author | nipkow |
Tue, 31 Mar 2015 17:29:44 +0200 | |
changeset 59864 | c777743294e1 |
parent 59779 | b6bda9140e39 |
child 59929 | a090551e5ec8 |
permissions | -rw-r--r-- |
923 | 1 |
(* Title: HOL/HOL.thy |
11750 | 2 |
Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson |
3 |
*) |
|
923 | 4 |
|
58889 | 5 |
section {* The basis of Higher-Order Logic *} |
923 | 6 |
|
15131 | 7 |
theory HOL |
30929
d9343c0aac11
code generator bootstrap theory src/Tools/Code_Generator.thy
haftmann
parents:
30927
diff
changeset
|
8 |
imports Pure "~~/src/Tools/Code_Generator" |
46950
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46497
diff
changeset
|
9 |
keywords |
52432 | 10 |
"try" "solve_direct" "quickcheck" "print_coercions" "print_claset" |
11 |
"print_induct_rules" :: diag and |
|
47657
1ba213363d0c
moved modules with only vague relation to the code generator to theory HOL rather than theory Code_Generator
haftmann
parents:
46973
diff
changeset
|
12 |
"quickcheck_params" :: thy_decl |
15131 | 13 |
begin |
2260 | 14 |
|
48891 | 15 |
ML_file "~~/src/Tools/misc_legacy.ML" |
16 |
ML_file "~~/src/Tools/try.ML" |
|
17 |
ML_file "~~/src/Tools/quickcheck.ML" |
|
18 |
ML_file "~~/src/Tools/solve_direct.ML" |
|
19 |
ML_file "~~/src/Tools/IsaPlanner/zipper.ML" |
|
20 |
ML_file "~~/src/Tools/IsaPlanner/isand.ML" |
|
21 |
ML_file "~~/src/Tools/IsaPlanner/rw_inst.ML" |
|
22 |
ML_file "~~/src/Provers/hypsubst.ML" |
|
23 |
ML_file "~~/src/Provers/splitter.ML" |
|
24 |
ML_file "~~/src/Provers/classical.ML" |
|
25 |
ML_file "~~/src/Provers/blast.ML" |
|
26 |
ML_file "~~/src/Provers/clasimp.ML" |
|
27 |
ML_file "~~/src/Tools/eqsubst.ML" |
|
28 |
ML_file "~~/src/Provers/quantifier1.ML" |
|
29 |
ML_file "~~/src/Tools/atomize_elim.ML" |
|
30 |
ML_file "~~/src/Tools/cong_tac.ML" |
|
58826 | 31 |
ML_file "~~/src/Tools/intuitionistic.ML" setup \<open>Intuitionistic.method_setup @{binding iprover}\<close> |
48891 | 32 |
ML_file "~~/src/Tools/project_rule.ML" |
33 |
ML_file "~~/src/Tools/subtyping.ML" |
|
34 |
ML_file "~~/src/Tools/case_product.ML" |
|
35 |
||
30165
6ee87f67d9cd
moved generic intuitionistic prover to src/Tools/intuitionistic.ML;
wenzelm
parents:
30160
diff
changeset
|
36 |
|
58659
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
37 |
ML \<open>Plugin_Name.declare_setup @{binding extraction}\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
38 |
|
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
39 |
ML \<open> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
40 |
Plugin_Name.declare_setup @{binding quickcheck_random}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
41 |
Plugin_Name.declare_setup @{binding quickcheck_exhaustive}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
42 |
Plugin_Name.declare_setup @{binding quickcheck_bounded_forall}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
43 |
Plugin_Name.declare_setup @{binding quickcheck_full_exhaustive}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
44 |
Plugin_Name.declare_setup @{binding quickcheck_narrowing}; |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
45 |
\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
46 |
ML \<open> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
47 |
Plugin_Name.define_setup @{binding quickcheck} |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
48 |
[@{plugin quickcheck_exhaustive}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
49 |
@{plugin quickcheck_random}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
50 |
@{plugin quickcheck_bounded_forall}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
51 |
@{plugin quickcheck_full_exhaustive}, |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
52 |
@{plugin quickcheck_narrowing}] |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
53 |
\<close> |
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
54 |
|
6c9821c32dd5
Local_Interpretation is superseded by Plugin with formal Plugin_Name management, avoiding undeclared strings;
wenzelm
parents:
57964
diff
changeset
|
55 |
|
11750 | 56 |
subsection {* Primitive logic *} |
57 |
||
58 |
subsubsection {* Core syntax *} |
|
2260 | 59 |
|
56941
952833323c99
tuned signature to make axiomatizations more easy to spot in the source, via "add_axioms" or "axiomatization";
wenzelm
parents:
56375
diff
changeset
|
60 |
setup {* Axclass.class_axiomatization (@{binding type}, []) *} |
36452 | 61 |
default_sort type |
35625 | 62 |
setup {* Object_Logic.add_base_sort @{sort type} *} |
25460
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
63 |
|
55383 | 64 |
axiomatization where fun_arity: "OFCLASS('a \<Rightarrow> 'b, type_class)" |
65 |
instance "fun" :: (type, type) type by (rule fun_arity) |
|
66 |
||
67 |
axiomatization where itself_arity: "OFCLASS('a itself, type_class)" |
|
68 |
instance itself :: (type) type by (rule itself_arity) |
|
25460
b80087af2274
interpretation of typedecls: instantiation to class type
haftmann
parents:
25388
diff
changeset
|
69 |
|
7357 | 70 |
typedecl bool |
923 | 71 |
|
11750 | 72 |
judgment |
73 |
Trueprop :: "bool => prop" ("(_)" 5) |
|
923 | 74 |
|
46973 | 75 |
axiomatization |
76 |
implies :: "[bool, bool] => bool" (infixr "-->" 25) and |
|
77 |
eq :: "['a, 'a] => bool" (infixl "=" 50) and |
|
78 |
The :: "('a => bool) => 'a" |
|
79 |
||
11750 | 80 |
consts |
7357 | 81 |
True :: bool |
82 |
False :: bool |
|
38547 | 83 |
Not :: "bool => bool" ("~ _" [40] 40) |
38795
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
84 |
|
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
85 |
conj :: "[bool, bool] => bool" (infixr "&" 35) |
848be46708dc
formerly unnamed infix conjunction and disjunction now named HOL.conj and HOL.disj
haftmann
parents:
38786
diff
changeset
|
86 |
disj :: "[bool, bool] => bool" (infixr "|" 30) |
38555 | 87 |
|
7357 | 88 |
All :: "('a => bool) => bool" (binder "ALL " 10) |
89 |
Ex :: "('a => bool) => bool" (binder "EX " 10) |
|
90 |
Ex1 :: "('a => bool) => bool" (binder "EX! " 10) |
|
923 | 91 |
|
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
92 |
|
11750 | 93 |
subsubsection {* Additional concrete syntax *} |
2260 | 94 |
|
21210 | 95 |
notation (output) |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
96 |
eq (infix "=" 50) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
97 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
98 |
abbreviation |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
99 |
not_equal :: "['a, 'a] => bool" (infixl "~=" 50) where |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
100 |
"x ~= y == ~ (x = y)" |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
101 |
|
21210 | 102 |
notation (output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
103 |
not_equal (infix "~=" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
104 |
|
21210 | 105 |
notation (xsymbols) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
106 |
Not ("\<not> _" [40] 40) and |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
107 |
conj (infixr "\<and>" 35) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
108 |
disj (infixr "\<or>" 30) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
109 |
implies (infixr "\<longrightarrow>" 25) and |
50360
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
110 |
not_equal (infixl "\<noteq>" 50) |
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
111 |
|
628b37b9e8a2
\<noteq> now has the same associativity as ~= and =
nipkow
parents:
49339
diff
changeset
|
112 |
notation (xsymbols output) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
113 |
not_equal (infix "\<noteq>" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
114 |
|
21210 | 115 |
notation (HTML output) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
116 |
Not ("\<not> _" [40] 40) and |
38864
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
117 |
conj (infixr "\<and>" 35) and |
4abe644fcea5
formerly unnamed infix equality now named HOL.eq
haftmann
parents:
38857
diff
changeset
|
118 |
disj (infixr "\<or>" 30) and |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
119 |
not_equal (infix "\<noteq>" 50) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
120 |
|
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
121 |
abbreviation (iff) |
21404
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
wenzelm
parents:
21250
diff
changeset
|
122 |
iff :: "[bool, bool] => bool" (infixr "<->" 25) where |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
123 |
"A <-> B == A = B" |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
124 |
|
21210 | 125 |
notation (xsymbols) |
19656
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
126 |
iff (infixr "\<longleftrightarrow>" 25) |
09be06943252
tuned concrete syntax -- abbreviation/const_syntax;
wenzelm
parents:
19607
diff
changeset
|
127 |
|
46973 | 128 |
syntax "_The" :: "[pttrn, bool] => 'a" ("(3THE _./ _)" [0, 10] 10) |
129 |
translations "THE x. P" == "CONST The (%x. P)" |
|
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
130 |
print_translation {* |
52143 | 131 |
[(@{const_syntax The}, fn _ => fn [Abs abs] => |
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
132 |
let val (x, t) = Syntax_Trans.atomic_abs_tr' abs |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
133 |
in Syntax.const @{syntax_const "_The"} $ x $ t end)] |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
134 |
*} -- {* To avoid eta-contraction of body *} |
923 | 135 |
|
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
136 |
nonterminal letbinds and letbind |
923 | 137 |
syntax |
7357 | 138 |
"_bind" :: "[pttrn, 'a] => letbind" ("(2_ =/ _)" 10) |
139 |
"" :: "letbind => letbinds" ("_") |
|
140 |
"_binds" :: "[letbind, letbinds] => letbinds" ("_;/ _") |
|
36363 | 141 |
"_Let" :: "[letbinds, 'a] => 'a" ("(let (_)/ in (_))" [0, 10] 10) |
923 | 142 |
|
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
143 |
nonterminal case_syn and cases_syn |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
144 |
syntax |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
145 |
"_case_syntax" :: "['a, cases_syn] => 'b" ("(case _ of/ _)" 10) |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
146 |
"_case1" :: "['a, 'b] => case_syn" ("(2_ =>/ _)" 10) |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
147 |
"" :: "case_syn => cases_syn" ("_") |
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
148 |
"_case2" :: "[case_syn, cases_syn] => cases_syn" ("_/ | _") |
42057
3eba96ff3d3e
more selective strip_positions in case patterns -- reactivate translations based on "case _ of _" in HOL and special patterns in HOLCF;
wenzelm
parents:
41865
diff
changeset
|
149 |
syntax (xsymbols) |
46125
00cd193a48dc
improved case syntax: more careful treatment of position constraints, which enables PIDE markup;
wenzelm
parents:
45654
diff
changeset
|
150 |
"_case1" :: "['a, 'b] => case_syn" ("(2_ \<Rightarrow>/ _)" 10) |
13763
f94b569cd610
added print translations tha avoid eta contraction for important binders.
nipkow
parents:
13723
diff
changeset
|
151 |
|
21524 | 152 |
notation (xsymbols) |
153 |
All (binder "\<forall>" 10) and |
|
154 |
Ex (binder "\<exists>" 10) and |
|
155 |
Ex1 (binder "\<exists>!" 10) |
|
2372 | 156 |
|
21524 | 157 |
notation (HTML output) |
158 |
All (binder "\<forall>" 10) and |
|
159 |
Ex (binder "\<exists>" 10) and |
|
160 |
Ex1 (binder "\<exists>!" 10) |
|
6340 | 161 |
|
21524 | 162 |
notation (HOL) |
163 |
All (binder "! " 10) and |
|
164 |
Ex (binder "? " 10) and |
|
165 |
Ex1 (binder "?! " 10) |
|
7238
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
166 |
|
36e58620ffc8
replaced HOL_quantifiers flag by "HOL" print mode;
wenzelm
parents:
7220
diff
changeset
|
167 |
|
11750 | 168 |
subsubsection {* Axioms and basic definitions *} |
2260 | 169 |
|
46973 | 170 |
axiomatization where |
171 |
refl: "t = (t::'a)" and |
|
172 |
subst: "s = t \<Longrightarrow> P s \<Longrightarrow> P t" and |
|
173 |
ext: "(!!x::'a. (f x ::'b) = g x) ==> (%x. f x) = (%x. g x)" |
|
15380 | 174 |
-- {*Extensionality is built into the meta-logic, and this rule expresses |
175 |
a related property. It is an eta-expanded version of the traditional |
|
46973 | 176 |
rule, and similar to the ABS rule of HOL*} and |
6289 | 177 |
|
11432
8a203ae6efe3
added "The" (definite description operator) (by Larry);
wenzelm
parents:
10489
diff
changeset
|
178 |
the_eq_trivial: "(THE x. x = a) = (a::'a)" |
923 | 179 |
|
46973 | 180 |
axiomatization where |
181 |
impI: "(P ==> Q) ==> P-->Q" and |
|
182 |
mp: "[| P-->Q; P |] ==> Q" and |
|
15380 | 183 |
|
46973 | 184 |
iff: "(P-->Q) --> (Q-->P) --> (P=Q)" and |
185 |
True_or_False: "(P=True) | (P=False)" |
|
15380 | 186 |
|
923 | 187 |
defs |
7357 | 188 |
True_def: "True == ((%x::bool. x) = (%x. x))" |
189 |
All_def: "All(P) == (P = (%x. True))" |
|
11451
8abfb4f7bd02
partial restructuring to reduce dependence on Axiom of Choice
paulson
parents:
11438
diff
changeset
|
190 |
Ex_def: "Ex(P) == !Q. (!x. P x --> Q) --> Q" |
7357 | 191 |
False_def: "False == (!P. P)" |
192 |
not_def: "~ P == P-->False" |
|
193 |
and_def: "P & Q == !R. (P-->Q-->R) --> R" |
|
194 |
or_def: "P | Q == !R. (P-->R) --> (Q-->R) --> R" |
|
195 |
Ex1_def: "Ex1(P) == ? x. P(x) & (! y. P(y) --> y=x)" |
|
923 | 196 |
|
46973 | 197 |
definition If :: "bool \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> 'a" ("(if (_)/ then (_)/ else (_))" [0, 0, 10] 10) |
198 |
where "If P x y \<equiv> (THE z::'a. (P=True --> z=x) & (P=False --> z=y))" |
|
923 | 199 |
|
46973 | 200 |
definition Let :: "'a \<Rightarrow> ('a \<Rightarrow> 'b) \<Rightarrow> 'b" |
201 |
where "Let s f \<equiv> f s" |
|
38525 | 202 |
|
203 |
translations |
|
204 |
"_Let (_binds b bs) e" == "_Let b (_Let bs e)" |
|
205 |
"let x = a in e" == "CONST Let a (%x. e)" |
|
206 |
||
46973 | 207 |
axiomatization undefined :: 'a |
22481
79c2724c36b5
added class "default" and expansion axioms for undefined
haftmann
parents:
22473
diff
changeset
|
208 |
|
46973 | 209 |
class default = fixes default :: 'a |
4868 | 210 |
|
11750 | 211 |
|
20944 | 212 |
subsection {* Fundamental rules *} |
213 |
||
20973 | 214 |
subsubsection {* Equality *} |
20944 | 215 |
|
18457 | 216 |
lemma sym: "s = t ==> t = s" |
217 |
by (erule subst) (rule refl) |
|
15411 | 218 |
|
18457 | 219 |
lemma ssubst: "t = s ==> P s ==> P t" |
220 |
by (drule sym) (erule subst) |
|
15411 | 221 |
|
222 |
lemma trans: "[| r=s; s=t |] ==> r=t" |
|
18457 | 223 |
by (erule subst) |
15411 | 224 |
|
40715
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents:
40582
diff
changeset
|
225 |
lemma trans_sym [Pure.elim?]: "r = s ==> t = s ==> r = t" |
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents:
40582
diff
changeset
|
226 |
by (rule trans [OF _ sym]) |
3ba17f07b23c
lemma trans_sym allows single-step "normalization" in Isar, e.g. via moreover/ultimately;
wenzelm
parents:
40582
diff
changeset
|
227 |
|
58826 | 228 |
lemma meta_eq_to_obj_eq: |
20944 | 229 |
assumes meq: "A == B" |
230 |
shows "A = B" |
|
231 |
by (unfold meq) (rule refl) |
|
15411 | 232 |
|
21502 | 233 |
text {* Useful with @{text erule} for proving equalities from known equalities. *} |
20944 | 234 |
(* a = b |
15411 | 235 |
| | |
236 |
c = d *) |
|
237 |
lemma box_equals: "[| a=b; a=c; b=d |] ==> c=d" |
|
238 |
apply (rule trans) |
|
239 |
apply (rule trans) |
|
240 |
apply (rule sym) |
|
241 |
apply assumption+ |
|
242 |
done |
|
243 |
||
15524
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
244 |
text {* For calculational reasoning: *} |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
245 |
|
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
246 |
lemma forw_subst: "a = b ==> P b ==> P a" |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
247 |
by (rule ssubst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
248 |
|
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
249 |
lemma back_subst: "P a ==> a = b ==> P b" |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
250 |
by (rule subst) |
2ef571f80a55
Moved oderings from HOL into the new Orderings.thy
nipkow
parents:
15481
diff
changeset
|
251 |
|
15411 | 252 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
253 |
subsubsection {* Congruence rules for application *} |
15411 | 254 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
255 |
text {* Similar to @{text AP_THM} in Gordon's HOL. *} |
15411 | 256 |
lemma fun_cong: "(f::'a=>'b) = g ==> f(x)=g(x)" |
257 |
apply (erule subst) |
|
258 |
apply (rule refl) |
|
259 |
done |
|
260 |
||
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
261 |
text {* Similar to @{text AP_TERM} in Gordon's HOL and FOL's @{text subst_context}. *} |
15411 | 262 |
lemma arg_cong: "x=y ==> f(x)=f(y)" |
263 |
apply (erule subst) |
|
264 |
apply (rule refl) |
|
265 |
done |
|
266 |
||
15655 | 267 |
lemma arg_cong2: "\<lbrakk> a = b; c = d \<rbrakk> \<Longrightarrow> f a c = f b d" |
268 |
apply (erule ssubst)+ |
|
269 |
apply (rule refl) |
|
270 |
done |
|
271 |
||
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
272 |
lemma cong: "[| f = g; (x::'a) = y |] ==> f x = g y" |
15411 | 273 |
apply (erule subst)+ |
274 |
apply (rule refl) |
|
275 |
done |
|
276 |
||
58956
a816aa3ff391
proper context for compose_tac, Splitter.split_tac (relevant for unify trace options);
wenzelm
parents:
58889
diff
changeset
|
277 |
ML {* fun cong_tac ctxt = Cong_Tac.cong_tac ctxt @{thm cong} *} |
15411 | 278 |
|
32733
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
279 |
|
71618deaf777
moved generic cong_tac from HOL/Tools/datatype_aux.ML to Tools/cong_tac.ML, proper subgoal selection (failure, not exception);
wenzelm
parents:
32668
diff
changeset
|
280 |
subsubsection {* Equality of booleans -- iff *} |
15411 | 281 |
|
21504 | 282 |
lemma iffI: assumes "P ==> Q" and "Q ==> P" shows "P=Q" |
283 |
by (iprover intro: iff [THEN mp, THEN mp] impI assms) |
|
15411 | 284 |
|
285 |
lemma iffD2: "[| P=Q; Q |] ==> P" |
|
18457 | 286 |
by (erule ssubst) |
15411 | 287 |
|
288 |
lemma rev_iffD2: "[| Q; P=Q |] ==> P" |
|
18457 | 289 |
by (erule iffD2) |
15411 | 290 |
|
21504 | 291 |
lemma iffD1: "Q = P \<Longrightarrow> Q \<Longrightarrow> P" |
292 |
by (drule sym) (rule iffD2) |
|
293 |
||
294 |
lemma rev_iffD1: "Q \<Longrightarrow> Q = P \<Longrightarrow> P" |
|
295 |
by (drule sym) (rule rev_iffD2) |
|
15411 | 296 |
|
297 |
lemma iffE: |
|
298 |
assumes major: "P=Q" |
|
21504 | 299 |
and minor: "[| P --> Q; Q --> P |] ==> R" |
18457 | 300 |
shows R |
301 |
by (iprover intro: minor impI major [THEN iffD2] major [THEN iffD1]) |
|
15411 | 302 |
|
303 |
||
20944 | 304 |
subsubsection {*True*} |
15411 | 305 |
|
306 |
lemma TrueI: "True" |
|
21504 | 307 |
unfolding True_def by (rule refl) |
15411 | 308 |
|
21504 | 309 |
lemma eqTrueI: "P ==> P = True" |
18457 | 310 |
by (iprover intro: iffI TrueI) |
15411 | 311 |
|
21504 | 312 |
lemma eqTrueE: "P = True ==> P" |
313 |
by (erule iffD2) (rule TrueI) |
|
15411 | 314 |
|
315 |
||
20944 | 316 |
subsubsection {*Universal quantifier*} |
15411 | 317 |
|
21504 | 318 |
lemma allI: assumes "!!x::'a. P(x)" shows "ALL x. P(x)" |
319 |
unfolding All_def by (iprover intro: ext eqTrueI assms) |
|
15411 | 320 |
|
321 |
lemma spec: "ALL x::'a. P(x) ==> P(x)" |
|
322 |
apply (unfold All_def) |
|
323 |
apply (rule eqTrueE) |
|
324 |
apply (erule fun_cong) |
|
325 |
done |
|
326 |
||
327 |
lemma allE: |
|
328 |
assumes major: "ALL x. P(x)" |
|
21504 | 329 |
and minor: "P(x) ==> R" |
330 |
shows R |
|
331 |
by (iprover intro: minor major [THEN spec]) |
|
15411 | 332 |
|
333 |
lemma all_dupE: |
|
334 |
assumes major: "ALL x. P(x)" |
|
21504 | 335 |
and minor: "[| P(x); ALL x. P(x) |] ==> R" |
336 |
shows R |
|
337 |
by (iprover intro: minor major major [THEN spec]) |
|
15411 | 338 |
|
339 |
||
21504 | 340 |
subsubsection {* False *} |
341 |
||
342 |
text {* |
|
343 |
Depends upon @{text spec}; it is impossible to do propositional |
|
344 |
logic before quantifiers! |
|
345 |
*} |
|
15411 | 346 |
|
347 |
lemma FalseE: "False ==> P" |
|
21504 | 348 |
apply (unfold False_def) |
349 |
apply (erule spec) |
|
350 |
done |
|
15411 | 351 |
|
21504 | 352 |
lemma False_neq_True: "False = True ==> P" |
353 |
by (erule eqTrueE [THEN FalseE]) |
|
15411 | 354 |
|
355 |
||
21504 | 356 |
subsubsection {* Negation *} |
15411 | 357 |
|
358 |
lemma notI: |
|
21504 | 359 |
assumes "P ==> False" |
15411 | 360 |
shows "~P" |
21504 | 361 |
apply (unfold not_def) |
362 |
apply (iprover intro: impI assms) |
|
363 |
done |
|
15411 | 364 |
|
365 |
lemma False_not_True: "False ~= True" |
|
21504 | 366 |
apply (rule notI) |
367 |
apply (erule False_neq_True) |
|
368 |
done |
|
15411 | 369 |
|
370 |
lemma True_not_False: "True ~= False" |
|
21504 | 371 |
apply (rule notI) |
372 |
apply (drule sym) |
|
373 |
apply (erule False_neq_True) |
|
374 |
done |
|
15411 | 375 |
|
376 |
lemma notE: "[| ~P; P |] ==> R" |
|
21504 | 377 |
apply (unfold not_def) |
378 |
apply (erule mp [THEN FalseE]) |
|
379 |
apply assumption |
|
380 |
done |
|
15411 | 381 |
|
21504 | 382 |
lemma notI2: "(P \<Longrightarrow> \<not> Pa) \<Longrightarrow> (P \<Longrightarrow> Pa) \<Longrightarrow> \<not> P" |
383 |
by (erule notE [THEN notI]) (erule meta_mp) |
|
15411 | 384 |
|
385 |
||
20944 | 386 |
subsubsection {*Implication*} |
15411 | 387 |
|
388 |
lemma impE: |
|
389 |
assumes "P-->Q" "P" "Q ==> R" |
|
390 |
shows "R" |
|
23553 | 391 |
by (iprover intro: assms mp) |
15411 | 392 |
|
393 |
(* Reduces Q to P-->Q, allowing substitution in P. *) |
|
394 |
lemma rev_mp: "[| P; P --> Q |] ==> Q" |
|
17589 | 395 |
by (iprover intro: mp) |
15411 | 396 |
|
397 |
lemma contrapos_nn: |
|
398 |
assumes major: "~Q" |
|
399 |
and minor: "P==>Q" |
|
400 |
shows "~P" |
|
17589 | 401 |
by (iprover intro: notI minor major [THEN notE]) |
15411 | 402 |
|
403 |
(*not used at all, but we already have the other 3 combinations *) |
|
404 |
lemma contrapos_pn: |
|
405 |
assumes major: "Q" |
|
406 |
and minor: "P ==> ~Q" |
|
407 |
shows "~P" |
|
17589 | 408 |
by (iprover intro: notI minor major notE) |
15411 | 409 |
|
410 |
lemma not_sym: "t ~= s ==> s ~= t" |
|
21250 | 411 |
by (erule contrapos_nn) (erule sym) |
412 |
||
413 |
lemma eq_neq_eq_imp_neq: "[| x = a ; a ~= b; b = y |] ==> x ~= y" |
|
414 |
by (erule subst, erule ssubst, assumption) |
|
15411 | 415 |
|
416 |
||
20944 | 417 |
subsubsection {*Existential quantifier*} |
15411 | 418 |
|
419 |
lemma exI: "P x ==> EX x::'a. P x" |
|
420 |
apply (unfold Ex_def) |
|
17589 | 421 |
apply (iprover intro: allI allE impI mp) |
15411 | 422 |
done |
423 |
||
424 |
lemma exE: |
|
425 |
assumes major: "EX x::'a. P(x)" |
|
426 |
and minor: "!!x. P(x) ==> Q" |
|
427 |
shows "Q" |
|
428 |
apply (rule major [unfolded Ex_def, THEN spec, THEN mp]) |
|
17589 | 429 |
apply (iprover intro: impI [THEN allI] minor) |
15411 | 430 |
done |
431 |
||
432 |
||
20944 | 433 |
subsubsection {*Conjunction*} |
15411 | 434 |
|
435 |
lemma conjI: "[| P; Q |] ==> P&Q" |
|
436 |
apply (unfold and_def) |
|
17589 | 437 |
apply (iprover intro: impI [THEN allI] mp) |
15411 | 438 |
done |
439 |
||
440 |
lemma conjunct1: "[| P & Q |] ==> P" |
|
441 |
apply (unfold and_def) |
|
17589 | 442 |
apply (iprover intro: impI dest: spec mp) |
15411 | 443 |
done |
444 |
||
445 |
lemma conjunct2: "[| P & Q |] ==> Q" |
|
446 |
apply (unfold and_def) |
|
17589 | 447 |
apply (iprover intro: impI dest: spec mp) |
15411 | 448 |
done |
449 |
||
450 |
lemma conjE: |
|
451 |
assumes major: "P&Q" |
|
452 |
and minor: "[| P; Q |] ==> R" |
|
453 |
shows "R" |
|
454 |
apply (rule minor) |
|
455 |
apply (rule major [THEN conjunct1]) |
|
456 |
apply (rule major [THEN conjunct2]) |
|
457 |
done |
|
458 |
||
459 |
lemma context_conjI: |
|
23553 | 460 |
assumes "P" "P ==> Q" shows "P & Q" |
461 |
by (iprover intro: conjI assms) |
|
15411 | 462 |
|
463 |
||
20944 | 464 |
subsubsection {*Disjunction*} |
15411 | 465 |
|
466 |
lemma disjI1: "P ==> P|Q" |
|
467 |
apply (unfold or_def) |
|
17589 | 468 |
apply (iprover intro: allI impI mp) |
15411 | 469 |
done |
470 |
||
471 |
lemma disjI2: "Q ==> P|Q" |
|
472 |
apply (unfold or_def) |
|
17589 | 473 |
apply (iprover intro: allI impI mp) |
15411 | 474 |
done |
475 |
||
476 |
lemma disjE: |
|
477 |
assumes major: "P|Q" |
|
478 |
and minorP: "P ==> R" |
|
479 |
and minorQ: "Q ==> R" |
|
480 |
shows "R" |
|
17589 | 481 |
by (iprover intro: minorP minorQ impI |
15411 | 482 |
major [unfolded or_def, THEN spec, THEN mp, THEN mp]) |
483 |
||
484 |
||
20944 | 485 |
subsubsection {*Classical logic*} |
15411 | 486 |
|
487 |
lemma classical: |
|
488 |
assumes prem: "~P ==> P" |
|
489 |
shows "P" |
|
490 |
apply (rule True_or_False [THEN disjE, THEN eqTrueE]) |
|
491 |
apply assumption |
|
492 |
apply (rule notI [THEN prem, THEN eqTrueI]) |
|
493 |
apply (erule subst) |
|
494 |
apply assumption |
|
495 |
done |
|
496 |
||
45607 | 497 |
lemmas ccontr = FalseE [THEN classical] |
15411 | 498 |
|
499 |
(*notE with premises exchanged; it discharges ~R so that it can be used to |
|
500 |
make elimination rules*) |
|
501 |
lemma rev_notE: |
|
502 |
assumes premp: "P" |
|
503 |
and premnot: "~R ==> ~P" |
|
504 |
shows "R" |
|
505 |
apply (rule ccontr) |
|
506 |
apply (erule notE [OF premnot premp]) |
|
507 |
done |
|
508 |
||
509 |
(*Double negation law*) |
|
510 |
lemma notnotD: "~~P ==> P" |
|
511 |
apply (rule classical) |
|
512 |
apply (erule notE) |
|
513 |
apply assumption |
|
514 |
done |
|
515 |
||
516 |
lemma contrapos_pp: |
|
517 |
assumes p1: "Q" |
|
518 |
and p2: "~P ==> ~Q" |
|
519 |
shows "P" |
|
17589 | 520 |
by (iprover intro: classical p1 p2 notE) |
15411 | 521 |
|
522 |
||
20944 | 523 |
subsubsection {*Unique existence*} |
15411 | 524 |
|
525 |
lemma ex1I: |
|
23553 | 526 |
assumes "P a" "!!x. P(x) ==> x=a" |
15411 | 527 |
shows "EX! x. P(x)" |
23553 | 528 |
by (unfold Ex1_def, iprover intro: assms exI conjI allI impI) |
15411 | 529 |
|
530 |
text{*Sometimes easier to use: the premises have no shared variables. Safe!*} |
|
531 |
lemma ex_ex1I: |
|
532 |
assumes ex_prem: "EX x. P(x)" |
|
533 |
and eq: "!!x y. [| P(x); P(y) |] ==> x=y" |
|
534 |
shows "EX! x. P(x)" |
|
17589 | 535 |
by (iprover intro: ex_prem [THEN exE] ex1I eq) |
15411 | 536 |
|
537 |
lemma ex1E: |
|
538 |
assumes major: "EX! x. P(x)" |
|
539 |
and minor: "!!x. [| P(x); ALL y. P(y) --> y=x |] ==> R" |
|
540 |
shows "R" |
|
541 |
apply (rule major [unfolded Ex1_def, THEN exE]) |
|
542 |
apply (erule conjE) |
|
17589 | 543 |
apply (iprover intro: minor) |
15411 | 544 |
done |
545 |
||
546 |
lemma ex1_implies_ex: "EX! x. P x ==> EX x. P x" |
|
547 |
apply (erule ex1E) |
|
548 |
apply (rule exI) |
|
549 |
apply assumption |
|
550 |
done |
|
551 |
||
552 |
||
20944 | 553 |
subsubsection {*Classical intro rules for disjunction and existential quantifiers*} |
15411 | 554 |
|
555 |
lemma disjCI: |
|
556 |
assumes "~Q ==> P" shows "P|Q" |
|
557 |
apply (rule classical) |
|
23553 | 558 |
apply (iprover intro: assms disjI1 disjI2 notI elim: notE) |
15411 | 559 |
done |
560 |
||
561 |
lemma excluded_middle: "~P | P" |
|
17589 | 562 |
by (iprover intro: disjCI) |
15411 | 563 |
|
20944 | 564 |
text {* |
565 |
case distinction as a natural deduction rule. |
|
566 |
Note that @{term "~P"} is the second case, not the first |
|
567 |
*} |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
568 |
lemma case_split [case_names True False]: |
15411 | 569 |
assumes prem1: "P ==> Q" |
570 |
and prem2: "~P ==> Q" |
|
571 |
shows "Q" |
|
572 |
apply (rule excluded_middle [THEN disjE]) |
|
573 |
apply (erule prem2) |
|
574 |
apply (erule prem1) |
|
575 |
done |
|
27126
3ede9103de8e
eliminated obsolete case_split_thm -- use case_split;
wenzelm
parents:
27107
diff
changeset
|
576 |
|
15411 | 577 |
(*Classical implies (-->) elimination. *) |
578 |
lemma impCE: |
|
579 |
assumes major: "P-->Q" |
|
580 |
and minor: "~P ==> R" "Q ==> R" |
|
581 |
shows "R" |
|
582 |
apply (rule excluded_middle [of P, THEN disjE]) |
|
17589 | 583 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 584 |
done |
585 |
||
586 |
(*This version of --> elimination works on Q before P. It works best for |
|
587 |
those cases in which P holds "almost everywhere". Can't install as |
|
588 |
default: would break old proofs.*) |
|
589 |
lemma impCE': |
|
590 |
assumes major: "P-->Q" |
|
591 |
and minor: "Q ==> R" "~P ==> R" |
|
592 |
shows "R" |
|
593 |
apply (rule excluded_middle [of P, THEN disjE]) |
|
17589 | 594 |
apply (iprover intro: minor major [THEN mp])+ |
15411 | 595 |
done |
596 |
||
597 |
(*Classical <-> elimination. *) |
|
598 |
lemma iffCE: |
|
599 |
assumes major: "P=Q" |
|
600 |
and minor: "[| P; Q |] ==> R" "[| ~P; ~Q |] ==> R" |
|
601 |
shows "R" |
|
602 |
apply (rule major [THEN iffE]) |
|
17589 | 603 |
apply (iprover intro: minor elim: impCE notE) |
15411 | 604 |
done |
605 |
||
606 |
lemma exCI: |
|
607 |
assumes "ALL x. ~P(x) ==> P(a)" |
|
608 |
shows "EX x. P(x)" |
|
609 |
apply (rule ccontr) |
|
23553 | 610 |
apply (iprover intro: assms exI allI notI notE [of "\<exists>x. P x"]) |
15411 | 611 |
done |
612 |
||
613 |
||
12386 | 614 |
subsubsection {* Intuitionistic Reasoning *} |
615 |
||
616 |
lemma impE': |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
617 |
assumes 1: "P --> Q" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
618 |
and 2: "Q ==> R" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
619 |
and 3: "P --> Q ==> P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
620 |
shows R |
12386 | 621 |
proof - |
622 |
from 3 and 1 have P . |
|
623 |
with 1 have Q by (rule impE) |
|
624 |
with 2 show R . |
|
625 |
qed |
|
626 |
||
627 |
lemma allE': |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
628 |
assumes 1: "ALL x. P x" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
629 |
and 2: "P x ==> ALL x. P x ==> Q" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
630 |
shows Q |
12386 | 631 |
proof - |
632 |
from 1 have "P x" by (rule spec) |
|
633 |
from this and 1 show Q by (rule 2) |
|
634 |
qed |
|
635 |
||
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
636 |
lemma notE': |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
637 |
assumes 1: "~ P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
638 |
and 2: "~ P ==> P" |
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
639 |
shows R |
12386 | 640 |
proof - |
641 |
from 2 and 1 have P . |
|
642 |
with 1 show R by (rule notE) |
|
643 |
qed |
|
644 |
||
22444
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
645 |
lemma TrueE: "True ==> P ==> P" . |
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
646 |
lemma notFalseE: "~ False ==> P ==> P" . |
fb80fedd192d
added safe intro rules for removing "True" subgoals as well as "~ False" ones.
dixon
parents:
22377
diff
changeset
|
647 |
|
22467
c9357ef01168
TrueElim and notTrueElim tested and added as safe elim rules.
dixon
parents:
22445
diff
changeset
|
648 |
lemmas [Pure.elim!] = disjE iffE FalseE conjE exE TrueE notFalseE |
15801 | 649 |
and [Pure.intro!] = iffI conjI impI TrueI notI allI refl |
650 |
and [Pure.elim 2] = allE notE' impE' |
|
651 |
and [Pure.intro] = exI disjI2 disjI1 |
|
12386 | 652 |
|
653 |
lemmas [trans] = trans |
|
654 |
and [sym] = sym not_sym |
|
15801 | 655 |
and [Pure.elim?] = iffD1 iffD2 impE |
11750 | 656 |
|
11438
3d9222b80989
declare trans [trans] (*overridden in theory Calculation*);
wenzelm
parents:
11432
diff
changeset
|
657 |
|
11750 | 658 |
subsubsection {* Atomizing meta-level connectives *} |
659 |
||
28513 | 660 |
axiomatization where |
661 |
eq_reflection: "x = y \<Longrightarrow> x \<equiv> y" (*admissible axiom*) |
|
662 |
||
11750 | 663 |
lemma atomize_all [atomize]: "(!!x. P x) == Trueprop (ALL x. P x)" |
12003 | 664 |
proof |
9488 | 665 |
assume "!!x. P x" |
23389 | 666 |
then show "ALL x. P x" .. |
9488 | 667 |
next |
668 |
assume "ALL x. P x" |
|
23553 | 669 |
then show "!!x. P x" by (rule allE) |
9488 | 670 |
qed |
671 |
||
11750 | 672 |
lemma atomize_imp [atomize]: "(A ==> B) == Trueprop (A --> B)" |
12003 | 673 |
proof |
9488 | 674 |
assume r: "A ==> B" |
10383 | 675 |
show "A --> B" by (rule impI) (rule r) |
9488 | 676 |
next |
677 |
assume "A --> B" and A |
|
23553 | 678 |
then show B by (rule mp) |
9488 | 679 |
qed |
680 |
||
14749 | 681 |
lemma atomize_not: "(A ==> False) == Trueprop (~A)" |
682 |
proof |
|
683 |
assume r: "A ==> False" |
|
684 |
show "~A" by (rule notI) (rule r) |
|
685 |
next |
|
686 |
assume "~A" and A |
|
23553 | 687 |
then show False by (rule notE) |
14749 | 688 |
qed |
689 |
||
39566 | 690 |
lemma atomize_eq [atomize, code]: "(x == y) == Trueprop (x = y)" |
12003 | 691 |
proof |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
692 |
assume "x == y" |
23553 | 693 |
show "x = y" by (unfold `x == y`) (rule refl) |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
694 |
next |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
695 |
assume "x = y" |
23553 | 696 |
then show "x == y" by (rule eq_reflection) |
10432
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
697 |
qed |
3dfbc913d184
added axclass inverse and consts inverse, divide (infix "/");
wenzelm
parents:
10383
diff
changeset
|
698 |
|
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
699 |
lemma atomize_conj [atomize]: "(A &&& B) == Trueprop (A & B)" |
12003 | 700 |
proof |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
701 |
assume conj: "A &&& B" |
19121 | 702 |
show "A & B" |
703 |
proof (rule conjI) |
|
704 |
from conj show A by (rule conjunctionD1) |
|
705 |
from conj show B by (rule conjunctionD2) |
|
706 |
qed |
|
11953 | 707 |
next |
19121 | 708 |
assume conj: "A & B" |
28856
5e009a80fe6d
Pure syntax: more coherent treatment of aprop, permanent TERM and &&&;
wenzelm
parents:
28741
diff
changeset
|
709 |
show "A &&& B" |
19121 | 710 |
proof - |
711 |
from conj show A .. |
|
712 |
from conj show B .. |
|
11953 | 713 |
qed |
714 |
qed |
|
715 |
||
12386 | 716 |
lemmas [symmetric, rulify] = atomize_all atomize_imp |
18832 | 717 |
and [symmetric, defn] = atomize_all atomize_imp atomize_eq |
12386 | 718 |
|
11750 | 719 |
|
26580
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
720 |
subsubsection {* Atomizing elimination rules *} |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
721 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
722 |
lemma atomize_exL[atomize_elim]: "(!!x. P x ==> Q) == ((EX x. P x) ==> Q)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
723 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
724 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
725 |
lemma atomize_conjL[atomize_elim]: "(A ==> B ==> C) == (A & B ==> C)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
726 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
727 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
728 |
lemma atomize_disjL[atomize_elim]: "((A ==> C) ==> (B ==> C) ==> C) == ((A | B ==> C) ==> C)" |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
729 |
by rule iprover+ |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
730 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
731 |
lemma atomize_elimL[atomize_elim]: "(!!B. (A ==> B) ==> B) == Trueprop A" .. |
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
732 |
|
c3e597a476fd
Generic conversion and tactic "atomize_elim" to convert elimination rules
krauss
parents:
26555
diff
changeset
|
733 |
|
20944 | 734 |
subsection {* Package setup *} |
735 |
||
51314
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
736 |
ML_file "Tools/hologic.ML" |
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
737 |
|
eac4bb5adbf9
just one HOLogic.Trueprop_conv, with regular exception CTERM;
wenzelm
parents:
51304
diff
changeset
|
738 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
739 |
subsubsection {* Sledgehammer setup *} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
740 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
741 |
text {* |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
742 |
Theorems blacklisted to Sledgehammer. These theorems typically produce clauses |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
743 |
that are prolific (match too many equality or membership literals) and relate to |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
744 |
seldom-used facts. Some duplicate other rules. |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
745 |
*} |
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
746 |
|
57963 | 747 |
named_theorems no_atp "theorems that should be filtered out by Sledgehammer" |
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
748 |
|
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
749 |
|
11750 | 750 |
subsubsection {* Classical Reasoner setup *} |
9529 | 751 |
|
26411 | 752 |
lemma imp_elim: "P --> Q ==> (~ R ==> P) ==> (Q ==> R) ==> R" |
753 |
by (rule classical) iprover |
|
754 |
||
755 |
lemma swap: "~ P ==> (~ R ==> P) ==> R" |
|
756 |
by (rule classical) iprover |
|
757 |
||
20944 | 758 |
lemma thin_refl: |
759 |
"\<And>X. \<lbrakk> x=x; PROP W \<rbrakk> \<Longrightarrow> PROP W" . |
|
760 |
||
21151 | 761 |
ML {* |
42799 | 762 |
structure Hypsubst = Hypsubst |
763 |
( |
|
21218 | 764 |
val dest_eq = HOLogic.dest_eq |
21151 | 765 |
val dest_Trueprop = HOLogic.dest_Trueprop |
766 |
val dest_imp = HOLogic.dest_imp |
|
26411 | 767 |
val eq_reflection = @{thm eq_reflection} |
768 |
val rev_eq_reflection = @{thm meta_eq_to_obj_eq} |
|
769 |
val imp_intr = @{thm impI} |
|
770 |
val rev_mp = @{thm rev_mp} |
|
771 |
val subst = @{thm subst} |
|
772 |
val sym = @{thm sym} |
|
22129 | 773 |
val thin_refl = @{thm thin_refl}; |
42799 | 774 |
); |
21671 | 775 |
open Hypsubst; |
21151 | 776 |
|
42799 | 777 |
structure Classical = Classical |
778 |
( |
|
26411 | 779 |
val imp_elim = @{thm imp_elim} |
780 |
val not_elim = @{thm notE} |
|
781 |
val swap = @{thm swap} |
|
782 |
val classical = @{thm classical} |
|
21151 | 783 |
val sizef = Drule.size_of_thm |
784 |
val hyp_subst_tacs = [Hypsubst.hyp_subst_tac] |
|
42799 | 785 |
); |
21151 | 786 |
|
58826 | 787 |
structure Basic_Classical: BASIC_CLASSICAL = Classical; |
33308
cf62d1690d04
separate ResBlacklist, based on scalable persistent data -- avoids inefficient hashing later on;
wenzelm
parents:
33185
diff
changeset
|
788 |
open Basic_Classical; |
43560
d1650e3720fd
ML antiquotations are managed as theory data, with proper name space and entity markup;
wenzelm
parents:
42802
diff
changeset
|
789 |
*} |
22129 | 790 |
|
21009 | 791 |
setup {* |
35389 | 792 |
(*prevent substitution on bool*) |
58826 | 793 |
let |
794 |
fun non_bool_eq (@{const_name HOL.eq}, Type (_, [T, _])) = T <> @{typ bool} |
|
795 |
| non_bool_eq _ = false; |
|
796 |
fun hyp_subst_tac' ctxt = |
|
797 |
SUBGOAL (fn (goal, i) => |
|
798 |
if Term.exists_Const non_bool_eq goal |
|
799 |
then Hypsubst.hyp_subst_tac ctxt i |
|
800 |
else no_tac); |
|
801 |
in |
|
802 |
Context_Rules.addSWrapper (fn ctxt => fn tac => hyp_subst_tac' ctxt ORELSE' tac) |
|
803 |
end |
|
21009 | 804 |
*} |
805 |
||
806 |
declare iffI [intro!] |
|
807 |
and notI [intro!] |
|
808 |
and impI [intro!] |
|
809 |
and disjCI [intro!] |
|
810 |
and conjI [intro!] |
|
811 |
and TrueI [intro!] |
|
812 |
and refl [intro!] |
|
813 |
||
814 |
declare iffCE [elim!] |
|
815 |
and FalseE [elim!] |
|
816 |
and impCE [elim!] |
|
817 |
and disjE [elim!] |
|
818 |
and conjE [elim!] |
|
819 |
||
820 |
declare ex_ex1I [intro!] |
|
821 |
and allI [intro!] |
|
822 |
and exI [intro] |
|
823 |
||
824 |
declare exE [elim!] |
|
825 |
allE [elim] |
|
826 |
||
51687
3d8720271ebf
discontinued obsolete ML antiquotation @{claset};
wenzelm
parents:
51314
diff
changeset
|
827 |
ML {* val HOL_cs = claset_of @{context} *} |
19162 | 828 |
|
20223 | 829 |
lemma contrapos_np: "~ Q ==> (~ P ==> Q) ==> P" |
830 |
apply (erule swap) |
|
831 |
apply (erule (1) meta_mp) |
|
832 |
done |
|
10383 | 833 |
|
18689
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
834 |
declare ex_ex1I [rule del, intro! 2] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
835 |
and ex1I [intro] |
a50587cd8414
prefer ex1I over ex_ex1I in single-step reasoning;
wenzelm
parents:
18595
diff
changeset
|
836 |
|
41865
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
paulson
parents:
41827
diff
changeset
|
837 |
declare ext [intro] |
4e8483cc2cc5
declare ext [intro]: Extensionality now available by default
paulson
parents:
41827
diff
changeset
|
838 |
|
12386 | 839 |
lemmas [intro?] = ext |
840 |
and [elim?] = ex1_implies_ex |
|
11977 | 841 |
|
20944 | 842 |
(*Better then ex1E for classical reasoner: needs no quantifier duplication!*) |
20973 | 843 |
lemma alt_ex1E [elim!]: |
20944 | 844 |
assumes major: "\<exists>!x. P x" |
845 |
and prem: "\<And>x. \<lbrakk> P x; \<forall>y y'. P y \<and> P y' \<longrightarrow> y = y' \<rbrakk> \<Longrightarrow> R" |
|
846 |
shows R |
|
847 |
apply (rule ex1E [OF major]) |
|
848 |
apply (rule prem) |
|
59499 | 849 |
apply assumption |
850 |
apply (rule allI)+ |
|
59498
50b60f501b05
proper context for resolve_tac, eresolve_tac, dresolve_tac, forward_tac etc.;
wenzelm
parents:
59028
diff
changeset
|
851 |
apply (tactic {* eresolve_tac @{context} [Classical.dup_elim NONE @{thm allE}] 1 *}) |
22129 | 852 |
apply iprover |
853 |
done |
|
20944 | 854 |
|
21151 | 855 |
ML {* |
42477 | 856 |
structure Blast = Blast |
857 |
( |
|
858 |
structure Classical = Classical |
|
42802 | 859 |
val Trueprop_const = dest_Const @{const Trueprop} |
42477 | 860 |
val equality_name = @{const_name HOL.eq} |
861 |
val not_name = @{const_name Not} |
|
862 |
val notE = @{thm notE} |
|
863 |
val ccontr = @{thm ccontr} |
|
864 |
val hyp_subst_tac = Hypsubst.blast_hyp_subst_tac |
|
865 |
); |
|
866 |
val blast_tac = Blast.blast_tac; |
|
20944 | 867 |
*} |
868 |
||
869 |
||
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
870 |
subsubsection {*THE: definite description operator*} |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
871 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
872 |
lemma the_equality [intro]: |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
873 |
assumes "P a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
874 |
and "!!x. P x ==> x=a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
875 |
shows "(THE x. P x) = a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
876 |
by (blast intro: assms trans [OF arg_cong [where f=The] the_eq_trivial]) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
877 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
878 |
lemma theI: |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
879 |
assumes "P a" and "!!x. P x ==> x=a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
880 |
shows "P (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
881 |
by (iprover intro: assms the_equality [THEN ssubst]) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
882 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
883 |
lemma theI': "EX! x. P x ==> P (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
884 |
by (blast intro: theI) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
885 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
886 |
(*Easier to apply than theI: only one occurrence of P*) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
887 |
lemma theI2: |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
888 |
assumes "P a" "!!x. P x ==> x=a" "!!x. P x ==> Q x" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
889 |
shows "Q (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
890 |
by (iprover intro: assms theI) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
891 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
892 |
lemma the1I2: assumes "EX! x. P x" "\<And>x. P x \<Longrightarrow> Q x" shows "Q (THE x. P x)" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
893 |
by(iprover intro:assms(2) theI2[where P=P and Q=Q] ex1E[OF assms(1)] |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
894 |
elim:allE impE) |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
895 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
896 |
lemma the1_equality [elim?]: "[| EX!x. P x; P a |] ==> (THE x. P x) = a" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
897 |
by blast |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
898 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
899 |
lemma the_sym_eq_trivial: "(THE y. x=y) = x" |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
900 |
by blast |
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
901 |
|
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
902 |
|
20944 | 903 |
subsubsection {* Simplifier *} |
12281 | 904 |
|
905 |
lemma eta_contract_eq: "(%s. f s) = f" .. |
|
906 |
||
907 |
lemma simp_thms: |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
908 |
shows not_not: "(~ ~ P) = P" |
15354 | 909 |
and Not_eq_iff: "((~P) = (~Q)) = (P = Q)" |
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
910 |
and |
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
911 |
"(P ~= Q) = (P = (~Q))" |
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
912 |
"(P | ~P) = True" "(~P | P) = True" |
12281 | 913 |
"(x = x) = True" |
32068 | 914 |
and not_True_eq_False [code]: "(\<not> True) = False" |
915 |
and not_False_eq_True [code]: "(\<not> False) = True" |
|
20944 | 916 |
and |
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
917 |
"(~P) ~= P" "P ~= (~P)" |
20944 | 918 |
"(True=P) = P" |
919 |
and eq_True: "(P = True) = P" |
|
920 |
and "(False=P) = (~P)" |
|
921 |
and eq_False: "(P = False) = (\<not> P)" |
|
922 |
and |
|
12281 | 923 |
"(True --> P) = P" "(False --> P) = True" |
924 |
"(P --> True) = True" "(P --> P) = True" |
|
925 |
"(P --> False) = (~P)" "(P --> ~P) = (~P)" |
|
926 |
"(P & True) = P" "(True & P) = P" |
|
927 |
"(P & False) = False" "(False & P) = False" |
|
928 |
"(P & P) = P" "(P & (P & Q)) = (P & Q)" |
|
929 |
"(P & ~P) = False" "(~P & P) = False" |
|
930 |
"(P | True) = True" "(True | P) = True" |
|
931 |
"(P | False) = P" "(False | P) = P" |
|
12436
a2df07fefed7
Replaced several occurrences of "blast" by "rules".
berghofe
parents:
12386
diff
changeset
|
932 |
"(P | P) = P" "(P | (P | Q)) = (P | Q)" and |
12281 | 933 |
"(ALL x. P) = P" "(EX x. P) = P" "EX x. x=t" "EX x. t=x" |
31166
a90fe83f58ea
"{x. P x & x=t & Q x}" is now rewritten to "if P t & Q t then {t} else {}"
nipkow
parents:
31156
diff
changeset
|
934 |
and |
12281 | 935 |
"!!P. (EX x. x=t & P(x)) = P(t)" |
936 |
"!!P. (EX x. t=x & P(x)) = P(t)" |
|
937 |
"!!P. (ALL x. x=t --> P(x)) = P(t)" |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
938 |
"!!P. (ALL x. t=x --> P(x)) = P(t)" |
17589 | 939 |
by (blast, blast, blast, blast, blast, iprover+) |
13421 | 940 |
|
14201 | 941 |
lemma disj_absorb: "(A | A) = A" |
942 |
by blast |
|
943 |
||
944 |
lemma disj_left_absorb: "(A | (A | B)) = (A | B)" |
|
945 |
by blast |
|
946 |
||
947 |
lemma conj_absorb: "(A & A) = A" |
|
948 |
by blast |
|
949 |
||
950 |
lemma conj_left_absorb: "(A & (A & B)) = (A & B)" |
|
951 |
by blast |
|
952 |
||
12281 | 953 |
lemma eq_ac: |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
954 |
shows eq_commute: "a = b \<longleftrightarrow> b = a" |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
955 |
and iff_left_commute: "(P \<longleftrightarrow> (Q \<longleftrightarrow> R)) \<longleftrightarrow> (Q \<longleftrightarrow> (P \<longleftrightarrow> R))" |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
956 |
and iff_assoc: "((P \<longleftrightarrow> Q) \<longleftrightarrow> R) \<longleftrightarrow> (P \<longleftrightarrow> (Q \<longleftrightarrow> R))" by (iprover, blast+) |
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56941
diff
changeset
|
957 |
lemma neq_commute: "a \<noteq> b \<longleftrightarrow> b \<noteq> a" by iprover |
12281 | 958 |
|
959 |
lemma conj_comms: |
|
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
960 |
shows conj_commute: "(P&Q) = (Q&P)" |
17589 | 961 |
and conj_left_commute: "(P&(Q&R)) = (Q&(P&R))" by iprover+ |
962 |
lemma conj_assoc: "((P&Q)&R) = (P&(Q&R))" by iprover |
|
12281 | 963 |
|
19174 | 964 |
lemmas conj_ac = conj_commute conj_left_commute conj_assoc |
965 |
||
12281 | 966 |
lemma disj_comms: |
12937
0c4fd7529467
clarified syntax of ``long'' statements: fixes/assumes/shows;
wenzelm
parents:
12892
diff
changeset
|
967 |
shows disj_commute: "(P|Q) = (Q|P)" |
17589 | 968 |
and disj_left_commute: "(P|(Q|R)) = (Q|(P|R))" by iprover+ |
969 |
lemma disj_assoc: "((P|Q)|R) = (P|(Q|R))" by iprover |
|
12281 | 970 |
|
19174 | 971 |
lemmas disj_ac = disj_commute disj_left_commute disj_assoc |
972 |
||
17589 | 973 |
lemma conj_disj_distribL: "(P&(Q|R)) = (P&Q | P&R)" by iprover |
974 |
lemma conj_disj_distribR: "((P|Q)&R) = (P&R | Q&R)" by iprover |
|
12281 | 975 |
|
17589 | 976 |
lemma disj_conj_distribL: "(P|(Q&R)) = ((P|Q) & (P|R))" by iprover |
977 |
lemma disj_conj_distribR: "((P&Q)|R) = ((P|R) & (Q|R))" by iprover |
|
12281 | 978 |
|
17589 | 979 |
lemma imp_conjR: "(P --> (Q&R)) = ((P-->Q) & (P-->R))" by iprover |
980 |
lemma imp_conjL: "((P&Q) -->R) = (P --> (Q --> R))" by iprover |
|
981 |
lemma imp_disjL: "((P|Q) --> R) = ((P-->R)&(Q-->R))" by iprover |
|
12281 | 982 |
|
983 |
text {* These two are specialized, but @{text imp_disj_not1} is useful in @{text "Auth/Yahalom"}. *} |
|
984 |
lemma imp_disj_not1: "(P --> Q | R) = (~Q --> P --> R)" by blast |
|
985 |
lemma imp_disj_not2: "(P --> Q | R) = (~R --> P --> Q)" by blast |
|
986 |
||
987 |
lemma imp_disj1: "((P-->Q)|R) = (P--> Q|R)" by blast |
|
988 |
lemma imp_disj2: "(Q|(P-->R)) = (P--> Q|R)" by blast |
|
989 |
||
21151 | 990 |
lemma imp_cong: "(P = P') ==> (P' ==> (Q = Q')) ==> ((P --> Q) = (P' --> Q'))" |
991 |
by iprover |
|
992 |
||
17589 | 993 |
lemma de_Morgan_disj: "(~(P | Q)) = (~P & ~Q)" by iprover |
12281 | 994 |
lemma de_Morgan_conj: "(~(P & Q)) = (~P | ~Q)" by blast |
995 |
lemma not_imp: "(~(P --> Q)) = (P & ~Q)" by blast |
|
996 |
lemma not_iff: "(P~=Q) = (P = (~Q))" by blast |
|
997 |
lemma disj_not1: "(~P | Q) = (P --> Q)" by blast |
|
998 |
lemma disj_not2: "(P | ~Q) = (Q --> P)" -- {* changes orientation :-( *} |
|
999 |
by blast |
|
1000 |
lemma imp_conv_disj: "(P --> Q) = ((~P) | Q)" by blast |
|
1001 |
||
17589 | 1002 |
lemma iff_conv_conj_imp: "(P = Q) = ((P --> Q) & (Q --> P))" by iprover |
12281 | 1003 |
|
1004 |
||
1005 |
lemma cases_simp: "((P --> Q) & (~P --> Q)) = Q" |
|
1006 |
-- {* Avoids duplication of subgoals after @{text split_if}, when the true and false *} |
|
1007 |
-- {* cases boil down to the same thing. *} |
|
1008 |
by blast |
|
1009 |
||
1010 |
lemma not_all: "(~ (! x. P(x))) = (? x.~P(x))" by blast |
|
1011 |
lemma imp_all: "((! x. P x) --> Q) = (? x. P x --> Q)" by blast |
|
17589 | 1012 |
lemma not_ex: "(~ (? x. P(x))) = (! x.~P(x))" by iprover |
1013 |
lemma imp_ex: "((? x. P x) --> Q) = (! x. P x --> Q)" by iprover |
|
23403 | 1014 |
lemma all_not_ex: "(ALL x. P x) = (~ (EX x. ~ P x ))" by blast |
12281 | 1015 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1016 |
declare All_def [no_atp] |
24286
7619080e49f0
ATP blacklisting is now in theory data, attribute noatp
paulson
parents:
24280
diff
changeset
|
1017 |
|
17589 | 1018 |
lemma ex_disj_distrib: "(? x. P(x) | Q(x)) = ((? x. P(x)) | (? x. Q(x)))" by iprover |
1019 |
lemma all_conj_distrib: "(!x. P(x) & Q(x)) = ((! x. P(x)) & (! x. Q(x)))" by iprover |
|
12281 | 1020 |
|
1021 |
text {* |
|
1022 |
\medskip The @{text "&"} congruence rule: not included by default! |
|
1023 |
May slow rewrite proofs down by as much as 50\% *} |
|
1024 |
||
1025 |
lemma conj_cong: |
|
1026 |
"(P = P') ==> (P' ==> (Q = Q')) ==> ((P & Q) = (P' & Q'))" |
|
17589 | 1027 |
by iprover |
12281 | 1028 |
|
1029 |
lemma rev_conj_cong: |
|
1030 |
"(Q = Q') ==> (Q' ==> (P = P')) ==> ((P & Q) = (P' & Q'))" |
|
17589 | 1031 |
by iprover |
12281 | 1032 |
|
1033 |
text {* The @{text "|"} congruence rule: not included by default! *} |
|
1034 |
||
1035 |
lemma disj_cong: |
|
1036 |
"(P = P') ==> (~P' ==> (Q = Q')) ==> ((P | Q) = (P' | Q'))" |
|
1037 |
by blast |
|
1038 |
||
1039 |
||
1040 |
text {* \medskip if-then-else rules *} |
|
1041 |
||
32068 | 1042 |
lemma if_True [code]: "(if True then x else y) = x" |
38525 | 1043 |
by (unfold If_def) blast |
12281 | 1044 |
|
32068 | 1045 |
lemma if_False [code]: "(if False then x else y) = y" |
38525 | 1046 |
by (unfold If_def) blast |
12281 | 1047 |
|
1048 |
lemma if_P: "P ==> (if P then x else y) = x" |
|
38525 | 1049 |
by (unfold If_def) blast |
12281 | 1050 |
|
1051 |
lemma if_not_P: "~P ==> (if P then x else y) = y" |
|
38525 | 1052 |
by (unfold If_def) blast |
12281 | 1053 |
|
1054 |
lemma split_if: "P (if Q then x else y) = ((Q --> P(x)) & (~Q --> P(y)))" |
|
1055 |
apply (rule case_split [of Q]) |
|
15481 | 1056 |
apply (simplesubst if_P) |
1057 |
prefer 3 apply (simplesubst if_not_P, blast+) |
|
12281 | 1058 |
done |
1059 |
||
1060 |
lemma split_if_asm: "P (if Q then x else y) = (~((Q & ~P x) | (~Q & ~P y)))" |
|
15481 | 1061 |
by (simplesubst split_if, blast) |
12281 | 1062 |
|
35828
46cfc4b8112e
now use "Named_Thms" for "noatp", and renamed "noatp" to "no_atp"
blanchet
parents:
35808
diff
changeset
|
1063 |
lemmas if_splits [no_atp] = split_if split_if_asm |
12281 | 1064 |
|
1065 |
lemma if_cancel: "(if c then x else x) = x" |
|
15481 | 1066 |
by (simplesubst split_if, blast) |
12281 | 1067 |
|
1068 |
lemma if_eq_cancel: "(if x = y then y else x) = x" |
|
15481 | 1069 |
by (simplesubst split_if, blast) |
12281 | 1070 |
|
41792
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41636
diff
changeset
|
1071 |
lemma if_bool_eq_conj: |
ff3cb0c418b7
renamed "nitpick\_def" to "nitpick_unfold" to reflect its new semantics
blanchet
parents:
41636
diff
changeset
|
1072 |
"(if P then Q else R) = ((P-->Q) & (~P-->R))" |
19796 | 1073 |
-- {* This form is useful for expanding @{text "if"}s on the RIGHT of the @{text "==>"} symbol. *} |
12281 | 1074 |
by (rule split_if) |
1075 |
||
1076 |
lemma if_bool_eq_disj: "(if P then Q else R) = ((P&Q) | (~P&R))" |
|
19796 | 1077 |
-- {* And this form is useful for expanding @{text "if"}s on the LEFT. *} |
59504
8c6747dba731
New lemmas and a bit of tidying up.
paulson <lp15@cam.ac.uk>
parents:
59028
diff
changeset
|
1078 |
by (simplesubst split_if) blast |
12281 | 1079 |
|
17589 | 1080 |
lemma Eq_TrueI: "P ==> P == True" by (unfold atomize_eq) iprover |
1081 |
lemma Eq_FalseI: "~P ==> P == False" by (unfold atomize_eq) iprover |
|
12281 | 1082 |
|
15423 | 1083 |
text {* \medskip let rules for simproc *} |
1084 |
||
1085 |
lemma Let_folded: "f x \<equiv> g x \<Longrightarrow> Let x f \<equiv> Let x g" |
|
1086 |
by (unfold Let_def) |
|
1087 |
||
1088 |
lemma Let_unfold: "f x \<equiv> g \<Longrightarrow> Let x f \<equiv> g" |
|
1089 |
by (unfold Let_def) |
|
1090 |
||
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1091 |
text {* |
16999 | 1092 |
The following copy of the implication operator is useful for |
1093 |
fine-tuning congruence rules. It instructs the simplifier to simplify |
|
1094 |
its premise. |
|
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1095 |
*} |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1096 |
|
35416
d8d7d1b785af
replaced a couple of constsdefs by definitions (also some old primrecs by modern ones)
haftmann
parents:
35115
diff
changeset
|
1097 |
definition simp_implies :: "[prop, prop] => prop" (infixr "=simp=>" 1) where |
37767 | 1098 |
"simp_implies \<equiv> op ==>" |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1099 |
|
18457 | 1100 |
lemma simp_impliesI: |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1101 |
assumes PQ: "(PROP P \<Longrightarrow> PROP Q)" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1102 |
shows "PROP P =simp=> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1103 |
apply (unfold simp_implies_def) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1104 |
apply (rule PQ) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1105 |
apply assumption |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1106 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1107 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1108 |
lemma simp_impliesE: |
25388 | 1109 |
assumes PQ: "PROP P =simp=> PROP Q" |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1110 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1111 |
and QR: "PROP Q \<Longrightarrow> PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1112 |
shows "PROP R" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1113 |
apply (rule QR) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1114 |
apply (rule PQ [unfolded simp_implies_def]) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1115 |
apply (rule P) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1116 |
done |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1117 |
|
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1118 |
lemma simp_implies_cong: |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1119 |
assumes PP' :"PROP P == PROP P'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1120 |
and P'QQ': "PROP P' ==> (PROP Q == PROP Q')" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1121 |
shows "(PROP P =simp=> PROP Q) == (PROP P' =simp=> PROP Q')" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1122 |
proof (unfold simp_implies_def, rule equal_intr_rule) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1123 |
assume PQ: "PROP P \<Longrightarrow> PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1124 |
and P': "PROP P'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1125 |
from PP' [symmetric] and P' have "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1126 |
by (rule equal_elim_rule1) |
23553 | 1127 |
then have "PROP Q" by (rule PQ) |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1128 |
with P'QQ' [OF P'] show "PROP Q'" by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1129 |
next |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1130 |
assume P'Q': "PROP P' \<Longrightarrow> PROP Q'" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1131 |
and P: "PROP P" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1132 |
from PP' and P have P': "PROP P'" by (rule equal_elim_rule1) |
23553 | 1133 |
then have "PROP Q'" by (rule P'Q') |
16633
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1134 |
with P'QQ' [OF P', symmetric] show "PROP Q" |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1135 |
by (rule equal_elim_rule1) |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1136 |
qed |
208ebc9311f2
Implemented trick (due to Tobias Nipkow) for fine-tuning simplification
berghofe
parents:
16587
diff
changeset
|
1137 |
|
20944 | 1138 |
lemma uncurry: |
1139 |
assumes "P \<longrightarrow> Q \<longrightarrow> R" |
|
1140 |
shows "P \<and> Q \<longrightarrow> R" |
|
23553 | 1141 |
using assms by blast |
20944 | 1142 |
|
1143 |
lemma iff_allI: |
|
1144 |
assumes "\<And>x. P x = Q x" |
|
1145 |
shows "(\<forall>x. P x) = (\<forall>x. Q x)" |
|
23553 | 1146 |
using assms by blast |
20944 | 1147 |
|
1148 |
lemma iff_exI: |
|
1149 |
assumes "\<And>x. P x = Q x" |
|
1150 |
shows "(\<exists>x. P x) = (\<exists>x. Q x)" |
|
23553 | 1151 |
using assms by blast |
20944 | 1152 |
|
1153 |
lemma all_comm: |
|
1154 |
"(\<forall>x y. P x y) = (\<forall>y x. P x y)" |
|
1155 |
by blast |
|
1156 |
||
1157 |
lemma ex_comm: |
|
1158 |
"(\<exists>x y. P x y) = (\<exists>y x. P x y)" |
|
1159 |
by blast |
|
1160 |
||
48891 | 1161 |
ML_file "Tools/simpdata.ML" |
21671 | 1162 |
ML {* open Simpdata *} |
42455 | 1163 |
|
58826 | 1164 |
setup {* |
1165 |
map_theory_simpset (put_simpset HOL_basic_ss) #> |
|
1166 |
Simplifier.method_setup Splitter.split_modifiers |
|
1167 |
*} |
|
42455 | 1168 |
|
42459 | 1169 |
simproc_setup defined_Ex ("EX x. P x") = {* fn _ => Quantifier1.rearrange_ex *} |
1170 |
simproc_setup defined_All ("ALL x. P x") = {* fn _ => Quantifier1.rearrange_all *} |
|
21671 | 1171 |
|
24035 | 1172 |
text {* Simproc for proving @{text "(y = x) == False"} from premise @{text "~(x = y)"}: *} |
1173 |
||
1174 |
simproc_setup neq ("x = y") = {* fn _ => |
|
1175 |
let |
|
1176 |
val neq_to_EQ_False = @{thm not_sym} RS @{thm Eq_FalseI}; |
|
1177 |
fun is_neq eq lhs rhs thm = |
|
1178 |
(case Thm.prop_of thm of |
|
1179 |
_ $ (Not $ (eq' $ l' $ r')) => |
|
1180 |
Not = HOLogic.Not andalso eq' = eq andalso |
|
1181 |
r' aconv lhs andalso l' aconv rhs |
|
1182 |
| _ => false); |
|
1183 |
fun proc ss ct = |
|
1184 |
(case Thm.term_of ct of |
|
1185 |
eq $ lhs $ rhs => |
|
43597 | 1186 |
(case find_first (is_neq eq lhs rhs) (Simplifier.prems_of ss) of |
24035 | 1187 |
SOME thm => SOME (thm RS neq_to_EQ_False) |
1188 |
| NONE => NONE) |
|
1189 |
| _ => NONE); |
|
1190 |
in proc end; |
|
1191 |
*} |
|
1192 |
||
1193 |
simproc_setup let_simp ("Let x f") = {* |
|
1194 |
let |
|
1195 |
val (f_Let_unfold, x_Let_unfold) = |
|
59582 | 1196 |
let val [(_ $ (f $ x) $ _)] = Thm.prems_of @{thm Let_unfold} |
59628 | 1197 |
in apply2 (Thm.cterm_of @{context}) (f, x) end |
24035 | 1198 |
val (f_Let_folded, x_Let_folded) = |
59582 | 1199 |
let val [(_ $ (f $ x) $ _)] = Thm.prems_of @{thm Let_folded} |
59628 | 1200 |
in apply2 (Thm.cterm_of @{context}) (f, x) end; |
24035 | 1201 |
val g_Let_folded = |
59582 | 1202 |
let val [(_ $ _ $ (g $ _))] = Thm.prems_of @{thm Let_folded} |
59628 | 1203 |
in Thm.cterm_of @{context} g end; |
28741 | 1204 |
fun count_loose (Bound i) k = if i >= k then 1 else 0 |
1205 |
| count_loose (s $ t) k = count_loose s k + count_loose t k |
|
1206 |
| count_loose (Abs (_, _, t)) k = count_loose t (k + 1) |
|
1207 |
| count_loose _ _ = 0; |
|
1208 |
fun is_trivial_let (Const (@{const_name Let}, _) $ x $ t) = |
|
59628 | 1209 |
(case t of |
1210 |
Abs (_, _, t') => count_loose t' 0 <= 1 |
|
1211 |
| _ => true); |
|
1212 |
in |
|
1213 |
fn _ => fn ctxt => fn ct => |
|
1214 |
if is_trivial_let (Thm.term_of ct) |
|
1215 |
then SOME @{thm Let_def} (*no or one ocurrence of bound variable*) |
|
1216 |
else |
|
1217 |
let (*Norbert Schirmer's case*) |
|
1218 |
val t = Thm.term_of ct; |
|
1219 |
val ([t'], ctxt') = Variable.import_terms false [t] ctxt; |
|
1220 |
in |
|
1221 |
Option.map (hd o Variable.export ctxt' ctxt o single) |
|
1222 |
(case t' of Const (@{const_name Let},_) $ x $ f => (* x and f are already in normal form *) |
|
1223 |
if is_Free x orelse is_Bound x orelse is_Const x |
|
1224 |
then SOME @{thm Let_def} |
|
1225 |
else |
|
1226 |
let |
|
1227 |
val n = case f of (Abs (x, _, _)) => x | _ => "x"; |
|
1228 |
val cx = Thm.cterm_of ctxt x; |
|
1229 |
val xT = Thm.typ_of_cterm cx; |
|
1230 |
val cf = Thm.cterm_of ctxt f; |
|
1231 |
val fx_g = Simplifier.rewrite ctxt (Thm.apply cf cx); |
|
1232 |
val (_ $ _ $ g) = Thm.prop_of fx_g; |
|
1233 |
val g' = abstract_over (x, g); |
|
1234 |
val abs_g'= Abs (n, xT, g'); |
|
1235 |
in |
|
1236 |
if g aconv g' then |
|
1237 |
let |
|
1238 |
val rl = |
|
1239 |
cterm_instantiate [(f_Let_unfold, cf), (x_Let_unfold, cx)] @{thm Let_unfold}; |
|
1240 |
in SOME (rl OF [fx_g]) end |
|
1241 |
else if (Envir.beta_eta_contract f) aconv (Envir.beta_eta_contract abs_g') |
|
1242 |
then NONE (*avoid identity conversion*) |
|
1243 |
else |
|
1244 |
let |
|
1245 |
val g'x = abs_g' $ x; |
|
1246 |
val g_g'x = Thm.symmetric (Thm.beta_conversion false (Thm.cterm_of ctxt g'x)); |
|
1247 |
val rl = |
|
1248 |
@{thm Let_folded} |> cterm_instantiate |
|
1249 |
[(f_Let_folded, Thm.cterm_of ctxt f), |
|
1250 |
(x_Let_folded, cx), |
|
1251 |
(g_Let_folded, Thm.cterm_of ctxt abs_g')]; |
|
1252 |
in SOME (rl OF [Thm.transitive fx_g g_g'x]) end |
|
1253 |
end |
|
1254 |
| _ => NONE) |
|
1255 |
end |
|
28741 | 1256 |
end *} |
24035 | 1257 |
|
21151 | 1258 |
lemma True_implies_equals: "(True \<Longrightarrow> PROP P) \<equiv> PROP P" |
1259 |
proof |
|
23389 | 1260 |
assume "True \<Longrightarrow> PROP P" |
1261 |
from this [OF TrueI] show "PROP P" . |
|
21151 | 1262 |
next |
1263 |
assume "PROP P" |
|
23389 | 1264 |
then show "PROP P" . |
21151 | 1265 |
qed |
1266 |
||
59864 | 1267 |
lemma implies_True_equals: "(PROP P \<Longrightarrow> True) \<equiv> Trueprop True" |
1268 |
by default (intro TrueI) |
|
1269 |
||
1270 |
lemma False_implies_equals: "(False \<Longrightarrow> P) \<equiv> Trueprop True" |
|
1271 |
by default simp_all |
|
1272 |
||
21151 | 1273 |
lemma ex_simps: |
1274 |
"!!P Q. (EX x. P x & Q) = ((EX x. P x) & Q)" |
|
1275 |
"!!P Q. (EX x. P & Q x) = (P & (EX x. Q x))" |
|
1276 |
"!!P Q. (EX x. P x | Q) = ((EX x. P x) | Q)" |
|
1277 |
"!!P Q. (EX x. P | Q x) = (P | (EX x. Q x))" |
|
1278 |
"!!P Q. (EX x. P x --> Q) = ((ALL x. P x) --> Q)" |
|
1279 |
"!!P Q. (EX x. P --> Q x) = (P --> (EX x. Q x))" |
|
1280 |
-- {* Miniscoping: pushing in existential quantifiers. *} |
|
1281 |
by (iprover | blast)+ |
|
1282 |
||
1283 |
lemma all_simps: |
|
1284 |
"!!P Q. (ALL x. P x & Q) = ((ALL x. P x) & Q)" |
|
1285 |
"!!P Q. (ALL x. P & Q x) = (P & (ALL x. Q x))" |
|
1286 |
"!!P Q. (ALL x. P x | Q) = ((ALL x. P x) | Q)" |
|
1287 |
"!!P Q. (ALL x. P | Q x) = (P | (ALL x. Q x))" |
|
1288 |
"!!P Q. (ALL x. P x --> Q) = ((EX x. P x) --> Q)" |
|
1289 |
"!!P Q. (ALL x. P --> Q x) = (P --> (ALL x. Q x))" |
|
1290 |
-- {* Miniscoping: pushing in universal quantifiers. *} |
|
1291 |
by (iprover | blast)+ |
|
15481 | 1292 |
|
21671 | 1293 |
lemmas [simp] = |
1294 |
triv_forall_equality (*prunes params*) |
|
1295 |
True_implies_equals (*prune asms `True'*) |
|
1296 |
if_True |
|
1297 |
if_False |
|
1298 |
if_cancel |
|
1299 |
if_eq_cancel |
|
1300 |
imp_disjL |
|
20973 | 1301 |
(*In general it seems wrong to add distributive laws by default: they |
1302 |
might cause exponential blow-up. But imp_disjL has been in for a while |
|
1303 |
and cannot be removed without affecting existing proofs. Moreover, |
|
1304 |
rewriting by "(P|Q --> R) = ((P-->R)&(Q-->R))" might be justified on the |
|
1305 |
grounds that it allows simplification of R in the two cases.*) |
|
21671 | 1306 |
conj_assoc |
1307 |
disj_assoc |
|
1308 |
de_Morgan_conj |
|
1309 |
de_Morgan_disj |
|
1310 |
imp_disj1 |
|
1311 |
imp_disj2 |
|
1312 |
not_imp |
|
1313 |
disj_not1 |
|
1314 |
not_all |
|
1315 |
not_ex |
|
1316 |
cases_simp |
|
1317 |
the_eq_trivial |
|
1318 |
the_sym_eq_trivial |
|
1319 |
ex_simps |
|
1320 |
all_simps |
|
1321 |
simp_thms |
|
1322 |
||
1323 |
lemmas [cong] = imp_cong simp_implies_cong |
|
1324 |
lemmas [split] = split_if |
|
20973 | 1325 |
|
51717
9e7d1c139569
simplifier uses proper Proof.context instead of historic type simpset;
wenzelm
parents:
51692
diff
changeset
|
1326 |
ML {* val HOL_ss = simpset_of @{context} *} |
20973 | 1327 |
|
20944 | 1328 |
text {* Simplifies x assuming c and y assuming ~c *} |
1329 |
lemma if_cong: |
|
1330 |
assumes "b = c" |
|
1331 |
and "c \<Longrightarrow> x = u" |
|
1332 |
and "\<not> c \<Longrightarrow> y = v" |
|
1333 |
shows "(if b then x else y) = (if c then u else v)" |
|
38525 | 1334 |
using assms by simp |
20944 | 1335 |
|
1336 |
text {* Prevents simplification of x and y: |
|
1337 |
faster and allows the execution of functional programs. *} |
|
1338 |
lemma if_weak_cong [cong]: |
|
1339 |
assumes "b = c" |
|
1340 |
shows "(if b then x else y) = (if c then x else y)" |
|
23553 | 1341 |
using assms by (rule arg_cong) |
20944 | 1342 |
|
1343 |
text {* Prevents simplification of t: much faster *} |
|
1344 |
lemma let_weak_cong: |
|
1345 |
assumes "a = b" |
|
1346 |
shows "(let x = a in t x) = (let x = b in t x)" |
|