src/FOL/ex/Nat2.ML
author paulson
Fri, 06 Sep 1996 10:45:48 +0200
changeset 1959 58f8379eca73
parent 1662 a6b55b9d2f22
child 2469 b50b8c0eec01
permissions -rw-r--r--
Modified proof to work with miniscoping

(*  Title:      FOL/ex/nat2.ML
    ID:         $Id$
    Author:     Tobias Nipkow
    Copyright   1991  University of Cambridge

For ex/nat.thy.  
Examples of simplification and induction on the natural numbers
*)

open Nat2;

val nat_rews = [pred_0, pred_succ, plus_0, plus_succ, 
                    nat_distinct1, nat_distinct2, succ_inject,
                    leq_0,leq_succ_succ,leq_succ_0, 
                    lt_0_succ,lt_succ_succ,lt_0];

val nat_ss = FOL_ss addsimps nat_rews;

val prems = goal Nat2.thy 
    "[| P(0);  !!x. P(succ(x)) |] ==> All(P)";
by (rtac nat_ind 1);
by (REPEAT (resolve_tac (prems@[allI,impI]) 1));
qed "nat_exh";

goal Nat2.thy "~ n=succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ succ(n)=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ succ(succ(n))=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ n=succ(succ(n))";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m+0 = m";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
qed "plus_0_right";

goal Nat2.thy "m+succ(n) = succ(m+n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
qed "plus_succ_right";

goal Nat2.thy "~n=0 --> m+pred(n) = pred(m+n)";
by (IND_TAC nat_ind (simp_tac (nat_ss addsimps [plus_succ_right])) "n" 1);
result();

goal Nat2.thy "~n=0 --> succ(pred(n))=n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m+n=0 <-> m=0 & n=0";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
result();

goal Nat2.thy "m <= n --> m <= succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
val le_imp_le_succ = store_thm("le_imp_le_succ", result() RS mp);

goal Nat2.thy "n<succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "~ n<n";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
result();

goal Nat2.thy "m < n --> m < succ(n)";
by (IND_TAC nat_ind (simp_tac nat_ss) "m" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
result();

goal Nat2.thy "m <= n --> m <= n+k";
by (IND_TAC nat_ind 
    (simp_tac (nat_ss addsimps [plus_0_right, plus_succ_right, le_imp_le_succ]))
     "k" 1);
qed "le_plus";

goal Nat2.thy "succ(m) <= n --> m <= n";
by (res_inst_tac [("x","n")]spec 1);
by (ALL_IND_TAC nat_exh (simp_tac (nat_ss addsimps [le_imp_le_succ])) 1);
qed "succ_le";

goal Nat2.thy "~m<n <-> n<=m";
by (IND_TAC nat_ind (simp_tac nat_ss) "n" 1);
by (rtac (impI RS allI) 1);
by (ALL_IND_TAC nat_ind (asm_simp_tac nat_ss) 1);
qed "not_less";

goal Nat2.thy "n<=m --> ~m<n";
by (simp_tac (nat_ss addsimps [not_less]) 1);
qed "le_imp_not_less";

goal Nat2.thy "m<n --> ~n<=m";
by (cut_facts_tac [not_less] 1 THEN fast_tac FOL_cs 1);
qed "not_le";

goal Nat2.thy "m+k<=n --> m<=n";
by (IND_TAC nat_ind (K all_tac) "k" 1);
by (simp_tac (nat_ss addsimps [plus_0_right]) 1);
by (rtac (impI RS allI) 1);
by (simp_tac (nat_ss addsimps [plus_succ_right]) 1);
by (REPEAT (resolve_tac [allI,impI] 1));
by (cut_facts_tac [succ_le] 1);
by (fast_tac FOL_cs 1);
qed "plus_le";

val prems = goal Nat2.thy "[| ~m=0;  m <= n |] ==> ~n=0";
by (cut_facts_tac prems 1);
by (REPEAT (etac rev_mp 1));
by (IND_TAC nat_exh (simp_tac nat_ss) "m" 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
qed "not0";

goal Nat2.thy "a<=a' & b<=b' --> a+b<=a'+b'";
by (IND_TAC nat_ind (simp_tac (nat_ss addsimps [plus_0_right,le_plus])) "b" 1);
by (resolve_tac [impI RS allI] 1);
by (resolve_tac [allI RS allI] 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac (nat_ss addsimps [plus_succ_right])) 1);
qed "plus_le_plus";

goal Nat2.thy "i<=j --> j<=k --> i<=k";
by (IND_TAC nat_ind (K all_tac) "i" 1);
by (simp_tac nat_ss 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (resolve_tac [impI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
qed "le_trans";

goal Nat2.thy "i < j --> j <=k --> i < k";
by (IND_TAC nat_ind (K all_tac) "j" 1);
by (simp_tac nat_ss 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (fast_tac FOL_cs 1);
qed "less_le_trans";

goal Nat2.thy "succ(i) <= j <-> i < j";
by (IND_TAC nat_ind (simp_tac nat_ss) "j" 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (asm_simp_tac nat_ss) 1);
qed "succ_le2";

goal Nat2.thy "i<succ(j) <-> i=j | i<j";
by (IND_TAC nat_ind (simp_tac nat_ss) "j" 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (resolve_tac [impI RS allI] 1);
by (ALL_IND_TAC nat_exh (simp_tac nat_ss) 1);
by (asm_simp_tac nat_ss 1);
qed "less_succ";