|
1 (* Title: LK/ex/hard-quant |
|
2 ID: $Id$ |
|
3 Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 Copyright 1992 University of Cambridge |
|
5 |
|
6 Hard examples with quantifiers. Can be read to test the LK system. |
|
7 From F. J. Pelletier, |
|
8 Seventy-Five Problems for Testing Automatic Theorem Provers, |
|
9 J. Automated Reasoning 2 (1986), 191-216. |
|
10 Errata, JAR 4 (1988), 236-236. |
|
11 |
|
12 Uses pc_tac rather than fast_tac when the former is significantly faster. |
|
13 *) |
|
14 |
|
15 writeln"File LK/ex/hard-quant."; |
|
16 |
|
17 goal LK.thy "|- (ALL x. P(x) & Q(x)) <-> (ALL x. P(x)) & (ALL x. Q(x))"; |
|
18 by (fast_tac LK_pack 1); |
|
19 result(); |
|
20 |
|
21 goal LK.thy "|- (EX x. P-->Q(x)) <-> (P --> (EX x.Q(x)))"; |
|
22 by (fast_tac LK_pack 1); |
|
23 result(); |
|
24 |
|
25 goal LK.thy "|- (EX x.P(x)-->Q) <-> (ALL x.P(x)) --> Q"; |
|
26 by (fast_tac LK_pack 1); |
|
27 result(); |
|
28 |
|
29 goal LK.thy "|- (ALL x.P(x)) | Q <-> (ALL x. P(x) | Q)"; |
|
30 by (fast_tac LK_pack 1); |
|
31 result(); |
|
32 |
|
33 writeln"Problems requiring quantifier duplication"; |
|
34 |
|
35 (*Not provable by fast_tac LK_pack: needs multiple instantiation of ALL*) |
|
36 goal LK.thy "|- (ALL x. P(x)-->P(f(x))) & P(d)-->P(f(f(f(d))))"; |
|
37 by (best_tac LK_dup_pack 1); |
|
38 result(); |
|
39 |
|
40 (*Needs double instantiation of the quantifier*) |
|
41 goal LK.thy "|- EX x. P(x) --> P(a) & P(b)"; |
|
42 by (fast_tac LK_dup_pack 1); |
|
43 result(); |
|
44 |
|
45 goal LK.thy "|- EX z. P(z) --> (ALL x. P(x))"; |
|
46 by (best_tac LK_dup_pack 1); |
|
47 result(); |
|
48 |
|
49 writeln"Hard examples with quantifiers"; |
|
50 |
|
51 writeln"Problem 18"; |
|
52 goal LK.thy "|- EX y. ALL x. P(y)-->P(x)"; |
|
53 by (best_tac LK_dup_pack 1); |
|
54 result(); |
|
55 |
|
56 writeln"Problem 19"; |
|
57 goal LK.thy "|- EX x. ALL y z. (P(y)-->Q(z)) --> (P(x)-->Q(x))"; |
|
58 by (best_tac LK_dup_pack 1); |
|
59 result(); |
|
60 |
|
61 writeln"Problem 20"; |
|
62 goal LK.thy "|- (ALL x y. EX z. ALL w. (P(x)&Q(y)-->R(z)&S(w))) \ |
|
63 \ --> (EX x y. P(x) & Q(y)) --> (EX z. R(z))"; |
|
64 by (fast_tac LK_pack 1); |
|
65 result(); |
|
66 |
|
67 writeln"Problem 21"; |
|
68 goal LK.thy "|- (EX x. P-->Q(x)) & (EX x. Q(x)-->P) --> (EX x. P<->Q(x))"; |
|
69 by (best_tac LK_dup_pack 1); |
|
70 result(); |
|
71 |
|
72 writeln"Problem 22"; |
|
73 goal LK.thy "|- (ALL x. P <-> Q(x)) --> (P <-> (ALL x. Q(x)))"; |
|
74 by (fast_tac LK_pack 1); |
|
75 result(); |
|
76 |
|
77 writeln"Problem 23"; |
|
78 goal LK.thy "|- (ALL x. P | Q(x)) <-> (P | (ALL x. Q(x)))"; |
|
79 by (best_tac LK_pack 1); |
|
80 result(); |
|
81 |
|
82 writeln"Problem 24"; |
|
83 goal LK.thy "|- ~(EX x. S(x)&Q(x)) & (ALL x. P(x) --> Q(x)|R(x)) & \ |
|
84 \ ~(EX x.P(x)) --> (EX x.Q(x)) & (ALL x. Q(x)|R(x) --> S(x)) \ |
|
85 \ --> (EX x. P(x)&R(x))"; |
|
86 by (pc_tac LK_pack 1); |
|
87 result(); |
|
88 |
|
89 writeln"Problem 25"; |
|
90 goal LK.thy "|- (EX x. P(x)) & \ |
|
91 \ (ALL x. L(x) --> ~ (M(x) & R(x))) & \ |
|
92 \ (ALL x. P(x) --> (M(x) & L(x))) & \ |
|
93 \ ((ALL x. P(x)-->Q(x)) | (EX x. P(x)&R(x))) \ |
|
94 \ --> (EX x. Q(x)&P(x))"; |
|
95 by (best_tac LK_pack 1); |
|
96 result(); |
|
97 |
|
98 writeln"Problem 26"; |
|
99 goal LK.thy "|- ((EX x. p(x)) <-> (EX x. q(x))) & \ |
|
100 \ (ALL x. ALL y. p(x) & q(y) --> (r(x) <-> s(y))) \ |
|
101 \ --> ((ALL x. p(x)-->r(x)) <-> (ALL x. q(x)-->s(x)))"; |
|
102 by (pc_tac LK_pack 1); |
|
103 result(); |
|
104 |
|
105 writeln"Problem 27"; |
|
106 goal LK.thy "|- (EX x. P(x) & ~Q(x)) & \ |
|
107 \ (ALL x. P(x) --> R(x)) & \ |
|
108 \ (ALL x. M(x) & L(x) --> P(x)) & \ |
|
109 \ ((EX x. R(x) & ~ Q(x)) --> (ALL x. L(x) --> ~ R(x))) \ |
|
110 \ --> (ALL x. M(x) --> ~L(x))"; |
|
111 by (pc_tac LK_pack 1); |
|
112 result(); |
|
113 |
|
114 writeln"Problem 28. AMENDED"; |
|
115 goal LK.thy "|- (ALL x. P(x) --> (ALL x. Q(x))) & \ |
|
116 \ ((ALL x. Q(x)|R(x)) --> (EX x. Q(x)&S(x))) & \ |
|
117 \ ((EX x.S(x)) --> (ALL x. L(x) --> M(x))) \ |
|
118 \ --> (ALL x. P(x) & L(x) --> M(x))"; |
|
119 by (pc_tac LK_pack 1); |
|
120 result(); |
|
121 |
|
122 writeln"Problem 29. Essentially the same as Principia Mathematica *11.71"; |
|
123 goal LK.thy "|- (EX x. P(x)) & (EX y. Q(y)) \ |
|
124 \ --> ((ALL x. P(x)-->R(x)) & (ALL y. Q(y)-->S(y)) <-> \ |
|
125 \ (ALL x y. P(x) & Q(y) --> R(x) & S(y)))"; |
|
126 by (pc_tac LK_pack 1); |
|
127 result(); |
|
128 |
|
129 writeln"Problem 30"; |
|
130 goal LK.thy "|- (ALL x. P(x) | Q(x) --> ~ R(x)) & \ |
|
131 \ (ALL x. (Q(x) --> ~ S(x)) --> P(x) & R(x)) \ |
|
132 \ --> (ALL x. S(x))"; |
|
133 by (fast_tac LK_pack 1); |
|
134 result(); |
|
135 |
|
136 writeln"Problem 31"; |
|
137 goal LK.thy "|- ~(EX x.P(x) & (Q(x) | R(x))) & \ |
|
138 \ (EX x. L(x) & P(x)) & \ |
|
139 \ (ALL x. ~ R(x) --> M(x)) \ |
|
140 \ --> (EX x. L(x) & M(x))"; |
|
141 by (fast_tac LK_pack 1); |
|
142 result(); |
|
143 |
|
144 writeln"Problem 32"; |
|
145 goal LK.thy "|- (ALL x. P(x) & (Q(x)|R(x))-->S(x)) & \ |
|
146 \ (ALL x. S(x) & R(x) --> L(x)) & \ |
|
147 \ (ALL x. M(x) --> R(x)) \ |
|
148 \ --> (ALL x. P(x) & M(x) --> L(x))"; |
|
149 by (best_tac LK_pack 1); |
|
150 result(); |
|
151 |
|
152 writeln"Problem 33"; |
|
153 goal LK.thy "|- (ALL x. P(a) & (P(x)-->P(b))-->P(c)) <-> \ |
|
154 \ (ALL x. (~P(a) | P(x) | P(c)) & (~P(a) | ~P(b) | P(c)))"; |
|
155 by (fast_tac LK_pack 1); |
|
156 result(); |
|
157 |
|
158 writeln"Problem 34 AMENDED (TWICE!!) NOT PROVED AUTOMATICALLY"; |
|
159 (*Andrews's challenge*) |
|
160 goal LK.thy "|- ((EX x. ALL y. p(x) <-> p(y)) <-> \ |
|
161 \ ((EX x. q(x)) <-> (ALL y. p(y)))) <-> \ |
|
162 \ ((EX x. ALL y. q(x) <-> q(y)) <-> \ |
|
163 \ ((EX x. p(x)) <-> (ALL y. q(y))))"; |
|
164 by (safe_goal_tac LK_pack 1); (*53 secs*) (*13 secs*) |
|
165 by (TRYALL (fast_tac LK_pack)); (*165 secs*) (*117 secs*) (*138 secs*) |
|
166 (*for some reason, pc_tac leaves 14 subgoals instead of 6*) |
|
167 by (TRYALL (best_tac LK_dup_pack)); (*55 secs*) (*29 secs*) (*54 secs*) |
|
168 result(); |
|
169 |
|
170 |
|
171 writeln"Problem 35"; |
|
172 goal LK.thy "|- EX x y. P(x,y) --> (ALL u v. P(u,v))"; |
|
173 by (best_tac LK_dup_pack 1); (*27 secs??*) |
|
174 result(); |
|
175 |
|
176 writeln"Problem 36"; |
|
177 goal LK.thy "|- (ALL x. EX y. J(x,y)) & \ |
|
178 \ (ALL x. EX y. G(x,y)) & \ |
|
179 \ (ALL x y. J(x,y) | G(x,y) --> \ |
|
180 \ (ALL z. J(y,z) | G(y,z) --> H(x,z))) \ |
|
181 \ --> (ALL x. EX y. H(x,y))"; |
|
182 by (fast_tac LK_pack 1); |
|
183 result(); |
|
184 |
|
185 writeln"Problem 37"; |
|
186 goal LK.thy "|- (ALL z. EX w. ALL x. EX y. \ |
|
187 \ (P(x,z)-->P(y,w)) & P(y,z) & (P(y,w) --> (EX u.Q(u,w)))) & \ |
|
188 \ (ALL x z. ~P(x,z) --> (EX y. Q(y,z))) & \ |
|
189 \ ((EX x y. Q(x,y)) --> (ALL x. R(x,x))) \ |
|
190 \ --> (ALL x. EX y. R(x,y))"; |
|
191 by (pc_tac LK_pack 1); (*slow*) |
|
192 by flexflex_tac; |
|
193 result(); |
|
194 |
|
195 writeln"Problem 38. NOT PROVED"; |
|
196 goal LK.thy |
|
197 "|- (ALL x. p(a) & (p(x) --> (EX y. p(y) & r(x,y))) --> \ |
|
198 \ (EX z. EX w. p(z) & r(x,w) & r(w,z))) <-> \ |
|
199 \ (ALL x. (~p(a) | p(x) | (EX z. EX w. p(z) & r(x,w) & r(w,z))) & \ |
|
200 \ (~p(a) | ~(EX y. p(y) & r(x,y)) | \ |
|
201 \ (EX z. EX w. p(z) & r(x,w) & r(w,z))))"; |
|
202 |
|
203 writeln"Problem 39"; |
|
204 goal LK.thy "|- ~ (EX x. ALL y. F(y,x) <-> ~F(y,y))"; |
|
205 by (fast_tac LK_pack 1); |
|
206 result(); |
|
207 |
|
208 writeln"Problem 40. AMENDED"; |
|
209 goal LK.thy "|- (EX y. ALL x. F(x,y) <-> F(x,x)) --> \ |
|
210 \ ~(ALL x. EX y. ALL z. F(z,y) <-> ~ F(z,x))"; |
|
211 by (fast_tac LK_pack 1); |
|
212 result(); |
|
213 |
|
214 writeln"Problem 41"; |
|
215 goal LK.thy "|- (ALL z. EX y. ALL x. f(x,y) <-> f(x,z) & ~ f(x,x)) \ |
|
216 \ --> ~ (EX z. ALL x. f(x,z))"; |
|
217 by (fast_tac LK_pack 1); |
|
218 result(); |
|
219 |
|
220 writeln"Problem 42"; |
|
221 goal LK.thy "|- ~ (EX y. ALL x. p(x,y) <-> ~ (EX z. p(x,z) & p(z,x)))"; |
|
222 |
|
223 writeln"Problem 43 NOT PROVED AUTOMATICALLY"; |
|
224 goal LK.thy "|- (ALL x. ALL y. q(x,y) <-> (ALL z. p(z,x) <-> p(z,y))) \ |
|
225 \ --> (ALL x. (ALL y. q(x,y) <-> q(y,x)))"; |
|
226 |
|
227 writeln"Problem 44"; |
|
228 goal LK.thy "|- (ALL x. f(x) --> \ |
|
229 \ (EX y. g(y) & h(x,y) & (EX y. g(y) & ~ h(x,y)))) & \ |
|
230 \ (EX x. j(x) & (ALL y. g(y) --> h(x,y))) \ |
|
231 \ --> (EX x. j(x) & ~f(x))"; |
|
232 by (fast_tac LK_pack 1); |
|
233 result(); |
|
234 |
|
235 writeln"Problem 45"; |
|
236 goal LK.thy "|- (ALL x. f(x) & (ALL y. g(y) & h(x,y) --> j(x,y)) \ |
|
237 \ --> (ALL y. g(y) & h(x,y) --> k(y))) & \ |
|
238 \ ~ (EX y. l(y) & k(y)) & \ |
|
239 \ (EX x. f(x) & (ALL y. h(x,y) --> l(y)) \ |
|
240 \ & (ALL y. g(y) & h(x,y) --> j(x,y))) \ |
|
241 \ --> (EX x. f(x) & ~ (EX y. g(y) & h(x,y)))"; |
|
242 by (best_tac LK_pack 1); |
|
243 result(); |
|
244 |
|
245 |
|
246 writeln"Problem 50"; |
|
247 goal LK.thy |
|
248 "|- (ALL x. P(a,x) | (ALL y.P(x,y))) --> (EX x. ALL y.P(x,y))"; |
|
249 by (best_tac LK_dup_pack 1); |
|
250 result(); |
|
251 |
|
252 writeln"Problem 57"; |
|
253 goal LK.thy |
|
254 "|- P(f(a,b), f(b,c)) & P(f(b,c), f(a,c)) & \ |
|
255 \ (ALL x y z. P(x,y) & P(y,z) --> P(x,z)) --> P(f(a,b), f(a,c))"; |
|
256 by (fast_tac LK_pack 1); |
|
257 result(); |
|
258 |
|
259 writeln"Problem 59"; |
|
260 (*Unification works poorly here -- the abstraction %sobj prevents efficient |
|
261 operation of the occurs check*) |
|
262 Unify.trace_bound := !Unify.search_bound - 1; |
|
263 goal LK.thy "|- (ALL x. P(x) <-> ~P(f(x))) --> (EX x. P(x) & ~P(f(x)))"; |
|
264 by (best_tac LK_dup_pack 1); |
|
265 result(); |
|
266 |
|
267 writeln"Problem 60"; |
|
268 goal LK.thy |
|
269 "|- ALL x. P(x,f(x)) <-> (EX y. (ALL z. P(z,y) --> P(z,f(x))) & P(x,y))"; |
|
270 by (fast_tac LK_pack 1); |
|
271 result(); |
|
272 |
|
273 writeln"Reached end of file."; |
|
274 |
|
275 (*18 June 92: loaded in 372 secs*) |
|
276 (*19 June 92: loaded in 166 secs except #34, using repeat_goal_tac*) |
|
277 (*29 June 92: loaded in 370 secs*) |