CollectI)


247 


248 
lemma UN_E: "[ b : (UN x:A. B(x)); !!x.[ x:A; b: B(x) ] ==> R ] ==> R"


249 
unfolding UNION_def by (blast dest: CollectD elim: bexE)


250 


251 
lemma UN_cong:


252 
"[ A=B; !!x. x:B ==> C(x) = D(x) ] ==>


253 
(UN x:A. C(x)) = (UN x:B. D(x))"


254 
by (simp add: UNION_def cong: bex_cong)


255 


256 


257 
subsection {* Intersections of families *}


258 


259 
lemma INT_I: "(!!x. x:A ==> b: B(x)) ==> b : (INT x:A. B(x))"


260 
unfolding INTER_def by (blast intro: CollectI ballI)


261 


262 
lemma INT_D: "[ b : (INT x:A. B(x)); a:A ] ==> b: B(a)"


263 
unfolding INTER_def by (blast dest: CollectD bspec)


264 


265 
(*"Classical" elimination rule  does not require proving X:C *)


266 
lemma INT_E: "[ b : (INT x:A. B(x)); b: B(a) ==> R; ~ a:A ==> R ] ==> R"


267 
unfolding INTER_def by (blast dest: CollectD bspec)


268 


269 
lemma INT_cong:


270 
"[ A=B; !!x. x:B ==> C(x) = D(x) ] ==>


271 
(INT x:A. C(x)) = (INT x:B. D(x))"


272 
by (simp add: INTER_def cong: ball_cong)


273 


274 


275 
subsection {* Rules for Unions *}


276 


277 
(*The order of the premises presupposes that C is rigid; A may be flexible*)


278 
lemma UnionI: "[ X:C; A:X ] ==> A : Union(C)"


279 
unfolding Union_def by (blast intro: UN_I)


280 


281 
lemma UnionE: "[ A : Union(C); !!X.[ A:X; X:C ] ==> R ] ==> R"


282 
unfolding Union_def by (blast elim: UN_E)


283 


284 


285 
subsection {* Rules for Inter *}


286 


287 
lemma InterI: "[ !!X. X:C ==> A:X ] ==> A : Inter(C)"


288 
unfolding Inter_def by (blast intro: INT_I)


289 


290 
(*A "destruct" rule  every X in C contains A as an element, but


291 
A:X can hold when X:C does not! This rule is analogous to "spec". *)


292 
lemma InterD: "[ A : Inter(C); X:C ] ==> A:X"


293 
unfolding Inter_def by (blast dest: INT_D)


294 


295 
(*"Classical" elimination rule  does not require proving X:C *)


296 
lemma InterE: "[ A : Inter(C); A:X ==> R; ~ X:C ==> R ] ==> R"


297 
unfolding Inter_def by (blast elim: INT_E)


298 


299 


300 
section {* Derived rules involving subsets; Union and Intersection as lattice operations *}


301 


302 
subsection {* Big Union  least upper bound of a set *}


303 


304 
lemma Union_upper: "B:A ==> B <= Union(A)"


305 
by (blast intro: subsetI UnionI)


306 


307 
lemma Union_least: "[ !!X. X:A ==> X<=C ] ==> Union(A) <= C"


308 
by (blast intro: subsetI dest: subsetD elim: UnionE)


309 


310 


311 
subsection {* Big Intersection  greatest lower bound of a set *}


312 


313 
lemma Inter_lower: "B:A ==> Inter(A) <= B"


314 
by (blast intro: subsetI dest: InterD)


315 


316 
lemma Inter_greatest: "[ !!X. X:A ==> C<=X ] ==> C <= Inter(A)"


317 
by (blast intro: subsetI InterI dest: subsetD)


318 


319 


320 
subsection {* Finite Union  the least upper bound of 2 sets *}


321 


322 
lemma Un_upper1: "A <= A Un B"


323 
by (blast intro: subsetI UnI1)


324 


325 
lemma Un_upper2: "B <= A Un B"


326 
by (blast intro: subsetI UnI2)


327 


328 
lemma Un_least: "[ A<=C; B<=C ] ==> A Un B <= C"


329 
by (blast intro: subsetI elim: UnE dest: subsetD)


330 


331 


332 
subsection {* Finite Intersection  the greatest lower bound of 2 sets *}


333 


334 
lemma Int_lower1: "A Int B <= A"


335 
by (blast intro: subsetI elim: IntE)


336 


337 
lemma Int_lower2: "A Int B <= B"


338 
by (blast intro: subsetI elim: IntE)


339 


340 
lemma Int_greatest: "[ C<=A; C<=B ] ==> C <= A Int B"


341 
by (blast intro: subsetI IntI dest: subsetD)


342 


343 


344 
subsection {* Monotonicity *}


345 


346 
lemma monoI: "[ !!A B. A <= B ==> f(A) <= f(B) ] ==> mono(f)"


347 
unfolding mono_def by blast


348 


349 
lemma monoD: "[ mono(f); A <= B ] ==> f(A) <= f(B)"


350 
unfolding mono_def by blast


351 


352 
lemma mono_Un: "mono(f) ==> f(A) Un f(B) <= f(A Un B)"


353 
by (blast intro: Un_least dest: monoD intro: Un_upper1 Un_upper2)


354 


355 
lemma mono_Int: "mono(f) ==> f(A Int B) <= f(A) Int f(B)"


356 
by (blast intro: Int_greatest dest: monoD intro: Int_lower1 Int_lower2)


357 


358 


359 
subsection {* Automated reasoning setup *}


360 


361 
lemmas [intro!] = ballI subsetI InterI INT_I CollectI ComplI IntI UnCI singletonI


362 
and [intro] = bexI UnionI UN_I


363 
and [elim!] = bexE UnionE UN_E CollectE ComplE IntE UnE emptyE singletonE


364 
and [elim] = ballE InterD InterE INT_D INT_E subsetD subsetCE


365 


366 
lemma mem_rews:


367 
"(a : A Un B) <> (a:A  a:B)"


368 
"(a : A Int B) <> (a:A & a:B)"


369 
"(a : Compl(B)) <> (~a:B)"


370 
"(a : {b}) <> (a=b)"


371 
"(a : {}) <> False"


372 
"(a : {x. P(x)}) <> P(a)"


373 
by blast+


374 


375 
lemmas [simp] = trivial_set empty_eq mem_rews


376 
and [cong] = ball_cong bex_cong INT_cong UN_cong


377 


378 


379 
section {* Equalities involving union, intersection, inclusion, etc. *}


380 


381 
subsection {* Binary Intersection *}


382 


383 
lemma Int_absorb: "A Int A = A"


384 
by (blast intro: equalityI)


385 


386 
lemma Int_commute: "A Int B = B Int A"


387 
by (blast intro: equalityI)


388 


389 
lemma Int_assoc: "(A Int B) Int C = A Int (B Int C)"


390 
by (blast intro: equalityI)


391 


392 
lemma Int_Un_distrib: "(A Un B) Int C = (A Int C) Un (B Int C)"


393 
by (blast intro: equalityI)


394 


395 
lemma subset_Int_eq: "(A<=B) <> (A Int B = A)"


396 
by (blast intro: equalityI elim: equalityE)


397 


398 


399 
subsection {* Binary Union *}


400 


401 
lemma Un_absorb: "A Un A = A"


402 
by (blast intro: equalityI)


403 


404 
lemma Un_commute: "A Un B = B Un A"


405 
by (blast intro: equalityI)


406 


407 
lemma Un_assoc: "(A Un B) Un C = A Un (B Un C)"


408 
by (blast intro: equalityI)


409 


410 
lemma Un_Int_distrib: "(A Int B) Un C = (A Un C) Int (B Un C)"


411 
by (blast intro: equalityI)


412 


413 
lemma Un_Int_crazy:


414 
"(A Int B) Un (B Int C) Un (C Int A) = (A Un B) Int (B Un C) Int (C Un A)"


415 
by (blast intro: equalityI)


416 


417 
lemma subset_Un_eq: "(A<=B) <> (A Un B = B)"


418 
by (blast intro: equalityI elim: equalityE)


419 


420 


421 
subsection {* Simple properties of @{text "Compl"}  complement of a set *}


422 


423 
lemma Compl_disjoint: "A Int Compl(A) = {x. False}"


424 
by (blast intro: equalityI)


425 


426 
lemma Compl_partition: "A Un Compl(A) = {x. True}"


427 
by (blast intro: equalityI)


428 


429 
lemma double_complement: "Compl(Compl(A)) = A"


430 
by (blast intro: equalityI)


431 


432 
lemma Compl_Un: "Compl(A Un B) = Compl(A) Int Compl(B)"


433 
by (blast intro: equalityI)


434 


435 
lemma Compl_Int: "Compl(A Int B) = Compl(A) Un Compl(B)"


436 
by (blast intro: equalityI)


437 


438 
lemma Compl_UN: "Compl(UN x:A. B(x)) = (INT x:A. Compl(B(x)))"


439 
by (blast intro: equalityI)


440 


441 
lemma Compl_INT: "Compl(INT x:A. B(x)) = (UN x:A. Compl(B(x)))"


442 
by (blast intro: equalityI)


443 


444 
(*Halmos, Naive Set Theory, page 16.*)


445 
lemma Un_Int_assoc_eq: "((A Int B) Un C = A Int (B Un C)) <> (C<=A)"


446 
by (blast intro: equalityI elim: equalityE)


447 


448 


449 
subsection {* Big Union and Intersection *}


450 


451 
lemma Union_Un_distrib: "Union(A Un B) = Union(A) Un Union(B)"


452 
by (blast intro: equalityI)


453 


454 
lemma Union_disjoint:


455 
"(Union(C) Int A = {x. False}) <> (ALL B:C. B Int A = {x. False})"


456 
by (blast intro: equalityI elim: equalityE)


457 


458 
lemma Inter_Un_distrib: "Inter(A Un B) = Inter(A) Int Inter(B)"


459 
by (blast intro: equalityI)


460 


461 


462 
subsection {* Unions and Intersections of Families *}


463 


464 
lemma UN_eq: "(UN x:A. B(x)) = Union({Y. EX x:A. Y=B(x)})"


465 
by (blast intro: equalityI)


466 


467 
(*Look: it has an EXISTENTIAL quantifier*)


468 
lemma INT_eq: "(INT x:A. B(x)) = Inter({Y. EX x:A. Y=B(x)})"


469 
by (blast intro: equalityI)


470 


471 
lemma Int_Union_image: "A Int Union(B) = (UN C:B. A Int C)"


472 
by (blast intro: equalityI)


473 


474 
lemma Un_Inter_image: "A Un Inter(B) = (INT C:B. A Un C)"


475 
by (blast intro: equalityI)


476 


477 


478 
section {* Monotonicity of various operations *}


479 


480 
lemma Union_mono: "A<=B ==> Union(A) <= Union(B)"


481 
by blast


482 


483 
lemma Inter_anti_mono: "[ B<=A ] ==> Inter(A) <= Inter(B)"


484 
by blast


485 


486 
lemma UN_mono:


487 
"[ A<=B; !!x. x:A ==> f(x)<=g(x) ] ==>


488 
(UN x:A. f(x)) <= (UN x:B. g(x))"


489 
by blast


490 


491 
lemma INT_anti_mono:


492 
"[ B<=A; !!x. x:A ==> f(x)<=g(x) ] ==>


493 
(INT x:A. f(x)) <= (INT x:A. g(x))"


494 
by blast


495 


496 
lemma Un_mono: "[ A<=C; B<=D ] ==> A Un B <= C Un D"


497 
by blast


498 


499 
lemma Int_mono: "[ A<=C; B<=D ] ==> A Int B <= C Int D"


500 
by blast


501 


502 
lemma Compl_anti_mono: "[ A<=B ] ==> Compl(B) <= Compl(A)"


503 
by blast

0

504 


505 
end
