src/HOL/Library/AList_Mapping.thy
changeset 44897 787983a08bfb
child 44913 48240fb48980
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Library/AList_Mapping.thy	Mon Sep 12 10:57:58 2011 +0200
@@ -0,0 +1,72 @@
+(* Title: HOL/Library/AList_Mapping.thy
+   Author: Florian Haftmann, TU Muenchen
+*)
+
+header {* Implementation of mappings with Association Lists *}
+
+theory AList_Mapping
+imports AList_Impl Mapping
+begin
+
+definition Mapping :: "('a \<times> 'b) list \<Rightarrow> ('a, 'b) mapping" where
+  "Mapping xs = Mapping.Mapping (map_of xs)"
+
+code_datatype Mapping
+
+lemma lookup_Mapping [simp, code]:
+  "Mapping.lookup (Mapping xs) = map_of xs"
+  by (simp add: Mapping_def)
+
+lemma keys_Mapping [simp, code]:
+  "Mapping.keys (Mapping xs) = set (map fst xs)"
+  by (simp add: keys_def dom_map_of_conv_image_fst)
+
+lemma empty_Mapping [code]:
+  "Mapping.empty = Mapping []"
+  by (rule mapping_eqI) simp
+
+lemma is_empty_Mapping [code]:
+  "Mapping.is_empty (Mapping xs) \<longleftrightarrow> List.null xs"
+  by (cases xs) (simp_all add: is_empty_def null_def)
+
+lemma update_Mapping [code]:
+  "Mapping.update k v (Mapping xs) = Mapping (update k v xs)"
+  by (rule mapping_eqI) (simp add: update_conv')
+
+lemma delete_Mapping [code]:
+  "Mapping.delete k (Mapping xs) = Mapping (delete k xs)"
+  by (rule mapping_eqI) (simp add: delete_conv')
+
+lemma ordered_keys_Mapping [code]:
+  "Mapping.ordered_keys (Mapping xs) = sort (remdups (map fst xs))"
+  by (simp only: ordered_keys_def keys_Mapping sorted_list_of_set_sort_remdups) simp
+
+lemma size_Mapping [code]:
+  "Mapping.size (Mapping xs) = length (remdups (map fst xs))"
+  by (simp add: size_def length_remdups_card_conv dom_map_of_conv_image_fst)
+
+lemma tabulate_Mapping [code]:
+  "Mapping.tabulate ks f = Mapping (map (\<lambda>k. (k, f k)) ks)"
+  by (rule mapping_eqI) (simp add: map_of_map_restrict)
+
+lemma bulkload_Mapping [code]:
+  "Mapping.bulkload vs = Mapping (map (\<lambda>n. (n, vs ! n)) [0..<length vs])"
+  by (rule mapping_eqI) (simp add: map_of_map_restrict fun_eq_iff)
+
+lemma equal_Mapping [code]:
+  "HOL.equal (Mapping xs) (Mapping ys) \<longleftrightarrow>
+    (let ks = map fst xs; ls = map fst ys
+    in (\<forall>l\<in>set ls. l \<in> set ks) \<and> (\<forall>k\<in>set ks. k \<in> set ls \<and> map_of xs k = map_of ys k))"
+proof -
+  have aux: "\<And>a b xs. (a, b) \<in> set xs \<Longrightarrow> a \<in> fst ` set xs"
+    by (auto simp add: image_def intro!: bexI)
+  show ?thesis
+    by (auto intro!: map_of_eqI simp add: Let_def equal Mapping_def)
+      (auto dest!: map_of_eq_dom intro: aux)
+qed
+
+lemma [code nbe]:
+  "HOL.equal (x :: ('a, 'b) mapping) x \<longleftrightarrow> True"
+  by (fact equal_refl)
+  
+end
\ No newline at end of file