src/HOL/Induct/Mutil.ML
 changeset 3120 c58423c20740 child 3357 c224dddc5f71
```--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Induct/Mutil.ML	Wed May 07 12:50:26 1997 +0200
@@ -0,0 +1,172 @@
+(*  Title:      HOL/ex/Mutil
+    ID:         \$Id\$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1996  University of Cambridge
+
+The Mutilated Chess Board Problem, formalized inductively
+*)
+
+open Mutil;
+
+
+(** The union of two disjoint tilings is a tiling **)
+
+goal thy "!!t. t: tiling A ==> \
+\              u: tiling A --> t <= Compl u --> t Un u : tiling A";
+by (etac tiling.induct 1);
+by (Simp_tac 1);
+by (simp_tac (!simpset addsimps [Un_assoc]) 1);
+by (blast_tac (!claset addIs tiling.intrs) 1);
+qed_spec_mp "tiling_UnI";
+
+
+(*** Chess boards ***)
+
+val [below_0, below_Suc] = nat_recs below_def;
+
+goal thy "ALL i. (i: below k) = (i<k)";
+by (nat_ind_tac "k" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [less_Suc_eq])));
+by (Blast_tac 1);
+qed_spec_mp "below_less_iff";
+
+
+goal thy "below(Suc n) Times B = ({n} Times B) Un ((below n) Times B)";
+by (Simp_tac 1);
+by (Blast_tac 1);
+qed "Sigma_Suc1";
+
+goal thy "A Times below(Suc n) = (A Times {n}) Un (A Times (below n))";
+by (Simp_tac 1);
+by (Blast_tac 1);
+qed "Sigma_Suc2";
+
+(*Deletion is essential to allow use of Sigma_Suc1,2*)
+Delsimps [below_Suc];
+
+goal thy "{i} Times below(n + n) : tiling domino";
+by (nat_ind_tac "n" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [Un_assoc RS sym, Sigma_Suc2])));
+by (resolve_tac tiling.intrs 1);
+by (assume_tac 2);
+by (subgoal_tac    (*seems the easiest way of turning one to the other*)
+    "({i} Times {Suc(n+n)}) Un ({i} Times {n+n}) = \
+\    {(i, n+n), (i, Suc(n+n))}" 1);
+by (Blast_tac 2);
+by (asm_simp_tac (!simpset addsimps [domino.horiz]) 1);
+by (blast_tac (!claset addEs  [less_irrefl, less_asym]
+                       addSDs [below_less_iff RS iffD1]) 1);
+qed "dominoes_tile_row";
+
+goal thy "(below m) Times below(n + n) : tiling domino";
+by (nat_ind_tac "m" 1);
+by (ALLGOALS (asm_simp_tac (!simpset addsimps [Sigma_Suc1])));
+by (blast_tac (!claset addSIs [tiling_UnI, dominoes_tile_row]
+                      addSEs [below_less_iff RS iffD1 RS less_irrefl]) 1);
+qed "dominoes_tile_matrix";
+
+
+(*** Basic properties of evnodd ***)
+
+goalw thy [evnodd_def] "(i,j): evnodd A b = ((i,j): A  &  (i+j) mod 2 = b)";
+by (Simp_tac 1);
+qed "evnodd_iff";
+
+goalw thy [evnodd_def] "evnodd A b <= A";
+by (rtac Int_lower1 1);
+qed "evnodd_subset";
+
+(* finite X ==> finite(evnodd X b) *)
+bind_thm("finite_evnodd", evnodd_subset RS finite_subset);
+
+goalw thy [evnodd_def] "evnodd (A Un B) b = evnodd A b Un evnodd B b";
+by (Blast_tac 1);
+qed "evnodd_Un";
+
+goalw thy [evnodd_def] "evnodd (A - B) b = evnodd A b - evnodd B b";
+by (Blast_tac 1);
+qed "evnodd_Diff";
+
+goalw thy [evnodd_def] "evnodd {} b = {}";
+by (Simp_tac 1);
+qed "evnodd_empty";
+
+goalw thy [evnodd_def]
+    "evnodd (insert (i,j) C) b = \
+\    (if (i+j) mod 2 = b then insert (i,j) (evnodd C b) else evnodd C b)";
+by (asm_full_simp_tac (!simpset addsimps [evnodd_def]
+             setloop (split_tac [expand_if] THEN' Step_tac)) 1);
+qed "evnodd_insert";
+
+
+(*** Dominoes ***)
+
+goal thy "!!d. [| d:domino; b<2 |] ==> EX i j. evnodd d b = {(i,j)}";
+by (eresolve_tac [domino.elim] 1);
+by (res_inst_tac [("k1", "i+j")] (mod2_cases RS disjE) 2);
+by (res_inst_tac [("k1", "i+j")] (mod2_cases RS disjE) 1);
+by (REPEAT_FIRST assume_tac);
+(*Four similar cases: case (i+j) mod 2 = b, 2#-b, ...*)
+by (REPEAT (asm_full_simp_tac (!simpset addsimps
+                          [less_Suc_eq, evnodd_insert, evnodd_empty, mod_Suc]
+                          setloop split_tac [expand_if]) 1
+           THEN Blast_tac 1));
+qed "domino_singleton";
+
+goal thy "!!d. d:domino ==> finite d";
+by (blast_tac (!claset addSIs [finite_insertI, finite_emptyI]
+                      addSEs [domino.elim]) 1);
+qed "domino_finite";
+
+
+(*** Tilings of dominoes ***)
+
+goal thy "!!t. t:tiling domino ==> finite t";
+by (eresolve_tac [tiling.induct] 1);
+by (rtac finite_emptyI 1);
+by (blast_tac (!claset addSIs [finite_UnI] addIs [domino_finite]) 1);
+qed "tiling_domino_finite";
+
+goal thy "!!t. t: tiling domino ==> card(evnodd t 0) = card(evnodd t 1)";
+by (eresolve_tac [tiling.induct] 1);
+by (simp_tac (!simpset addsimps [evnodd_def]) 1);
+by (res_inst_tac [("b1","0")] (domino_singleton RS exE) 1);
+by (Simp_tac 2 THEN assume_tac 1);
+by (res_inst_tac [("b1","1")] (domino_singleton RS exE) 1);
+by (Simp_tac 2 THEN assume_tac 1);
+by (Step_tac 1);
+by (subgoal_tac "ALL p b. p : evnodd a b --> p ~: evnodd ta b" 1);
+by (asm_simp_tac (!simpset addsimps [evnodd_Un, Un_insert_left,
+                                     tiling_domino_finite,
+                                     evnodd_subset RS finite_subset,
+                                     card_insert_disjoint]) 1);
+by (blast_tac (!claset addSDs [evnodd_subset RS subsetD] addEs [equalityE]) 1);
+qed "tiling_domino_0_1";
+
+goal thy "!!m n. [| t = below(Suc m + Suc m) Times below(Suc n + Suc n);   \
+\                   t' = t - {(0,0)} - {(Suc(m+m), Suc(n+n))}              \
+\                |] ==> t' ~: tiling domino";
+by (rtac notI 1);
+by (dtac tiling_domino_0_1 1);
+by (subgoal_tac "card(evnodd t' 0) < card(evnodd t' 1)" 1);
+by (Asm_full_simp_tac 1);
+by (subgoal_tac "t : tiling domino" 1);
+(*Requires a small simpset that won't move the Suc applications*)
+by (asm_simp_tac (HOL_ss addsimps [dominoes_tile_matrix]) 2);
+by (subgoal_tac "(m+m)+(n+n) = (m+n)+(m+n)" 1);