author | huffman |
Sat, 16 Sep 2006 19:12:03 +0200 | |
changeset 20554 | c433e78d4203 |
parent 20552 | 2c31dd358c21 |
child 20562 | c2f672be8522 |
permissions | -rw-r--r-- |
10751 | 1 |
(* Title : NSA.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998 University of Cambridge |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
4 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
5 |
Converted to Isar and polished by lcp |
14370 | 6 |
*) |
10751 | 7 |
|
14370 | 8 |
header{*Infinite Numbers, Infinitesimals, Infinitely Close Relation*} |
9 |
||
15131 | 10 |
theory NSA |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
11 |
imports HyperArith "../Real/RComplete" |
15131 | 12 |
begin |
10751 | 13 |
|
19765 | 14 |
definition |
10751 | 15 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
16 |
hnorm :: "'a::norm star \<Rightarrow> real star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
17 |
"hnorm = *f* norm" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
18 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
19 |
Infinitesimal :: "('a::real_normed_vector) star set" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
20 |
"Infinitesimal = {x. \<forall>r \<in> Reals. 0 < r --> hnorm x < r}" |
10751 | 21 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
22 |
HFinite :: "('a::real_normed_vector) star set" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
23 |
"HFinite = {x. \<exists>r \<in> Reals. hnorm x < r}" |
10751 | 24 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
25 |
HInfinite :: "('a::real_normed_vector) star set" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
26 |
"HInfinite = {x. \<forall>r \<in> Reals. r < hnorm x}" |
10751 | 27 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
28 |
approx :: "['a::real_normed_vector star, 'a star] => bool" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
29 |
(infixl "@=" 50) |
15229 | 30 |
--{*the `infinitely close' relation*} |
19765 | 31 |
"(x @= y) = ((x + -y) \<in> Infinitesimal)" |
14653 | 32 |
|
14370 | 33 |
st :: "hypreal => hypreal" |
15229 | 34 |
--{*the standard part of a hyperreal*} |
19765 | 35 |
"st = (%x. @r. x \<in> HFinite & r \<in> Reals & r @= x)" |
10751 | 36 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
37 |
monad :: "'a::real_normed_vector star => 'a star set" |
19765 | 38 |
"monad x = {y. x @= y}" |
10751 | 39 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
40 |
galaxy :: "'a::real_normed_vector star => 'a star set" |
19765 | 41 |
"galaxy x = {y. (x + -y) \<in> HFinite}" |
42 |
||
43 |
const_syntax (xsymbols) |
|
44 |
approx (infixl "\<approx>" 50) |
|
45 |
||
46 |
const_syntax (HTML output) |
|
47 |
approx (infixl "\<approx>" 50) |
|
14370 | 48 |
|
49 |
||
20554
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
50 |
lemma hypreal_of_real_of_real_eq: "hypreal_of_real r = of_real r" |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
51 |
proof - |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
52 |
have "hypreal_of_real r = hypreal_of_real (of_real r)" by simp |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
53 |
also have "\<dots> = of_real r" by (rule star_of_of_real) |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
54 |
finally show ?thesis . |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
55 |
qed |
14565 | 56 |
|
20554
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
57 |
lemma SReal_def: "Reals == {x. \<exists>r. x = hypreal_of_real r}" |
c433e78d4203
define new constant of_real for class real_algebra_1;
huffman
parents:
20552
diff
changeset
|
58 |
by (simp add: Reals_def image_def hypreal_of_real_of_real_eq) |
14370 | 59 |
|
60 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
61 |
subsection{*Nonstandard extension of the norm function*} |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
62 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
63 |
declare hnorm_def [transfer_unfold] |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
64 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
65 |
lemma hnorm_ge_zero [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
66 |
"\<And>x::'a::real_normed_vector star. 0 \<le> hnorm x" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
67 |
by transfer (rule norm_ge_zero) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
68 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
69 |
lemma hnorm_eq_zero [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
70 |
"\<And>x::'a::real_normed_vector star. (hnorm x = 0) = (x = 0)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
71 |
by transfer (rule norm_eq_zero) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
72 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
73 |
lemma hnorm_triangle_ineq: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
74 |
"\<And>x y::'a::real_normed_vector star. hnorm (x + y) \<le> hnorm x + hnorm y" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
75 |
by transfer (rule norm_triangle_ineq) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
76 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
77 |
lemma hnorm_scaleR: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
78 |
"\<And>a (x::'a::real_normed_vector star). |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
79 |
hnorm (( *f2* scaleR) a x) = \<bar>a\<bar> * hnorm x" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
80 |
by transfer (rule norm_scaleR) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
81 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
82 |
lemma hnorm_mult_ineq: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
83 |
"\<And>x y::'a::real_normed_algebra star. hnorm (x * y) \<le> hnorm x * hnorm y" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
84 |
by transfer (rule norm_mult_ineq) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
85 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
86 |
lemma hnorm_mult: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
87 |
"\<And>x y::'a::real_normed_div_algebra star. hnorm (x * y) = hnorm x * hnorm y" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
88 |
by transfer (rule norm_mult) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
89 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
90 |
lemma hnorm_one [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
91 |
"hnorm (1\<Colon>'a::real_normed_div_algebra star) = 1" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
92 |
by transfer (rule norm_one) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
93 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
94 |
lemma hnorm_zero [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
95 |
"hnorm (0\<Colon>'a::real_normed_vector star) = 0" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
96 |
by transfer (rule norm_zero) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
97 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
98 |
lemma zero_less_hnorm_iff [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
99 |
"\<And>x::'a::real_normed_vector star. (0 < hnorm x) = (x \<noteq> 0)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
100 |
by transfer (rule zero_less_norm_iff) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
101 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
102 |
lemma hnorm_minus_cancel [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
103 |
"\<And>x::'a::real_normed_vector star. hnorm (- x) = hnorm x" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
104 |
by transfer (rule norm_minus_cancel) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
105 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
106 |
lemma hnorm_minus_commute: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
107 |
"\<And>a b::'a::real_normed_vector star. hnorm (a - b) = hnorm (b - a)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
108 |
by transfer (rule norm_minus_commute) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
109 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
110 |
lemma hnorm_triangle_ineq2: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
111 |
"\<And>a b::'a::real_normed_vector star. hnorm a - hnorm b \<le> hnorm (a - b)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
112 |
by transfer (rule norm_triangle_ineq2) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
113 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
114 |
lemma hnorm_triangle_ineq4: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
115 |
"\<And>a b::'a::real_normed_vector star. hnorm (a - b) \<le> hnorm a + hnorm b" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
116 |
by transfer (rule norm_triangle_ineq4) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
117 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
118 |
lemma nonzero_hnorm_inverse: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
119 |
"\<And>a::'a::real_normed_div_algebra star. |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
120 |
a \<noteq> 0 \<Longrightarrow> hnorm (inverse a) = inverse (hnorm a)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
121 |
by transfer (rule nonzero_norm_inverse) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
122 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
123 |
lemma hnorm_inverse: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
124 |
"\<And>a::'a::{real_normed_div_algebra,division_by_zero} star. |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
125 |
hnorm (inverse a) = inverse (hnorm a)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
126 |
by transfer (rule norm_inverse) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
127 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
128 |
lemma hypreal_hnorm_def [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
129 |
"\<And>r::hypreal. hnorm r \<equiv> \<bar>r\<bar>" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
130 |
by transfer (rule real_norm_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
131 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
132 |
lemma hnorm_add_less: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
133 |
fixes x y :: "'a::real_normed_vector star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
134 |
shows "\<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x + y) < r + s" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
135 |
by (rule order_le_less_trans [OF hnorm_triangle_ineq add_strict_mono]) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
136 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
137 |
lemma hnorm_mult_less: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
138 |
fixes x y :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
139 |
shows "\<lbrakk>hnorm x < r; hnorm y < s\<rbrakk> \<Longrightarrow> hnorm (x * y) < r * s" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
140 |
apply (rule order_le_less_trans [OF hnorm_mult_ineq]) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
141 |
apply (simp add: mult_strict_mono') |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
142 |
done |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
143 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
144 |
|
15229 | 145 |
subsection{*Closure Laws for the Standard Reals*} |
14370 | 146 |
|
14378
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
147 |
lemma SReal_add [simp]: |
69c4d5997669
generic of_nat and of_int functions, and generalization of iszero
paulson
parents:
14371
diff
changeset
|
148 |
"[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x + y \<in> Reals" |
14370 | 149 |
apply (auto simp add: SReal_def) |
150 |
apply (rule_tac x = "r + ra" in exI, simp) |
|
151 |
done |
|
152 |
||
153 |
lemma SReal_mult: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x * y \<in> Reals" |
|
154 |
apply (simp add: SReal_def, safe) |
|
155 |
apply (rule_tac x = "r * ra" in exI) |
|
15539 | 156 |
apply (simp (no_asm)) |
14370 | 157 |
done |
158 |
||
159 |
lemma SReal_inverse: "(x::hypreal) \<in> Reals ==> inverse x \<in> Reals" |
|
160 |
apply (simp add: SReal_def) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
161 |
apply (blast intro: star_of_inverse [symmetric]) |
14370 | 162 |
done |
163 |
||
164 |
lemma SReal_divide: "[| (x::hypreal) \<in> Reals; y \<in> Reals |] ==> x/y \<in> Reals" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
165 |
by (simp (no_asm_simp) add: SReal_mult SReal_inverse divide_inverse) |
14370 | 166 |
|
167 |
lemma SReal_minus: "(x::hypreal) \<in> Reals ==> -x \<in> Reals" |
|
168 |
apply (simp add: SReal_def) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
169 |
apply (blast intro: star_of_minus [symmetric]) |
14370 | 170 |
done |
171 |
||
15229 | 172 |
lemma SReal_minus_iff [simp]: "(-x \<in> Reals) = ((x::hypreal) \<in> Reals)" |
14370 | 173 |
apply auto |
174 |
apply (erule_tac [2] SReal_minus) |
|
175 |
apply (drule SReal_minus, auto) |
|
176 |
done |
|
177 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
178 |
lemma SReal_add_cancel: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
179 |
"[| (x::hypreal) + y \<in> Reals; y \<in> Reals |] ==> x \<in> Reals" |
14370 | 180 |
apply (drule_tac x = y in SReal_minus) |
181 |
apply (drule SReal_add, assumption, auto) |
|
182 |
done |
|
183 |
||
184 |
lemma SReal_hrabs: "(x::hypreal) \<in> Reals ==> abs x \<in> Reals" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
185 |
apply (auto simp add: SReal_def) |
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
186 |
apply (rule_tac x="abs r" in exI) |
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
187 |
apply simp |
14370 | 188 |
done |
189 |
||
15229 | 190 |
lemma SReal_hypreal_of_real [simp]: "hypreal_of_real x \<in> Reals" |
14370 | 191 |
by (simp add: SReal_def) |
192 |
||
15229 | 193 |
lemma SReal_number_of [simp]: "(number_of w ::hypreal) \<in> Reals" |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
194 |
apply (simp only: star_of_number_of [symmetric]) |
14370 | 195 |
apply (rule SReal_hypreal_of_real) |
196 |
done |
|
197 |
||
198 |
(** As always with numerals, 0 and 1 are special cases **) |
|
199 |
||
15229 | 200 |
lemma Reals_0 [simp]: "(0::hypreal) \<in> Reals" |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
201 |
apply (subst numeral_0_eq_0 [symmetric]) |
14370 | 202 |
apply (rule SReal_number_of) |
203 |
done |
|
204 |
||
15229 | 205 |
lemma Reals_1 [simp]: "(1::hypreal) \<in> Reals" |
14387
e96d5c42c4b0
Polymorphic treatment of binary arithmetic using axclasses
paulson
parents:
14378
diff
changeset
|
206 |
apply (subst numeral_1_eq_1 [symmetric]) |
14370 | 207 |
apply (rule SReal_number_of) |
208 |
done |
|
209 |
||
210 |
lemma SReal_divide_number_of: "r \<in> Reals ==> r/(number_of w::hypreal) \<in> Reals" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
211 |
apply (simp only: divide_inverse) |
14370 | 212 |
apply (blast intro!: SReal_number_of SReal_mult SReal_inverse) |
213 |
done |
|
214 |
||
15229 | 215 |
text{*epsilon is not in Reals because it is an infinitesimal*} |
14370 | 216 |
lemma SReal_epsilon_not_mem: "epsilon \<notin> Reals" |
217 |
apply (simp add: SReal_def) |
|
218 |
apply (auto simp add: hypreal_of_real_not_eq_epsilon [THEN not_sym]) |
|
219 |
done |
|
220 |
||
221 |
lemma SReal_omega_not_mem: "omega \<notin> Reals" |
|
222 |
apply (simp add: SReal_def) |
|
223 |
apply (auto simp add: hypreal_of_real_not_eq_omega [THEN not_sym]) |
|
224 |
done |
|
225 |
||
226 |
lemma SReal_UNIV_real: "{x. hypreal_of_real x \<in> Reals} = (UNIV::real set)" |
|
227 |
by (simp add: SReal_def) |
|
228 |
||
229 |
lemma SReal_iff: "(x \<in> Reals) = (\<exists>y. x = hypreal_of_real y)" |
|
230 |
by (simp add: SReal_def) |
|
231 |
||
232 |
lemma hypreal_of_real_image: "hypreal_of_real `(UNIV::real set) = Reals" |
|
233 |
by (auto simp add: SReal_def) |
|
234 |
||
235 |
lemma inv_hypreal_of_real_image: "inv hypreal_of_real ` Reals = UNIV" |
|
236 |
apply (auto simp add: SReal_def) |
|
237 |
apply (rule inj_hypreal_of_real [THEN inv_f_f, THEN subst], blast) |
|
238 |
done |
|
239 |
||
240 |
lemma SReal_hypreal_of_real_image: |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
241 |
"[| \<exists>x. x: P; P \<subseteq> Reals |] ==> \<exists>Q. P = hypreal_of_real ` Q" |
14370 | 242 |
apply (simp add: SReal_def, blast) |
243 |
done |
|
244 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
245 |
lemma SReal_dense: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
246 |
"[| (x::hypreal) \<in> Reals; y \<in> Reals; x<y |] ==> \<exists>r \<in> Reals. x<r & r<y" |
14370 | 247 |
apply (auto simp add: SReal_iff) |
14477 | 248 |
apply (drule dense, safe) |
14370 | 249 |
apply (rule_tac x = "hypreal_of_real r" in bexI, auto) |
250 |
done |
|
251 |
||
15229 | 252 |
text{*Completeness of Reals, but both lemmas are unused.*} |
253 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
254 |
lemma SReal_sup_lemma: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
255 |
"P \<subseteq> Reals ==> ((\<exists>x \<in> P. y < x) = |
14370 | 256 |
(\<exists>X. hypreal_of_real X \<in> P & y < hypreal_of_real X))" |
257 |
by (blast dest!: SReal_iff [THEN iffD1]) |
|
258 |
||
259 |
lemma SReal_sup_lemma2: |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
260 |
"[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>y \<in> Reals. \<forall>x \<in> P. x < y |] |
14370 | 261 |
==> (\<exists>X. X \<in> {w. hypreal_of_real w \<in> P}) & |
262 |
(\<exists>Y. \<forall>X \<in> {w. hypreal_of_real w \<in> P}. X < Y)" |
|
263 |
apply (rule conjI) |
|
264 |
apply (fast dest!: SReal_iff [THEN iffD1]) |
|
265 |
apply (auto, frule subsetD, assumption) |
|
266 |
apply (drule SReal_iff [THEN iffD1]) |
|
267 |
apply (auto, rule_tac x = ya in exI, auto) |
|
268 |
done |
|
269 |
||
15229 | 270 |
|
271 |
subsection{*Lifting of the Ub and Lub Properties*} |
|
272 |
||
14370 | 273 |
lemma hypreal_of_real_isUb_iff: |
274 |
"(isUb (Reals) (hypreal_of_real ` Q) (hypreal_of_real Y)) = |
|
275 |
(isUb (UNIV :: real set) Q Y)" |
|
15229 | 276 |
by (simp add: isUb_def setle_def) |
14370 | 277 |
|
278 |
lemma hypreal_of_real_isLub1: |
|
279 |
"isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y) |
|
280 |
==> isLub (UNIV :: real set) Q Y" |
|
281 |
apply (simp add: isLub_def leastP_def) |
|
282 |
apply (auto intro: hypreal_of_real_isUb_iff [THEN iffD2] |
|
283 |
simp add: hypreal_of_real_isUb_iff setge_def) |
|
284 |
done |
|
285 |
||
286 |
lemma hypreal_of_real_isLub2: |
|
287 |
"isLub (UNIV :: real set) Q Y |
|
288 |
==> isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)" |
|
289 |
apply (simp add: isLub_def leastP_def) |
|
290 |
apply (auto simp add: hypreal_of_real_isUb_iff setge_def) |
|
291 |
apply (frule_tac x2 = x in isUbD2a [THEN SReal_iff [THEN iffD1], THEN exE]) |
|
292 |
prefer 2 apply assumption |
|
293 |
apply (drule_tac x = xa in spec) |
|
294 |
apply (auto simp add: hypreal_of_real_isUb_iff) |
|
295 |
done |
|
296 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
297 |
lemma hypreal_of_real_isLub_iff: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
298 |
"(isLub Reals (hypreal_of_real ` Q) (hypreal_of_real Y)) = |
14370 | 299 |
(isLub (UNIV :: real set) Q Y)" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
300 |
by (blast intro: hypreal_of_real_isLub1 hypreal_of_real_isLub2) |
14370 | 301 |
|
302 |
lemma lemma_isUb_hypreal_of_real: |
|
303 |
"isUb Reals P Y ==> \<exists>Yo. isUb Reals P (hypreal_of_real Yo)" |
|
304 |
by (auto simp add: SReal_iff isUb_def) |
|
305 |
||
306 |
lemma lemma_isLub_hypreal_of_real: |
|
307 |
"isLub Reals P Y ==> \<exists>Yo. isLub Reals P (hypreal_of_real Yo)" |
|
308 |
by (auto simp add: isLub_def leastP_def isUb_def SReal_iff) |
|
309 |
||
310 |
lemma lemma_isLub_hypreal_of_real2: |
|
311 |
"\<exists>Yo. isLub Reals P (hypreal_of_real Yo) ==> \<exists>Y. isLub Reals P Y" |
|
312 |
by (auto simp add: isLub_def leastP_def isUb_def) |
|
313 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
314 |
lemma SReal_complete: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
315 |
"[| P \<subseteq> Reals; \<exists>x. x \<in> P; \<exists>Y. isUb Reals P Y |] |
14370 | 316 |
==> \<exists>t::hypreal. isLub Reals P t" |
317 |
apply (frule SReal_hypreal_of_real_image) |
|
318 |
apply (auto, drule lemma_isUb_hypreal_of_real) |
|
15229 | 319 |
apply (auto intro!: reals_complete lemma_isLub_hypreal_of_real2 |
320 |
simp add: hypreal_of_real_isLub_iff hypreal_of_real_isUb_iff) |
|
14370 | 321 |
done |
322 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
323 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
324 |
subsection{* Set of Finite Elements is a Subring of the Extended Reals*} |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
325 |
|
14370 | 326 |
lemma HFinite_add: "[|x \<in> HFinite; y \<in> HFinite|] ==> (x+y) \<in> HFinite" |
327 |
apply (simp add: HFinite_def) |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
328 |
apply (blast intro!: SReal_add hnorm_add_less) |
14370 | 329 |
done |
330 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
331 |
lemma HFinite_mult: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
332 |
fixes x y :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
333 |
shows "[|x \<in> HFinite; y \<in> HFinite|] ==> x*y \<in> HFinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
334 |
apply (simp add: HFinite_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
335 |
apply (blast intro!: SReal_mult hnorm_mult_less) |
14370 | 336 |
done |
337 |
||
338 |
lemma HFinite_minus_iff: "(-x \<in> HFinite) = (x \<in> HFinite)" |
|
339 |
by (simp add: HFinite_def) |
|
340 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
341 |
lemma HFinite_star_of [simp]: "star_of x \<in> HFinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
342 |
apply (simp add: HFinite_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
343 |
apply (rule_tac x="star_of (norm x) + 1" in bexI) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
344 |
apply (transfer, simp) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
345 |
apply (blast intro: SReal_add SReal_hypreal_of_real Reals_1) |
14370 | 346 |
done |
347 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
348 |
lemma SReal_subset_HFinite: "(Reals::hypreal set) \<subseteq> HFinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
349 |
by (auto simp add: SReal_def) |
14370 | 350 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
351 |
lemma HFinite_hypreal_of_real: "hypreal_of_real x \<in> HFinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
352 |
by (rule HFinite_star_of) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
353 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
354 |
lemma HFiniteD: "x \<in> HFinite ==> \<exists>t \<in> Reals. hnorm x < t" |
14370 | 355 |
by (simp add: HFinite_def) |
356 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
357 |
lemma HFinite_hrabs_iff [iff]: "(abs (x::hypreal) \<in> HFinite) = (x \<in> HFinite)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
358 |
by (simp add: HFinite_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
359 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
360 |
lemma HFinite_hnorm_iff [iff]: "(hnorm x \<in> HFinite) = (x \<in> HFinite)" |
14370 | 361 |
by (simp add: HFinite_def) |
362 |
||
15229 | 363 |
lemma HFinite_number_of [simp]: "number_of w \<in> HFinite" |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
364 |
by (unfold star_number_def, rule HFinite_star_of) |
14370 | 365 |
|
366 |
(** As always with numerals, 0 and 1 are special cases **) |
|
367 |
||
15229 | 368 |
lemma HFinite_0 [simp]: "0 \<in> HFinite" |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
369 |
by (unfold star_zero_def, rule HFinite_star_of) |
14370 | 370 |
|
15229 | 371 |
lemma HFinite_1 [simp]: "1 \<in> HFinite" |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
372 |
by (unfold star_one_def, rule HFinite_star_of) |
14370 | 373 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
374 |
lemma HFinite_bounded: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
375 |
"[|(x::hypreal) \<in> HFinite; y \<le> x; 0 \<le> y |] ==> y \<in> HFinite" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
376 |
apply (case_tac "x \<le> 0") |
14370 | 377 |
apply (drule_tac y = x in order_trans) |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
378 |
apply (drule_tac [2] order_antisym) |
14370 | 379 |
apply (auto simp add: linorder_not_le) |
380 |
apply (auto intro: order_le_less_trans simp add: abs_if HFinite_def) |
|
381 |
done |
|
382 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
383 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
384 |
subsection{* Set of Infinitesimals is a Subring of the Hyperreals*} |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
385 |
|
20407 | 386 |
lemma InfinitesimalI: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
387 |
"(\<And>r. \<lbrakk>r \<in> \<real>; 0 < r\<rbrakk> \<Longrightarrow> hnorm x < r) \<Longrightarrow> x \<in> Infinitesimal" |
20407 | 388 |
by (simp add: Infinitesimal_def) |
389 |
||
14370 | 390 |
lemma InfinitesimalD: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
391 |
"x \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> hnorm x < r" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
392 |
by (simp add: Infinitesimal_def) |
14370 | 393 |
|
15229 | 394 |
lemma Infinitesimal_zero [iff]: "0 \<in> Infinitesimal" |
14370 | 395 |
by (simp add: Infinitesimal_def) |
396 |
||
397 |
lemma hypreal_sum_of_halves: "x/(2::hypreal) + x/(2::hypreal) = x" |
|
398 |
by auto |
|
399 |
||
400 |
lemma Infinitesimal_add: |
|
401 |
"[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> (x+y) \<in> Infinitesimal" |
|
20407 | 402 |
apply (rule InfinitesimalI) |
14370 | 403 |
apply (rule hypreal_sum_of_halves [THEN subst]) |
14477 | 404 |
apply (drule half_gt_zero) |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
405 |
apply (blast intro: hnorm_add_less SReal_divide_number_of dest: InfinitesimalD) |
14370 | 406 |
done |
407 |
||
15229 | 408 |
lemma Infinitesimal_minus_iff [simp]: "(-x:Infinitesimal) = (x:Infinitesimal)" |
14370 | 409 |
by (simp add: Infinitesimal_def) |
410 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
411 |
lemma Infinitesimal_diff: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
412 |
"[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x-y \<in> Infinitesimal" |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
413 |
by (simp add: diff_def Infinitesimal_add) |
14370 | 414 |
|
415 |
lemma Infinitesimal_mult: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
416 |
fixes x y :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
417 |
shows "[|x \<in> Infinitesimal; y \<in> Infinitesimal|] ==> (x * y) \<in> Infinitesimal" |
20407 | 418 |
apply (rule InfinitesimalI) |
419 |
apply (case_tac "y = 0", simp) |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
420 |
apply (subgoal_tac "hnorm (x * y) < 1 * r", simp only: mult_1) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
421 |
apply (rule hnorm_mult_less) |
20407 | 422 |
apply (simp_all add: InfinitesimalD) |
14370 | 423 |
done |
424 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
425 |
lemma Infinitesimal_HFinite_mult: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
426 |
fixes x y :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
427 |
shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (x * y) \<in> Infinitesimal" |
20407 | 428 |
apply (rule InfinitesimalI) |
429 |
apply (drule HFiniteD, clarify) |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
430 |
apply (subgoal_tac "0 < t") |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
431 |
apply (subgoal_tac "hnorm (x * y) < (r / t) * t", simp) |
20407 | 432 |
apply (subgoal_tac "0 < r / t") |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
433 |
apply (rule hnorm_mult_less) |
20407 | 434 |
apply (simp add: InfinitesimalD SReal_divide) |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
435 |
apply assumption |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
436 |
apply (simp only: divide_pos_pos) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
437 |
apply (erule order_le_less_trans [OF hnorm_ge_zero]) |
14370 | 438 |
done |
439 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
440 |
lemma Infinitesimal_HFinite_mult2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
441 |
fixes x y :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
442 |
shows "[| x \<in> Infinitesimal; y \<in> HFinite |] ==> (y * x) \<in> Infinitesimal" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
443 |
apply (rule InfinitesimalI) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
444 |
apply (drule HFiniteD, clarify) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
445 |
apply (subgoal_tac "0 < t") |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
446 |
apply (subgoal_tac "hnorm (y * x) < t * (r / t)", simp) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
447 |
apply (subgoal_tac "0 < r / t") |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
448 |
apply (rule hnorm_mult_less) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
449 |
apply assumption |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
450 |
apply (simp add: InfinitesimalD SReal_divide) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
451 |
apply (simp only: divide_pos_pos) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
452 |
apply (erule order_le_less_trans [OF hnorm_ge_zero]) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
453 |
done |
14370 | 454 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
455 |
lemma Compl_HFinite: "- HFinite = HInfinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
456 |
apply (auto simp add: HInfinite_def HFinite_def linorder_not_less) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
457 |
apply (rule_tac y="r + 1" in order_less_le_trans, simp) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
458 |
apply (simp add: SReal_add Reals_1) |
14370 | 459 |
done |
460 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
461 |
lemma HInfinite_inverse_Infinitesimal: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
462 |
fixes x :: "'a::real_normed_div_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
463 |
shows "x \<in> HInfinite ==> inverse x \<in> Infinitesimal" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
464 |
apply (rule InfinitesimalI) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
465 |
apply (subgoal_tac "x \<noteq> 0") |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
466 |
apply (rule inverse_less_imp_less) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
467 |
apply (simp add: nonzero_hnorm_inverse) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
468 |
apply (simp add: HInfinite_def SReal_inverse) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
469 |
apply assumption |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
470 |
apply (clarify, simp add: Compl_HFinite [symmetric]) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
471 |
done |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
472 |
|
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
473 |
lemma HInfiniteI: "(\<And>r. r \<in> \<real> \<Longrightarrow> r < hnorm x) \<Longrightarrow> x \<in> HInfinite" |
20407 | 474 |
by (simp add: HInfinite_def) |
475 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
476 |
lemma HInfiniteD: "\<lbrakk>x \<in> HInfinite; r \<in> \<real>\<rbrakk> \<Longrightarrow> r < hnorm x" |
20407 | 477 |
by (simp add: HInfinite_def) |
478 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
479 |
lemma HInfinite_mult: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
480 |
fixes x y :: "'a::real_normed_div_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
481 |
shows "[|x \<in> HInfinite; y \<in> HInfinite|] ==> (x*y) \<in> HInfinite" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
482 |
apply (rule HInfiniteI, simp only: hnorm_mult) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
483 |
apply (subgoal_tac "r * 1 < hnorm x * hnorm y", simp only: mult_1) |
20407 | 484 |
apply (case_tac "x = 0", simp add: HInfinite_def) |
485 |
apply (rule mult_strict_mono) |
|
486 |
apply (simp_all add: HInfiniteD) |
|
14370 | 487 |
done |
488 |
||
15229 | 489 |
lemma hypreal_add_zero_less_le_mono: "[|r < x; (0::hypreal) \<le> y|] ==> r < x+y" |
490 |
by (auto dest: add_less_le_mono) |
|
491 |
||
14370 | 492 |
lemma HInfinite_add_ge_zero: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
493 |
"[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (x + y): HInfinite" |
14370 | 494 |
by (auto intro!: hypreal_add_zero_less_le_mono |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
495 |
simp add: abs_if add_commute add_nonneg_nonneg HInfinite_def) |
14370 | 496 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
497 |
lemma HInfinite_add_ge_zero2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
498 |
"[|(x::hypreal) \<in> HInfinite; 0 \<le> y; 0 \<le> x|] ==> (y + x): HInfinite" |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
499 |
by (auto intro!: HInfinite_add_ge_zero simp add: add_commute) |
14370 | 500 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
501 |
lemma HInfinite_add_gt_zero: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
502 |
"[|(x::hypreal) \<in> HInfinite; 0 < y; 0 < x|] ==> (x + y): HInfinite" |
14370 | 503 |
by (blast intro: HInfinite_add_ge_zero order_less_imp_le) |
504 |
||
505 |
lemma HInfinite_minus_iff: "(-x \<in> HInfinite) = (x \<in> HInfinite)" |
|
506 |
by (simp add: HInfinite_def) |
|
507 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
508 |
lemma HInfinite_add_le_zero: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
509 |
"[|(x::hypreal) \<in> HInfinite; y \<le> 0; x \<le> 0|] ==> (x + y): HInfinite" |
14370 | 510 |
apply (drule HInfinite_minus_iff [THEN iffD2]) |
511 |
apply (rule HInfinite_minus_iff [THEN iffD1]) |
|
512 |
apply (auto intro: HInfinite_add_ge_zero) |
|
513 |
done |
|
514 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
515 |
lemma HInfinite_add_lt_zero: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
516 |
"[|(x::hypreal) \<in> HInfinite; y < 0; x < 0|] ==> (x + y): HInfinite" |
14370 | 517 |
by (blast intro: HInfinite_add_le_zero order_less_imp_le) |
518 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
519 |
lemma HFinite_sum_squares: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
520 |
fixes a b c :: "'a::real_normed_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
521 |
shows "[|a: HFinite; b: HFinite; c: HFinite|] |
14370 | 522 |
==> a*a + b*b + c*c \<in> HFinite" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
523 |
by (auto intro: HFinite_mult HFinite_add) |
14370 | 524 |
|
525 |
lemma not_Infinitesimal_not_zero: "x \<notin> Infinitesimal ==> x \<noteq> 0" |
|
526 |
by auto |
|
527 |
||
528 |
lemma not_Infinitesimal_not_zero2: "x \<in> HFinite - Infinitesimal ==> x \<noteq> 0" |
|
529 |
by auto |
|
530 |
||
15229 | 531 |
lemma Infinitesimal_hrabs_iff [iff]: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
532 |
"(abs (x::hypreal) \<in> Infinitesimal) = (x \<in> Infinitesimal)" |
15003 | 533 |
by (auto simp add: abs_if) |
14370 | 534 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
535 |
lemma HFinite_diff_Infinitesimal_hrabs: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
536 |
"(x::hypreal) \<in> HFinite - Infinitesimal ==> abs x \<in> HFinite - Infinitesimal" |
14370 | 537 |
by blast |
538 |
||
539 |
lemma hrabs_less_Infinitesimal: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
540 |
"[| e \<in> Infinitesimal; abs (x::hypreal) < e |] ==> x \<in> Infinitesimal" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
541 |
by (auto simp add: Infinitesimal_def abs_less_iff) |
14370 | 542 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
543 |
lemma hrabs_le_Infinitesimal: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
544 |
"[| e \<in> Infinitesimal; abs (x::hypreal) \<le> e |] ==> x \<in> Infinitesimal" |
14370 | 545 |
by (blast dest: order_le_imp_less_or_eq intro: hrabs_less_Infinitesimal) |
546 |
||
547 |
lemma Infinitesimal_interval: |
|
548 |
"[| e \<in> Infinitesimal; e' \<in> Infinitesimal; e' < x ; x < e |] |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
549 |
==> (x::hypreal) \<in> Infinitesimal" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
550 |
by (auto simp add: Infinitesimal_def abs_less_iff) |
14370 | 551 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
552 |
lemma Infinitesimal_interval2: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
553 |
"[| e \<in> Infinitesimal; e' \<in> Infinitesimal; |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
554 |
e' \<le> x ; x \<le> e |] ==> (x::hypreal) \<in> Infinitesimal" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
555 |
by (auto intro: Infinitesimal_interval simp add: order_le_less) |
14370 | 556 |
|
557 |
lemma not_Infinitesimal_mult: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
558 |
fixes x y :: "'a::real_normed_div_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
559 |
shows "[| x \<notin> Infinitesimal; y \<notin> Infinitesimal|] ==> (x*y) \<notin>Infinitesimal" |
20407 | 560 |
apply (unfold Infinitesimal_def, clarify, rename_tac r s) |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
561 |
apply (simp only: linorder_not_less hnorm_mult) |
20407 | 562 |
apply (drule_tac x = "r * s" in bspec) |
563 |
apply (fast intro: SReal_mult) |
|
564 |
apply (drule mp, blast intro: mult_pos_pos) |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
565 |
apply (drule_tac c = s and d = "hnorm y" and a = r and b = "hnorm x" in mult_mono) |
20407 | 566 |
apply (simp_all (no_asm_simp)) |
14370 | 567 |
done |
568 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
569 |
lemma Infinitesimal_mult_disj: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
570 |
fixes x y :: "'a::real_normed_div_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
571 |
shows "x*y \<in> Infinitesimal ==> x \<in> Infinitesimal | y \<in> Infinitesimal" |
14370 | 572 |
apply (rule ccontr) |
573 |
apply (drule de_Morgan_disj [THEN iffD1]) |
|
574 |
apply (fast dest: not_Infinitesimal_mult) |
|
575 |
done |
|
576 |
||
577 |
lemma HFinite_Infinitesimal_not_zero: "x \<in> HFinite-Infinitesimal ==> x \<noteq> 0" |
|
578 |
by blast |
|
579 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
580 |
lemma HFinite_Infinitesimal_diff_mult: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
581 |
fixes x y :: "'a::real_normed_div_algebra star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
582 |
shows "[| x \<in> HFinite - Infinitesimal; |
14370 | 583 |
y \<in> HFinite - Infinitesimal |
584 |
|] ==> (x*y) \<in> HFinite - Infinitesimal" |
|
585 |
apply clarify |
|
586 |
apply (blast dest: HFinite_mult not_Infinitesimal_mult) |
|
587 |
done |
|
588 |
||
589 |
lemma Infinitesimal_subset_HFinite: |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
590 |
"Infinitesimal \<subseteq> HFinite" |
14370 | 591 |
apply (simp add: Infinitesimal_def HFinite_def, auto) |
592 |
apply (rule_tac x = 1 in bexI, auto) |
|
593 |
done |
|
594 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
595 |
lemma Infinitesimal_hypreal_of_real_mult: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
596 |
"x \<in> Infinitesimal ==> x * hypreal_of_real r \<in> Infinitesimal" |
14370 | 597 |
by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult]) |
598 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
599 |
lemma Infinitesimal_hypreal_of_real_mult2: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
600 |
"x \<in> Infinitesimal ==> hypreal_of_real r * x \<in> Infinitesimal" |
14370 | 601 |
by (erule HFinite_hypreal_of_real [THEN [2] Infinitesimal_HFinite_mult2]) |
602 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
603 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
604 |
subsection{*The Infinitely Close Relation*} |
14370 | 605 |
|
606 |
lemma mem_infmal_iff: "(x \<in> Infinitesimal) = (x @= 0)" |
|
607 |
by (simp add: Infinitesimal_def approx_def) |
|
608 |
||
609 |
lemma approx_minus_iff: " (x @= y) = (x + -y @= 0)" |
|
610 |
by (simp add: approx_def) |
|
611 |
||
612 |
lemma approx_minus_iff2: " (x @= y) = (-y + x @= 0)" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
613 |
by (simp add: approx_def add_commute) |
14370 | 614 |
|
15229 | 615 |
lemma approx_refl [iff]: "x @= x" |
14370 | 616 |
by (simp add: approx_def Infinitesimal_def) |
617 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
618 |
lemma hypreal_minus_distrib1: "-(y + -(x::'a::ab_group_add)) = x + -y" |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
619 |
by (simp add: add_commute) |
14477 | 620 |
|
14370 | 621 |
lemma approx_sym: "x @= y ==> y @= x" |
622 |
apply (simp add: approx_def) |
|
623 |
apply (rule hypreal_minus_distrib1 [THEN subst]) |
|
624 |
apply (erule Infinitesimal_minus_iff [THEN iffD2]) |
|
625 |
done |
|
626 |
||
627 |
lemma approx_trans: "[| x @= y; y @= z |] ==> x @= z" |
|
628 |
apply (simp add: approx_def) |
|
629 |
apply (drule Infinitesimal_add, assumption, auto) |
|
630 |
done |
|
631 |
||
632 |
lemma approx_trans2: "[| r @= x; s @= x |] ==> r @= s" |
|
633 |
by (blast intro: approx_sym approx_trans) |
|
634 |
||
635 |
lemma approx_trans3: "[| x @= r; x @= s|] ==> r @= s" |
|
636 |
by (blast intro: approx_sym approx_trans) |
|
637 |
||
638 |
lemma number_of_approx_reorient: "(number_of w @= x) = (x @= number_of w)" |
|
639 |
by (blast intro: approx_sym) |
|
640 |
||
641 |
lemma zero_approx_reorient: "(0 @= x) = (x @= 0)" |
|
642 |
by (blast intro: approx_sym) |
|
643 |
||
644 |
lemma one_approx_reorient: "(1 @= x) = (x @= 1)" |
|
645 |
by (blast intro: approx_sym) |
|
10751 | 646 |
|
647 |
||
19765 | 648 |
ML {* |
649 |
local |
|
14370 | 650 |
(*** re-orientation, following HOL/Integ/Bin.ML |
651 |
We re-orient x @=y where x is 0, 1 or a numeral, unless y is as well! |
|
652 |
***) |
|
653 |
||
654 |
(*reorientation simprules using ==, for the following simproc*) |
|
19765 | 655 |
val meta_zero_approx_reorient = thm "zero_approx_reorient" RS eq_reflection; |
656 |
val meta_one_approx_reorient = thm "one_approx_reorient" RS eq_reflection; |
|
657 |
val meta_number_of_approx_reorient = thm "number_of_approx_reorient" RS eq_reflection |
|
14370 | 658 |
|
659 |
(*reorientation simplification procedure: reorients (polymorphic) |
|
660 |
0 = x, 1 = x, nnn = x provided x isn't 0, 1 or a numeral.*) |
|
661 |
fun reorient_proc sg _ (_ $ t $ u) = |
|
662 |
case u of |
|
15531 | 663 |
Const("0", _) => NONE |
664 |
| Const("1", _) => NONE |
|
665 |
| Const("Numeral.number_of", _) $ _ => NONE |
|
666 |
| _ => SOME (case t of |
|
14370 | 667 |
Const("0", _) => meta_zero_approx_reorient |
668 |
| Const("1", _) => meta_one_approx_reorient |
|
669 |
| Const("Numeral.number_of", _) $ _ => |
|
670 |
meta_number_of_approx_reorient); |
|
671 |
||
19765 | 672 |
in |
14370 | 673 |
val approx_reorient_simproc = |
20485 | 674 |
Int_Numeral_Base_Simprocs.prep_simproc |
14370 | 675 |
("reorient_simproc", ["0@=x", "1@=x", "number_of w @= x"], reorient_proc); |
19765 | 676 |
end; |
14370 | 677 |
|
678 |
Addsimprocs [approx_reorient_simproc]; |
|
679 |
*} |
|
680 |
||
681 |
lemma Infinitesimal_approx_minus: "(x-y \<in> Infinitesimal) = (x @= y)" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
682 |
by (auto simp add: diff_def approx_minus_iff [symmetric] mem_infmal_iff) |
14370 | 683 |
|
684 |
lemma approx_monad_iff: "(x @= y) = (monad(x)=monad(y))" |
|
685 |
apply (simp add: monad_def) |
|
686 |
apply (auto dest: approx_sym elim!: approx_trans equalityCE) |
|
687 |
done |
|
688 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
689 |
lemma Infinitesimal_approx: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
690 |
"[| x \<in> Infinitesimal; y \<in> Infinitesimal |] ==> x @= y" |
14370 | 691 |
apply (simp add: mem_infmal_iff) |
692 |
apply (blast intro: approx_trans approx_sym) |
|
693 |
done |
|
694 |
||
695 |
lemma approx_add: "[| a @= b; c @= d |] ==> a+c @= b+d" |
|
696 |
proof (unfold approx_def) |
|
697 |
assume inf: "a + - b \<in> Infinitesimal" "c + - d \<in> Infinitesimal" |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
698 |
have "a + c + - (b + d) = (a + - b) + (c + - d)" by simp |
14370 | 699 |
also have "... \<in> Infinitesimal" using inf by (rule Infinitesimal_add) |
700 |
finally show "a + c + - (b + d) \<in> Infinitesimal" . |
|
701 |
qed |
|
702 |
||
703 |
lemma approx_minus: "a @= b ==> -a @= -b" |
|
704 |
apply (rule approx_minus_iff [THEN iffD2, THEN approx_sym]) |
|
705 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
706 |
apply (simp (no_asm) add: add_commute) |
14370 | 707 |
done |
708 |
||
709 |
lemma approx_minus2: "-a @= -b ==> a @= b" |
|
710 |
by (auto dest: approx_minus) |
|
711 |
||
15229 | 712 |
lemma approx_minus_cancel [simp]: "(-a @= -b) = (a @= b)" |
14370 | 713 |
by (blast intro: approx_minus approx_minus2) |
714 |
||
715 |
lemma approx_add_minus: "[| a @= b; c @= d |] ==> a + -c @= b + -d" |
|
716 |
by (blast intro!: approx_add approx_minus) |
|
717 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
718 |
lemma approx_mult1: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
719 |
fixes a b c :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
720 |
shows "[| a @= b; c: HFinite|] ==> a*c @= b*c" |
14370 | 721 |
by (simp add: approx_def Infinitesimal_HFinite_mult minus_mult_left |
722 |
left_distrib [symmetric] |
|
723 |
del: minus_mult_left [symmetric]) |
|
724 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
725 |
lemma approx_mult2: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
726 |
fixes a b c :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
727 |
shows "[|a @= b; c: HFinite|] ==> c*a @= c*b" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
728 |
by (simp add: approx_def Infinitesimal_HFinite_mult2 minus_mult_right |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
729 |
right_distrib [symmetric] |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
730 |
del: minus_mult_right [symmetric]) |
14370 | 731 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
732 |
lemma approx_mult_subst: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
733 |
fixes u v x y :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
734 |
shows "[|u @= v*x; x @= y; v \<in> HFinite|] ==> u @= v*y" |
14370 | 735 |
by (blast intro: approx_mult2 approx_trans) |
736 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
737 |
lemma approx_mult_subst2: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
738 |
fixes u v x y :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
739 |
shows "[| u @= x*v; x @= y; v \<in> HFinite |] ==> u @= y*v" |
14370 | 740 |
by (blast intro: approx_mult1 approx_trans) |
741 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
742 |
lemma approx_mult_subst_star_of: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
743 |
fixes u x y :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
744 |
shows "[| u @= x*star_of v; x @= y |] ==> u @= y*star_of v" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
745 |
by (auto intro: approx_mult_subst2) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
746 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
747 |
lemma approx_mult_subst_SReal: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
748 |
"[| u @= x*hypreal_of_real v; x @= y |] ==> u @= y*hypreal_of_real v" |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
749 |
by (rule approx_mult_subst_star_of) |
14370 | 750 |
|
751 |
lemma approx_eq_imp: "a = b ==> a @= b" |
|
752 |
by (simp add: approx_def) |
|
753 |
||
754 |
lemma Infinitesimal_minus_approx: "x \<in> Infinitesimal ==> -x @= x" |
|
755 |
by (blast intro: Infinitesimal_minus_iff [THEN iffD2] |
|
756 |
mem_infmal_iff [THEN iffD1] approx_trans2) |
|
757 |
||
758 |
lemma bex_Infinitesimal_iff: "(\<exists>y \<in> Infinitesimal. x + -z = y) = (x @= z)" |
|
759 |
by (simp add: approx_def) |
|
760 |
||
761 |
lemma bex_Infinitesimal_iff2: "(\<exists>y \<in> Infinitesimal. x = z + y) = (x @= z)" |
|
762 |
by (force simp add: bex_Infinitesimal_iff [symmetric]) |
|
763 |
||
764 |
lemma Infinitesimal_add_approx: "[| y \<in> Infinitesimal; x + y = z |] ==> x @= z" |
|
765 |
apply (rule bex_Infinitesimal_iff [THEN iffD1]) |
|
766 |
apply (drule Infinitesimal_minus_iff [THEN iffD2]) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
767 |
apply (auto simp add: add_assoc [symmetric]) |
14370 | 768 |
done |
769 |
||
770 |
lemma Infinitesimal_add_approx_self: "y \<in> Infinitesimal ==> x @= x + y" |
|
771 |
apply (rule bex_Infinitesimal_iff [THEN iffD1]) |
|
772 |
apply (drule Infinitesimal_minus_iff [THEN iffD2]) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
773 |
apply (auto simp add: add_assoc [symmetric]) |
14370 | 774 |
done |
775 |
||
776 |
lemma Infinitesimal_add_approx_self2: "y \<in> Infinitesimal ==> x @= y + x" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
777 |
by (auto dest: Infinitesimal_add_approx_self simp add: add_commute) |
14370 | 778 |
|
779 |
lemma Infinitesimal_add_minus_approx_self: "y \<in> Infinitesimal ==> x @= x + -y" |
|
780 |
by (blast intro!: Infinitesimal_add_approx_self Infinitesimal_minus_iff [THEN iffD2]) |
|
781 |
||
782 |
lemma Infinitesimal_add_cancel: "[| y \<in> Infinitesimal; x+y @= z|] ==> x @= z" |
|
783 |
apply (drule_tac x = x in Infinitesimal_add_approx_self [THEN approx_sym]) |
|
784 |
apply (erule approx_trans3 [THEN approx_sym], assumption) |
|
785 |
done |
|
786 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
787 |
lemma Infinitesimal_add_right_cancel: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
788 |
"[| y \<in> Infinitesimal; x @= z + y|] ==> x @= z" |
14370 | 789 |
apply (drule_tac x = z in Infinitesimal_add_approx_self2 [THEN approx_sym]) |
790 |
apply (erule approx_trans3 [THEN approx_sym]) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
791 |
apply (simp add: add_commute) |
14370 | 792 |
apply (erule approx_sym) |
793 |
done |
|
794 |
||
795 |
lemma approx_add_left_cancel: "d + b @= d + c ==> b @= c" |
|
796 |
apply (drule approx_minus_iff [THEN iffD1]) |
|
15539 | 797 |
apply (simp add: approx_minus_iff [symmetric] add_ac) |
14370 | 798 |
done |
799 |
||
800 |
lemma approx_add_right_cancel: "b + d @= c + d ==> b @= c" |
|
801 |
apply (rule approx_add_left_cancel) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
802 |
apply (simp add: add_commute) |
14370 | 803 |
done |
804 |
||
805 |
lemma approx_add_mono1: "b @= c ==> d + b @= d + c" |
|
806 |
apply (rule approx_minus_iff [THEN iffD2]) |
|
15539 | 807 |
apply (simp add: approx_minus_iff [symmetric] add_ac) |
14370 | 808 |
done |
809 |
||
810 |
lemma approx_add_mono2: "b @= c ==> b + a @= c + a" |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
811 |
by (simp add: add_commute approx_add_mono1) |
14370 | 812 |
|
15229 | 813 |
lemma approx_add_left_iff [simp]: "(a + b @= a + c) = (b @= c)" |
14370 | 814 |
by (fast elim: approx_add_left_cancel approx_add_mono1) |
815 |
||
15229 | 816 |
lemma approx_add_right_iff [simp]: "(b + a @= c + a) = (b @= c)" |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
817 |
by (simp add: add_commute) |
14370 | 818 |
|
819 |
lemma approx_HFinite: "[| x \<in> HFinite; x @= y |] ==> y \<in> HFinite" |
|
820 |
apply (drule bex_Infinitesimal_iff2 [THEN iffD2], safe) |
|
821 |
apply (drule Infinitesimal_subset_HFinite [THEN subsetD, THEN HFinite_minus_iff [THEN iffD2]]) |
|
822 |
apply (drule HFinite_add) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
823 |
apply (auto simp add: add_assoc) |
14370 | 824 |
done |
825 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
826 |
lemma approx_star_of_HFinite: "x @= star_of D ==> x \<in> HFinite" |
14370 | 827 |
by (rule approx_sym [THEN [2] approx_HFinite], auto) |
828 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
829 |
lemma approx_hypreal_of_real_HFinite: "x @= hypreal_of_real D ==> x \<in> HFinite" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
830 |
by (rule approx_star_of_HFinite) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
831 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
832 |
lemma approx_mult_HFinite: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
833 |
fixes a b c d :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
834 |
shows "[|a @= b; c @= d; b: HFinite; d: HFinite|] ==> a*c @= b*d" |
14370 | 835 |
apply (rule approx_trans) |
836 |
apply (rule_tac [2] approx_mult2) |
|
837 |
apply (rule approx_mult1) |
|
838 |
prefer 2 apply (blast intro: approx_HFinite approx_sym, auto) |
|
839 |
done |
|
840 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
841 |
lemma approx_mult_star_of: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
842 |
fixes a c :: "'a::real_normed_algebra star" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
843 |
shows "[|a @= star_of b; c @= star_of d |] |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
844 |
==> a*c @= star_of b*star_of d" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
845 |
by (blast intro!: approx_mult_HFinite approx_star_of_HFinite HFinite_star_of) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
846 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
847 |
lemma approx_mult_hypreal_of_real: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
848 |
"[|a @= hypreal_of_real b; c @= hypreal_of_real d |] |
14370 | 849 |
==> a*c @= hypreal_of_real b*hypreal_of_real d" |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
850 |
by (rule approx_mult_star_of) |
14370 | 851 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
852 |
lemma approx_SReal_mult_cancel_zero: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
853 |
"[| (a::hypreal) \<in> Reals; a \<noteq> 0; a*x @= 0 |] ==> x @= 0" |
14370 | 854 |
apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
855 |
apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric]) |
14370 | 856 |
done |
857 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
858 |
lemma approx_mult_SReal1: "[| (a::hypreal) \<in> Reals; x @= 0 |] ==> x*a @= 0" |
14370 | 859 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult1) |
860 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
861 |
lemma approx_mult_SReal2: "[| (a::hypreal) \<in> Reals; x @= 0 |] ==> a*x @= 0" |
14370 | 862 |
by (auto dest: SReal_subset_HFinite [THEN subsetD] approx_mult2) |
863 |
||
15229 | 864 |
lemma approx_mult_SReal_zero_cancel_iff [simp]: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
865 |
"[|(a::hypreal) \<in> Reals; a \<noteq> 0 |] ==> (a*x @= 0) = (x @= 0)" |
14370 | 866 |
by (blast intro: approx_SReal_mult_cancel_zero approx_mult_SReal2) |
867 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
868 |
lemma approx_SReal_mult_cancel: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
869 |
"[| (a::hypreal) \<in> Reals; a \<noteq> 0; a* w @= a*z |] ==> w @= z" |
14370 | 870 |
apply (drule SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
871 |
apply (auto dest: approx_mult2 simp add: mult_assoc [symmetric]) |
14370 | 872 |
done |
873 |
||
15229 | 874 |
lemma approx_SReal_mult_cancel_iff1 [simp]: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
875 |
"[| (a::hypreal) \<in> Reals; a \<noteq> 0|] ==> (a* w @= a*z) = (w @= z)" |
15229 | 876 |
by (auto intro!: approx_mult2 SReal_subset_HFinite [THEN subsetD] |
877 |
intro: approx_SReal_mult_cancel) |
|
14370 | 878 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
879 |
lemma approx_le_bound: "[| (z::hypreal) \<le> f; f @= g; g \<le> z |] ==> f @= z" |
14370 | 880 |
apply (simp add: bex_Infinitesimal_iff2 [symmetric], auto) |
881 |
apply (rule_tac x = "g+y-z" in bexI) |
|
882 |
apply (simp (no_asm)) |
|
883 |
apply (rule Infinitesimal_interval2) |
|
884 |
apply (rule_tac [2] Infinitesimal_zero, auto) |
|
885 |
done |
|
886 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
887 |
|
15539 | 888 |
subsection{* Zero is the Only Infinitesimal that is also a Real*} |
14370 | 889 |
|
890 |
lemma Infinitesimal_less_SReal: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
891 |
"[| (x::hypreal) \<in> Reals; y \<in> Infinitesimal; 0 < x |] ==> y < x" |
14370 | 892 |
apply (simp add: Infinitesimal_def) |
893 |
apply (rule abs_ge_self [THEN order_le_less_trans], auto) |
|
894 |
done |
|
895 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
896 |
lemma Infinitesimal_less_SReal2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
897 |
"(y::hypreal) \<in> Infinitesimal ==> \<forall>r \<in> Reals. 0 < r --> y < r" |
14370 | 898 |
by (blast intro: Infinitesimal_less_SReal) |
899 |
||
900 |
lemma SReal_not_Infinitesimal: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
901 |
"[| 0 < y; (y::hypreal) \<in> Reals|] ==> y \<notin> Infinitesimal" |
14370 | 902 |
apply (simp add: Infinitesimal_def) |
15003 | 903 |
apply (auto simp add: abs_if) |
14370 | 904 |
done |
905 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
906 |
lemma SReal_minus_not_Infinitesimal: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
907 |
"[| y < 0; (y::hypreal) \<in> Reals |] ==> y \<notin> Infinitesimal" |
14370 | 908 |
apply (subst Infinitesimal_minus_iff [symmetric]) |
909 |
apply (rule SReal_not_Infinitesimal, auto) |
|
910 |
done |
|
911 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
912 |
lemma SReal_Int_Infinitesimal_zero: "Reals Int Infinitesimal = {0::hypreal}" |
14370 | 913 |
apply auto |
914 |
apply (cut_tac x = x and y = 0 in linorder_less_linear) |
|
915 |
apply (blast dest: SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) |
|
916 |
done |
|
917 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
918 |
lemma SReal_Infinitesimal_zero: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
919 |
"[| (x::hypreal) \<in> Reals; x \<in> Infinitesimal|] ==> x = 0" |
14370 | 920 |
by (cut_tac SReal_Int_Infinitesimal_zero, blast) |
921 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
922 |
lemma SReal_HFinite_diff_Infinitesimal: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
923 |
"[| (x::hypreal) \<in> Reals; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal" |
14370 | 924 |
by (auto dest: SReal_Infinitesimal_zero SReal_subset_HFinite [THEN subsetD]) |
925 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
926 |
lemma hypreal_of_real_HFinite_diff_Infinitesimal: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
927 |
"hypreal_of_real x \<noteq> 0 ==> hypreal_of_real x \<in> HFinite - Infinitesimal" |
14370 | 928 |
by (rule SReal_HFinite_diff_Infinitesimal, auto) |
929 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
930 |
lemma star_of_Infinitesimal_iff_0 [iff]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
931 |
"(star_of x \<in> Infinitesimal) = (x = 0)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
932 |
apply (auto simp add: Infinitesimal_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
933 |
apply (drule_tac x="hnorm (star_of x)" in bspec) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
934 |
apply (simp add: hnorm_def) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
935 |
apply simp |
14370 | 936 |
done |
937 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
938 |
lemma star_of_HFinite_diff_Infinitesimal: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
939 |
"x \<noteq> 0 ==> star_of x \<in> HFinite - Infinitesimal" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
940 |
by simp |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
941 |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
942 |
lemma hypreal_of_real_Infinitesimal_iff_0: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
943 |
"(hypreal_of_real x \<in> Infinitesimal) = (x=0)" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
944 |
by (rule star_of_Infinitesimal_iff_0) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
945 |
|
15229 | 946 |
lemma number_of_not_Infinitesimal [simp]: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
947 |
"number_of w \<noteq> (0::hypreal) ==> (number_of w :: hypreal) \<notin> Infinitesimal" |
14370 | 948 |
by (fast dest: SReal_number_of [THEN SReal_Infinitesimal_zero]) |
949 |
||
950 |
(*again: 1 is a special case, but not 0 this time*) |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
951 |
lemma one_not_Infinitesimal [simp]: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
952 |
"(1::'a::{real_normed_vector,axclass_0_neq_1} star) \<notin> Infinitesimal" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
953 |
apply (simp only: star_one_def star_of_Infinitesimal_iff_0) |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
954 |
apply simp |
14370 | 955 |
done |
956 |
||
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
957 |
lemma approx_SReal_not_zero: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
958 |
"[| (y::hypreal) \<in> Reals; x @= y; y\<noteq> 0 |] ==> x \<noteq> 0" |
14370 | 959 |
apply (cut_tac x = 0 and y = y in linorder_less_linear, simp) |
960 |
apply (blast dest: approx_sym [THEN mem_infmal_iff [THEN iffD2]] SReal_not_Infinitesimal SReal_minus_not_Infinitesimal) |
|
961 |
done |
|
962 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
963 |
lemma HFinite_diff_Infinitesimal_approx: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
964 |
"[| x @= y; y \<in> HFinite - Infinitesimal |] |
14370 | 965 |
==> x \<in> HFinite - Infinitesimal" |
966 |
apply (auto intro: approx_sym [THEN [2] approx_HFinite] |
|
967 |
simp add: mem_infmal_iff) |
|
968 |
apply (drule approx_trans3, assumption) |
|
969 |
apply (blast dest: approx_sym) |
|
970 |
done |
|
971 |
||
972 |
(*The premise y\<noteq>0 is essential; otherwise x/y =0 and we lose the |
|
973 |
HFinite premise.*) |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
974 |
lemma Infinitesimal_ratio: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
975 |
fixes x y :: "'a::{real_normed_div_algebra,field} star" |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
976 |
shows "[| y \<noteq> 0; y \<in> Infinitesimal; x/y \<in> HFinite |] |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
977 |
==> x \<in> Infinitesimal" |
14370 | 978 |
apply (drule Infinitesimal_HFinite_mult2, assumption) |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
979 |
apply (simp add: divide_inverse mult_assoc) |
14370 | 980 |
done |
981 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
982 |
lemma Infinitesimal_SReal_divide: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
983 |
"[| (x::hypreal) \<in> Infinitesimal; y \<in> Reals |] ==> x/y \<in> Infinitesimal" |
14430
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
paulson
parents:
14420
diff
changeset
|
984 |
apply (simp add: divide_inverse) |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
985 |
apply (auto intro!: Infinitesimal_HFinite_mult |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
986 |
dest!: SReal_inverse [THEN SReal_subset_HFinite [THEN subsetD]]) |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
987 |
done |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
988 |
|
14370 | 989 |
(*------------------------------------------------------------------ |
990 |
Standard Part Theorem: Every finite x: R* is infinitely |
|
991 |
close to a unique real number (i.e a member of Reals) |
|
992 |
------------------------------------------------------------------*) |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
993 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
994 |
subsection{* Uniqueness: Two Infinitely Close Reals are Equal*} |
14370 | 995 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
996 |
lemma star_of_approx_iff [simp]: "(star_of x @= star_of y) = (x = y)" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
997 |
apply safe |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
998 |
apply (simp add: approx_def) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
999 |
apply (simp only: star_of_minus [symmetric] star_of_add [symmetric]) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1000 |
apply (simp only: star_of_Infinitesimal_iff_0) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1001 |
apply (simp only: diff_minus [symmetric] right_minus_eq) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1002 |
done |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1003 |
|
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1004 |
lemma SReal_approx_iff: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1005 |
"[|(x::hypreal) \<in> Reals; y \<in> Reals|] ==> (x @= y) = (x = y)" |
14370 | 1006 |
apply auto |
1007 |
apply (simp add: approx_def) |
|
1008 |
apply (drule_tac x = y in SReal_minus) |
|
1009 |
apply (drule SReal_add, assumption) |
|
1010 |
apply (drule SReal_Infinitesimal_zero, assumption) |
|
1011 |
apply (drule sym) |
|
1012 |
apply (simp add: hypreal_eq_minus_iff [symmetric]) |
|
1013 |
done |
|
1014 |
||
15229 | 1015 |
lemma number_of_approx_iff [simp]: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1016 |
"(number_of v @= (number_of w :: 'a::{number,real_normed_vector} star)) = |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1017 |
(number_of v = (number_of w :: 'a))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1018 |
apply (unfold star_number_def) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1019 |
apply (rule star_of_approx_iff) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1020 |
done |
14370 | 1021 |
|
1022 |
(*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1023 |
lemma [simp]: |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1024 |
"(number_of w @= (0::'a::{number,real_normed_vector} star)) = |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1025 |
(number_of w = (0::'a))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1026 |
"((0::'a::{number,real_normed_vector} star) @= number_of w) = |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1027 |
(number_of w = (0::'a))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1028 |
"(number_of w @= (1::'b::{number,one,real_normed_vector} star)) = |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1029 |
(number_of w = (1::'b))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1030 |
"((1::'b::{number,one,real_normed_vector} star) @= number_of w) = |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1031 |
(number_of w = (1::'b))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1032 |
"~ (0 @= (1::'c::{axclass_0_neq_1,real_normed_vector} star))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1033 |
"~ (1 @= (0::'c::{axclass_0_neq_1,real_normed_vector} star))" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1034 |
apply (unfold star_number_def star_zero_def star_one_def) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1035 |
apply (unfold star_of_approx_iff) |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1036 |
by (auto intro: sym) |
14370 | 1037 |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1038 |
lemma hypreal_of_real_approx_iff: |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1039 |
"(hypreal_of_real k @= hypreal_of_real m) = (k = m)" |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1040 |
by (rule star_of_approx_iff) |
14370 | 1041 |
|
15229 | 1042 |
lemma hypreal_of_real_approx_number_of_iff [simp]: |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1043 |
"(hypreal_of_real k @= number_of w) = (k = number_of w)" |
14370 | 1044 |
by (subst hypreal_of_real_approx_iff [symmetric], auto) |
1045 |
||
1046 |
(*And also for 0 and 1.*) |
|
1047 |
(*And also for 0 @= #nn and 1 @= #nn, #nn @= 0 and #nn @= 1.*) |
|
1048 |
lemma [simp]: "(hypreal_of_real k @= 0) = (k = 0)" |
|
1049 |
"(hypreal_of_real k @= 1) = (k = 1)" |
|
1050 |
by (simp_all add: hypreal_of_real_approx_iff [symmetric]) |
|
1051 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1052 |
lemma approx_unique_real: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1053 |
"[| (r::hypreal) \<in> Reals; s \<in> Reals; r @= x; s @= x|] ==> r = s" |
14370 | 1054 |
by (blast intro: SReal_approx_iff [THEN iffD1] approx_trans2) |
1055 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1056 |
|
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1057 |
subsection{* Existence of Unique Real Infinitely Close*} |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1058 |
|
14370 | 1059 |
(* lemma about lubs *) |
1060 |
lemma hypreal_isLub_unique: |
|
1061 |
"[| isLub R S x; isLub R S y |] ==> x = (y::hypreal)" |
|
1062 |
apply (frule isLub_isUb) |
|
1063 |
apply (frule_tac x = y in isLub_isUb) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
1064 |
apply (blast intro!: order_antisym dest!: isLub_le_isUb) |
14370 | 1065 |
done |
1066 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1067 |
lemma lemma_st_part_ub: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1068 |
"(x::hypreal) \<in> HFinite ==> \<exists>u. isUb Reals {s. s \<in> Reals & s < x} u" |
14370 | 1069 |
apply (drule HFiniteD, safe) |
1070 |
apply (rule exI, rule isUbI) |
|
1071 |
apply (auto intro: setleI isUbI simp add: abs_less_iff) |
|
1072 |
done |
|
1073 |
||
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1074 |
lemma lemma_st_part_nonempty: |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1075 |
"(x::hypreal) \<in> HFinite ==> \<exists>y. y \<in> {s. s \<in> Reals & s < x}" |
14370 | 1076 |
apply (drule HFiniteD, safe) |
1077 |
apply (drule SReal_minus) |
|
1078 |
apply (rule_tac x = "-t" in exI) |
|
1079 |
apply (auto simp add: abs_less_iff) |
|
1080 |
done |
|
1081 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1082 |
lemma lemma_st_part_subset: "{s. s \<in> Reals & s < x} \<subseteq> Reals" |
14370 | 1083 |
by auto |
1084 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1085 |
lemma lemma_st_part_lub: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1086 |
"(x::hypreal) \<in> HFinite ==> \<exists>t. isLub Reals {s. s \<in> Reals & s < x} t" |
14370 | 1087 |
by (blast intro!: SReal_complete lemma_st_part_ub lemma_st_part_nonempty lemma_st_part_subset) |
1088 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1089 |
lemma lemma_hypreal_le_left_cancel: "((t::hypreal) + r \<le> t) = (r \<le> 0)" |
14370 | 1090 |
apply safe |
1091 |
apply (drule_tac c = "-t" in add_left_mono) |
|
1092 |
apply (drule_tac [2] c = t in add_left_mono) |
|
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
1093 |
apply (auto simp add: add_assoc [symmetric]) |
14370 | 1094 |
done |
1095 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1096 |
lemma lemma_st_part_le1: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1097 |
"[| (x::hypreal) \<in> HFinite; isLub Reals {s. s \<in> Reals & s < x} t; |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1098 |
r \<in> Reals; 0 < r |] ==> x \<le> t + r" |
14370 | 1099 |
apply (frule isLubD1a) |
1100 |
apply (rule ccontr, drule linorder_not_le [THEN iffD2]) |
|
1101 |
apply (drule_tac x = t in SReal_add, assumption) |
|
1102 |
apply (drule_tac y = "t + r" in isLubD1 [THEN setleD], auto) |
|
1103 |
done |
|
1104 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1105 |
lemma hypreal_setle_less_trans: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1106 |
"[| S *<= (x::hypreal); x < y |] ==> S *<= y" |
14370 | 1107 |
apply (simp add: setle_def) |
1108 |
apply (auto dest!: bspec order_le_less_trans intro: order_less_imp_le) |
|
1109 |
done |
|
1110 |
||
1111 |
lemma hypreal_gt_isUb: |
|
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1112 |
"[| isUb R S (x::hypreal); x < y; y \<in> R |] ==> isUb R S y" |
14370 | 1113 |
apply (simp add: isUb_def) |
1114 |
apply (blast intro: hypreal_setle_less_trans) |
|
1115 |
done |
|
1116 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1117 |
lemma lemma_st_part_gt_ub: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1118 |
"[| (x::hypreal) \<in> HFinite; x < y; y \<in> Reals |] |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1119 |
==> isUb Reals {s. s \<in> Reals & s < x} y" |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1120 |
by (auto dest: order_less_trans intro: order_less_imp_le intro!: isUbI setleI) |
14370 | 1121 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1122 |
lemma lemma_minus_le_zero: "t \<le> t + -r ==> r \<le> (0::hypreal)" |
14370 | 1123 |
apply (drule_tac c = "-t" in add_left_mono) |
17318
bc1c75855f3d
starfun, starset, and other functions on NS types are now polymorphic;
huffman
parents:
17298
diff
changeset
|
1124 |
apply (auto simp add: add_assoc [symmetric]) |
14370 | 1125 |
done |
1126 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1127 |
lemma lemma_st_part_le2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1128 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1129 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1130 |
r \<in> Reals; 0 < r |] |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1131 |
==> t + -r \<le> x" |
14370 | 1132 |
apply (frule isLubD1a) |
1133 |
apply (rule ccontr, drule linorder_not_le [THEN iffD1]) |
|
1134 |
apply (drule SReal_minus, drule_tac x = t in SReal_add, assumption) |
|
1135 |
apply (drule lemma_st_part_gt_ub, assumption+) |
|
1136 |
apply (drule isLub_le_isUb, assumption) |
|
1137 |
apply (drule lemma_minus_le_zero) |
|
1138 |
apply (auto dest: order_less_le_trans) |
|
1139 |
done |
|
1140 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1141 |
lemma lemma_st_part1a: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1142 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1143 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1144 |
r \<in> Reals; 0 < r |] |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1145 |
==> x + -t \<le> r" |
15229 | 1146 |
apply (subgoal_tac "x \<le> t+r") |
1147 |
apply (auto intro: lemma_st_part_le1) |
|
1148 |
done |
|
14370 | 1149 |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1150 |
lemma lemma_st_part2a: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1151 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1152 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1153 |
r \<in> Reals; 0 < r |] |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1154 |
==> -(x + -t) \<le> r" |
15229 | 1155 |
apply (subgoal_tac "(t + -r \<le> x)") |
1156 |
apply (auto intro: lemma_st_part_le2) |
|
14370 | 1157 |
done |
1158 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1159 |
lemma lemma_SReal_ub: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1160 |
"(x::hypreal) \<in> Reals ==> isUb Reals {s. s \<in> Reals & s < x} x" |
14370 | 1161 |
by (auto intro: isUbI setleI order_less_imp_le) |
1162 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1163 |
lemma lemma_SReal_lub: |
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1164 |
"(x::hypreal) \<in> Reals ==> isLub Reals {s. s \<in> Reals & s < x} x" |
14370 | 1165 |
apply (auto intro!: isLubI2 lemma_SReal_ub setgeI) |
1166 |
apply (frule isUbD2a) |
|
1167 |
apply (rule_tac x = x and y = y in linorder_cases) |
|
1168 |
apply (auto intro!: order_less_imp_le) |
|
1169 |
apply (drule SReal_dense, assumption, assumption, safe) |
|
1170 |
apply (drule_tac y = r in isUbD) |
|
1171 |
apply (auto dest: order_less_le_trans) |
|
1172 |
done |
|
1173 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1174 |
lemma lemma_st_part_not_eq1: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1175 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1176 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1177 |
r \<in> Reals; 0 < r |] |
|
1178 |
==> x + -t \<noteq> r" |
|
1179 |
apply auto |
|
1180 |
apply (frule isLubD1a [THEN SReal_minus]) |
|
1181 |
apply (drule SReal_add_cancel, assumption) |
|
1182 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1183 |
apply (drule hypreal_isLub_unique, assumption, auto) |
|
1184 |
done |
|
1185 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1186 |
lemma lemma_st_part_not_eq2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1187 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1188 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1189 |
r \<in> Reals; 0 < r |] |
|
1190 |
==> -(x + -t) \<noteq> r" |
|
15539 | 1191 |
apply (auto) |
14370 | 1192 |
apply (frule isLubD1a) |
1193 |
apply (drule SReal_add_cancel, assumption) |
|
1194 |
apply (drule_tac x = "-x" in SReal_minus, simp) |
|
1195 |
apply (drule_tac x = x in lemma_SReal_lub) |
|
1196 |
apply (drule hypreal_isLub_unique, assumption, auto) |
|
1197 |
done |
|
1198 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1199 |
lemma lemma_st_part_major: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1200 |
"[| (x::hypreal) \<in> HFinite; |
14370 | 1201 |
isLub Reals {s. s \<in> Reals & s < x} t; |
1202 |
r \<in> Reals; 0 < r |] |
|
1203 |
==> abs (x + -t) < r" |
|
1204 |
apply (frule lemma_st_part1a) |
|
1205 |
apply (frule_tac [4] lemma_st_part2a, auto) |
|
1206 |
apply (drule order_le_imp_less_or_eq)+ |
|
1207 |
apply (auto dest: lemma_st_part_not_eq1 lemma_st_part_not_eq2 simp add: abs_less_iff) |
|
1208 |
done |
|
1209 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1210 |
lemma lemma_st_part_major2: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1211 |
"[| (x::hypreal) \<in> HFinite; isLub Reals {s. s \<in> Reals & s < x} t |] |
14370 | 1212 |
==> \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r" |
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1213 |
by (blast dest!: lemma_st_part_major) |
14370 | 1214 |
|
15229 | 1215 |
|
1216 |
text{*Existence of real and Standard Part Theorem*} |
|
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1217 |
lemma lemma_st_part_Ex: |
20541
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1218 |
"(x::hypreal) \<in> HFinite |
f614c619b1e1
generalized types of Infinitesimal, HFinite, and HInfinite to work over nonstandard extensions of any real normed vector space
huffman
parents:
20485
diff
changeset
|
1219 |
==> \<exists>t \<in> Reals. \<forall>r \<in> Reals. 0 < r --> abs (x + -t) < r" |
14370 | 1220 |
apply (frule lemma_st_part_lub, safe) |
1221 |
apply (frule isLubD1a) |
|
1222 |
apply (blast dest: lemma_st_part_major2) |
|
1223 |
done |
|
1224 |
||
1225 |
lemma st_part_Ex: |
|
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1226 |
"(x::hypreal) \<in> HFinite ==> \<exists>t \<in> Reals. x @= t" |
14370 | 1227 |
apply (simp add: approx_def Infinitesimal_def) |
1228 |
apply (drule lemma_st_part_Ex, auto) |
|
1229 |
done |
|
1230 |
||
15229 | 1231 |
text{*There is a unique real infinitely close*} |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20541
diff
changeset
|
1232 |
lemma st_part_Ex1: "x \<in> HFinite ==> EX! t::hypreal. t \<in> Reals & x @= t" |
14370 | 1233 |
apply (drule st_part_Ex, safe) |
1234 |
apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) |
|
1235 |
apply (auto intro!: approx_unique_real) |
|
1236 |
done |
|
1237 |
||
14420
4e72cd222e0b
converted Hyperreal/HTranscendental to Isar script
paulson
parents:
14387
diff
changeset
|
1238 |
subsection{* Finite, Infinite and Infinitesimal*} |
14370 | 1239 |
|
15229 | 1240 |
lemma HFinite_Int_HInfinite_empty [simp]: "HFinite Int HInfinite = {}" |
14370 | 1241 |
apply (simp add: HFinite_def HInfinite_def) |
1242 |
apply (auto dest: order_less_trans) |
|
1243 |
done |
|
1244 |
||
1245 |
lemma HFinite_not_HInfinite: |
|
1246 |
assumes x: "x \<in> HFinite" shows "x \<notin> HInfinite" |
|
1247 |
proof |
|
1248 |
assume x': "x \<in> HInfinite" |
|
1249 |
with x have "x \<in> HFinite \<inter> HInfinite" by blast |
|