--- a/src/HOL/Library/AList_Mapping.thy Thu Oct 18 15:52:32 2012 +0200
+++ b/src/HOL/Library/AList_Mapping.thy Thu Oct 18 15:52:33 2012 +0200
@@ -8,34 +8,33 @@
imports AList Mapping
begin
-definition Mapping :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) mapping" where
- "Mapping xs = Mapping.Mapping (map_of xs)"
+lift_definition Mapping :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) mapping" is map_of .
code_datatype Mapping
lemma lookup_Mapping [simp, code]:
"Mapping.lookup (Mapping xs) = map_of xs"
- by (simp add: Mapping_def)
+ by transfer rule
lemma keys_Mapping [simp, code]:
- "Mapping.keys (Mapping xs) = set (map fst xs)"
- by (simp add: keys_def dom_map_of_conv_image_fst)
+ "Mapping.keys (Mapping xs) = set (map fst xs)"
+ by transfer (simp add: dom_map_of_conv_image_fst)
lemma empty_Mapping [code]:
"Mapping.empty = Mapping []"
- by (rule mapping_eqI) simp
+ by transfer simp
lemma is_empty_Mapping [code]:
"Mapping.is_empty (Mapping xs) \<longleftrightarrow> List.null xs"
- by (cases xs) (simp_all add: is_empty_def null_def)
+ by (case_tac xs) (simp_all add: is_empty_def null_def)
lemma update_Mapping [code]:
"Mapping.update k v (Mapping xs) = Mapping (AList.update k v xs)"
- by (rule mapping_eqI) (simp add: update_conv')
+ by transfer (simp add: update_conv')
lemma delete_Mapping [code]:
"Mapping.delete k (Mapping xs) = Mapping (AList.delete k xs)"
- by (rule mapping_eqI) (simp add: delete_conv')
+ by transfer (simp add: delete_conv')
lemma ordered_keys_Mapping [code]:
"Mapping.ordered_keys (Mapping xs) = sort (remdups (map fst xs))"
@@ -47,11 +46,11 @@
lemma tabulate_Mapping [code]:
"Mapping.tabulate ks f = Mapping (map (\<lambda>k. (k, f k)) ks)"
- by (rule mapping_eqI) (simp add: map_of_map_restrict)
+ by transfer (simp add: map_of_map_restrict)
lemma bulkload_Mapping [code]:
"Mapping.bulkload vs = Mapping (map (\<lambda>n. (n, vs ! n)) [0..<length vs])"
- by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
+ by transfer (simp add: map_of_map_restrict fun_eq_iff)
lemma equal_Mapping [code]:
"HOL.equal (Mapping xs) (Mapping ys) \<longleftrightarrow>
@@ -60,9 +59,8 @@
proof -
have aux: "\<And>a b xs. (a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs"
by (auto simp add: image_def intro!: bexI)
- show ?thesis
- by (auto intro!: map_of_eqI simp add: Let_def equal Mapping_def)
- (auto dest!: map_of_eq_dom intro: aux)
+ show ?thesis apply transfer
+ by (auto intro!: map_of_eqI) (auto dest!: map_of_eq_dom intro: aux)
qed
lemma [code nbe]: